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—G) Open A
Russel [4] studied the motion of two spherical rigid bodies. In same way, Kopal [5] ex-

tended the previous work of Russel [4]; Cowling [6], Sterne [7] and Brouwer [8] gene-

ralized the work of previous authors by considering the lean angle and eccentricity as
the small quantities. Johnson and Kane [9] extended the work of above authors by im-
posing some axiomatic restrictions as follows:

1) The inertia ellipsoids of two rigid bodies Aand B for their respective mass cen-
tre A"and B® are ellipsoids of revolution.

2) Either the distance between A’and B* is considerably greater than the greatest
dimension of either body or the ellipticities of the inertia ellipsoids of Aand B are
small.

3) The angular velocities of Aand B in an inertial frame of reference R are in-
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itially parallel to the symmetrical axes of Aand B respectively.

4) The mass centers A’ and B* move in plane whose orientation is fixed in R.

Bhatnagar [3], Elipe and Miguel [10], Choudhary and Mishra [11], Mercedes and
Elipe [12] have discussed the problem similar to the works of the author of early thirties
and forties. But Milution Marjanov [13] has discussed the problem on the cause of re-
sonant motions of celestial bodies in an inhomogeneous gravitational field. He has
shown that, when eccentricities of the orbits differ from zero and cross section of the
ellipsoids of inertia with orbital plane differs from the circle, the two-cycle resonance is
the most stable one. Further Milution Marjanov [13] has discussed the effect of reson-
ance on the problem of two real bodies. He has shown that there are 22 periodic func-
tions and all the variables are coupled. Moreover he established that the stability of the
orbit ie. periodicity of the motion requires 231 resonances.

In our present work, we have proposed to extend the work of Bhatnagar ez al [1] [2]
[3] by taking into account the effect of resonance and imposing some modified axi-
omatic restrictions as follows:

1) The inertia ellipsoids Aand B for their mass centers A" and B® are considered
as general ellipsoids only but not the ellipsoids of revolution.

2) The angular velocities of Aand B are initially parallel to one of the principal
axes, which is perpendicular to the orbital plane of Aand B .

3) Only the periodic terms are taken and other terms are neglected.

4) The two rigid bodies are symmetrical and cylindrical.
=1, for A and

AT R
for B, more critical points are found than that found by Bhatnagar and

On taking axioms second and fourth under consideration |

IBl = IBz
Gupta [1] [2].

2. Equations of Motion

Let A"(A,A,,A) be the mass center of the body A in the rotating frame of refer-
ence R’ having a variable orientation in the fixed frame of reference R which is
shown in Figure 1. Let X,Y,Z be fixed right handed mutually perpendicular axes in
R . Let us suppose that A, A,, A, are lines parallel to the principal axesof A at A".
We assume that XY -plane is normal to the angular momentum of the system about
the centre of mass. Let r be the distance between A" and B*, & be the angle between
A'B" and x-axis. Let us assume that ,,6,,, be the Eulerian angle with the help
of the principal axes A, A,, A, ofthebody A atits centre of mass A" oriented with
the fixed axes X,Y,Z respectively. Similarly y,6;,¢, be the Eulerian angles with
the help of the principal axes B, B,, B, of the body B at its centre of mass B,
oriented with the fixed axes X,Y,Z respectively.

Let p,, P,, Ps, Psy Ps. P, P, Py be generalized momenta corresponding to the gene-
ralized co-ordinates r,0,w,,0,,0,,Wg, 0,0, respectively. Let | A and IBi (i =1, 2,3) be

the principal moments of inertia, @, and g (i =1 2,3) be the components of the an-

A
gular velocities of body Aand B respectively. If m, and m; be the masses of the two
cylinders Aand B respectively then the total kinetic energy of the system is given by
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Figure 1. Orientation of the bodies.

T=T,..+T,

trans rot

:mA+mB(

T,+T,), 1
mymg * ° ) )

where, T, = kinetic energy of A and B due to translation.

mAmB =2 22
= A 5 o). 2
2(mA+mB)(r o ) @

T, = Sum of kinetic energy of A and B due to rotation about the principle axes.
1 2 2 2 2 2 2
=E[IA1wA1+IAQa)AQ+IA3wA3+IBla)Bl+IBszZ+IB3ng:|' (3)
If w,0,p be the Eulerian angles shown in Figure 1 then the components of angular
velocity are given by
w, = {z/'/sin sin go+9005go}, w, = {ésingo—y}sin HCOS(p}, @, ={ycosf+¢} (4)

Thus the combination of Equations (1), (2), (3) and (4) yields

1 o o0y MMy L . : 2
T _E(r +r%0 )+m|:lﬁ(V/ASInHASIn¢A+0ACOS¢A)

- .. 2 . . N2
+1,, (174 5in 0, 050, — 6, 5N, ) +1,, (47, COS0, +3, ) 5)
+1g (Wa sind, sin g, + 6, cos g )2 +1g, ('/’B sind, cos g, — b, sin g, )2

+1g, (W5 COS Gy —qu)Z].

Since for cylindrical bodies 1, =1, and lg =g, hence from the Equation (5),

A Ao
we get
1i2, 250\, M+ Mg 72 sin? )2 J 5, )’
T=2 6 | O, +62)+1 0
URCAR 2m,m, [V (VA in* 0, +.0) +1,, (4 050, + ) 6)
+1g, (Whsin? 6, +65 )+ 1, (viacosé’sws)z}
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The generalized momenta p, {i=1,2,---8} corresponding to generalized coordinates
q,{i=12,---8} are given by the relations
oT
=2 7
P 2, (7)

where, & =T, 0, =0,0,=W 0, =0,, s =0n, Qs =Vg, O; =65, U3 = @5,
ie p =t p,=r%6,
m, +m .. . .
Szﬁ[%(msmzeﬁ\ﬁIAs(y/AcoszeAJrgoAcos@A)],
alllg

: m,m
SOy =—28 xPa

my+mg 1,
m,+mg . . _m,+mg L
ps_m[l%(l//,\coseﬁr%)}, P, — Ps COS O, = . [Ipl(y/Asm QA)J.
m,+mg -
P, =2 BIAleA'
mAmB
W, = M, Mg ! (ps — Ps€0S,).
Fomgemg 1 sinfg, 0 TR
From p;, we get
b, = My Mg | Ps 1
A

= — p. cosé
m, +mg | 1, IAlsinzé?A(p3 Ps »)

:%: mr;:mf:s [|Bl(¢73 sin® 0 )+ 1, (175 C0S” By + o cosaB)],
OT _m,+mg

Ps

=—= I 6,
P 06, mmg *°
:>9B=—mAmB P
my+mg Iy

or  m,+mg . .
= =——1 cos@+ ,
EF m,m, I: Bs (V/B §DB):|

Pg

_my+mg .o
pe—pscose_w[lasy/Bsm HB]

alllg
m,m 1
A B

= - p, cosd, |.
m, +mg IBlsinZG'B[pe Ps 3

From pg, we get

q) =
® m,+m,

m,Mg Ps 1
— coséy ) |.
l:lB3 Ig Sin295 (p6 s B):|

Introducing ¢, in the Equation (6), we get

1f > p; 1f m,mg 1 2 2 qin2
T== +—= |+ - p-Cc0sd,) + p;sin“ o
2(p1 r2 ) 2\ m, +m, I,Aisin26'A{(p3 Ps h) P A}
2

(8)
Ps 1 2 2 2 p:
= +—————1(ps— P C0SG; )" + p; sin” G, +—:l
| IBlsmzaB{ } I,

+
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Following Brouwer and Clemenc [14] the potential V for the two bodies Aand B
is given by

V=G

m, +mg ¢ dm,dm
n:AmBB J'J‘ Ar B

: (9)

where I' is the distance between two elements dm, and dm, of the two bodies

Aand B respectivelyand G is the gravitational constant. The integration extends over
total mass of two bodies.

From Equation (9), we get

voH, H [(|Aa - |A1){1—35in26’A5in2(9-l//A)}J

ro2m,r’ (10)
M P02 i02 ,
T [(IBg—IBl){l—Ssm 0, sin (6'—1//3)}}
where £ =G(m,+mg).
The Hamiltonian function is given by
H=T-V=H,+H,,
where, H, = unperturbed Hamiltonian
1 . | u
== pretz|-£, 11
2|:p1 r2 r ( )
H, = Perturbed Hamiltonian,
1( m,m, 1 2 5 s ps
== —PsC0SH, ) +p,sin” G, +—=
2[mA+mBJ[|A§in29A {(p3 Ps COS6, )+ P A} L,
1 2 2 ain?2 p;
+—————1{(Ps— P5COSB, )" + p; Sin° G { +——
IBlsngB{ } IBs (12)
7 02 qin?
T [(IA3 —IAl){1—3S|n 6, sin (H—WA)}]
Yz, . .
_—2m8r3 [(IB3 - IBI){l—3S|n2¢9B sin® (0 -y )}J

The Canonical equations of motion are given by

:ﬁ' 92%: V}A:ﬁ' .A:ﬂ' ¢A:ﬁ’
opy p, op, p, Ps
~oH . oH . 0oH

‘//B—a’ B_al ¢B—£'
oH | oH . oH | oH
plz_ﬁl pzz_%: psz_al//Av p4:_a€A1
oH | oH _6H . oH

B e P o oy

3. Unperturbed Solutions

The Hamilton-Jacobi Equation for the Hamiltonian H, is given by
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@+H0(t,r,aéﬁj:o.
or or 06

The solution of the above equation is given by
2 az
s=—a1t+a26+_[ 2(ﬁ+alj——§dr. (13)
r r
n

Hence the solution of the problem can be given in term of the Keplerian elements

a,e,0,7 as
- vz, dé V2
-5 <[t e = e
a(1-¢’ -
r=#=a(1—ecosE), 0 =w+cos™ {cosEe) (14)
1-ecos(8 - ) (1-ecosE)
12
E-esinE=n(t-7), n=(%}
a

Here a,e,o,t are the usual Keplerian elements, E is the eccentric anomaly, ¢, and
o, are constants of integration, f, and f, are generalized momenta variables cor-

responding to o, and «, respectively.

4. Approximate Variational Equations Corresponding to
Perturbed Hamiltonian

The set of approximate variational equations may be given by averaging the Hamilto-

nian H, . The averaged value of the Hamiltonian H, is given by
— N ¢2n/n
Hl—E;L H,dt,

where H, is given by the Equation (12).
Here, we observe that by averaging the Hamiltonian, short-periodic terms are elimi-
nated from the Hamilton-Jacobi equation. An approximate set of variational equations

are given by

. _oH. . _oH . oH, . ¢H
ay=—==0, a,=—2=0, f=—+, fy=—" (15)
B, B, ooy Oa,
From the above equations, we get
a; = const = o, (say) (i =1,2).
From Equation (14), we have
a=-2t = # _const.=a,,
20 20,
(16)

2
(24
e=[1-—% =const. = g,.
" ua

K2
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, _OH 3 (IAs_I/i) 3. (IB3_IBI) 3.
ﬂl:a_al:az(]_—ez)s/z T [l_ESInZHAj_T[l_ESIHZHBJ ,(17)
. 0H  3n | (IA3_IA1) 3. (IB3_IBI) 3. ]
O P T G s (| R

For solving the Equations (17) and (18), we should know ,,0,,0,,v,0;, @5 as

function of time.

5. Solutions for Generalized Co-Ordinates

WprOn@a W, 05,05, 7 and @ are generalized co-ordinates.

For the solution, we will use the Lagrange’s equation of motion
dfar) ar v )
dt\og ) oq g
where T = kinetic energy and V = Potential energy of the system given by the Equ-
ations (8) and (10) respectively.

From Equation (6), we get

M, +M;)

T=E(r2+r2¢92)+(2mAmB [IAl{;yf\5|n29A+49f\}+lA3(z//AcosHA+goA)2

+|Bl{(/}é sin® 4, +9§}+|53 (V}B COS Gy +¢B)2:|'

oT
oy,

=0, (20)

and
aT  m,+mg

Sy, 2mm, [IA&(ZI/}ASinZHA)+2IA3(¢A0059A+¢)A)0059AJ

KD
+%%, Scientific Research Publishing

(21)
o m,+m . 2 . 2 .
- n’:AmBB[IAly/Asm 0, + 1, (174 coS 0A+¢Acos(9A)].
d{ oT m,+mgr.. _ 2 ..
—| —— |=———=| w3l sin"8,+1, cos” 8, +¢,l, cosd
dt(am] m,m; [ {15000+ 1y 05" 61} 6,1, 050, (22)
17,0,5i020, (1, =1, )= 9,01 ., sin 6, |.
From Equation (12), we have
KL H _ —3sin? 0. sin? (9 -
=Tt [(IA3 1, ){1-8sin’ 6, sin’ (0 V/A)}:|
H ) .2
o [(1e, 15, ){1—3sin* G, sin® (0 -y, )} | (23)
N 3 u L,
2. 2m [(IAS—IAl)sm 6’Asm2(6’—V/A)].
For q=w,.
The combination of Equations (19), (20), (21), (22) and (23) gives
561
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m, +mg
mAmB

740 (1, — 1, )SiN 20, — 40, sin&A}

- 2?nﬂAr3 [(14, =1 )sin B,sin2(0 -y, )] (24)

[V/A{I,ﬁsm Op+1,, cos’ 0 }+(pA a, COSO,

= 5 {1, SIN* 0, + 1, C0S” O, } + Bl COS Oy +17,0, (1, — 1, )SiN 20, —3,0,1,, sin 6,

= 35:? [(lA3 - IAl)Sin2 6,sin 2(9_V/A):|-

This is the required Lagrange’s equation of motionin y, .
Again,
T mu+mg - d aT _m,+mg
= 1,0, ——= 9
06, mymg dt m,mg

o my+mg | o \Ia—ls) . L

a: n’:AmBB{ i( Alz AG)SIHZHA—lAa(pAl//ASIHHA},
N -3u o
a:m[(l%—Ipl)3|n26?A3|n2(6?—y/A)]

Thus the Lagrange’s equation of motionin 6, is

i[aTj ar v

dt\ o6, | 06, o6,

I, —1
.My +mg 5 .2( A Ag). . .
ie. mom, |:|A10A_WATSIn29A+¢AV/AIA3SInaA
_ 3u ; 02
_W[(I%—Iﬁ)smwﬁ\sm (6’—%\)}
" I, -1
‘AR —y)iMsin 20, + 9pi7 4l SiNG,
2 (25)
Suu . .

= 2r3A [(IA3 —IAl)smzeAsmz(H—wA)].
Again,

oT _1(m,+mg) . .

I, 2(wcosé, + ,

o, 2 m,mg [A3 (v cosd, (/)A)]

T, N,

0P, 0p,

g[ Gl j_ aT v

dt\ 0p, ) Ops Op,

m, +m .. .. Lo
rf] _ 2 [ialy, COSO, + 1, 3y — 1 0740, 5IN 0, | =0,
A""'B
= il €050, + @1, —17,0,1, sin6, =0. (26)

Similarly for q=wg,6;, ¢ -

K2
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g {15, SIN* Oy + 1, COS” Oy | + 515, COS O +17505 (15, — 15, )SiN 20, 0515, SN Gy

3 - : (27)
- 5’;5 [(IBa—IBl)smzﬁBsmz(H—V/B)].
r
A .2 IB3_IBl . .o .
Oslg —Vs —5 SIN 260 + @gyglg, SIN Gy
(28)
3uu . .
- 2r3B [('sg—|Bl)5'“25’55'n2(9—1//5)]
Wglg, COSOp + gl —ygbglg sinGy =0. (29)

We have assumed that the angular velocities @, and @, of bodies AandB are
initially parallel to one of the principal axes which is perpendicular to the orbital plane.
If we further assume that no torque (unperturbed motion) is acting on either of the two
bodies then both the bodies will spin at a constant rate about that axes and the orienta-
tion with the axes will be fixed.

In terms of the Eulerian angles, we have

Y, = constant = Wao Ve = constant = Vg,

0, = constant =6, , 0 = constant =6, ,

@, = constant =w,, @; = constant =y,

Pp =t +@p s P =Wt + g .

In the case of perturbed motion, let us suppose that

Wa=Way Hllar On=0n +Sn, Q=W+, +§A}

(30)
Yo =Yg, +1g, O =05, +&s, 05 =Wol+@y +&5

where 0, , W, @a 05, W, Ps, are the constants corresponding to the torque-free so-
lutionsand &,,&5,77,,75.6 4,4z are small quantities which are functions of time.

Since bodies are cylinders hence

3a’ + 417 m,a’ o 3%+4”  mga”?

I'Al:IAZ:mAT’ IA3: 2 'IBllez_mB 12 LN 2 ) (31)

where, a= radius of body A4, |= length of body A, &' = radius of body B, I'=
length of body B.

We replace ¢, and ¢, by their steady state value ¢, and ¢, respectively and
using the Equation (30) and (31) in Equations (24), (25) and (26) and neglecting higher
order terms, then from Equation (24), we have

Oplp Bty
" A
Iy SN, 2(1—e2)3 a’m,l, sind, (32)

><|:{(|A3 - I,ﬁ)sinzw% sin 2(9—r,z/p0 )}{1+ecos(6—w)}3}.

From Equation (25), we have

ijA_

+a)AIAssin0A0 5 = 3y,
AT 3
Iy 2a3(1—e2) Myl (33)

x[{(IA3 ~1,, )sin20, sin*(6-y, )} {l+ecos(9—a))}3}.

A
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From Equation (26), we have

7o €088, +&, =0. (34)
Similarly for the body B using Equations (30) and (31) in Equations (27), (28) and
(29), we get
.. wglg, . 3ug
T sing, B 2\ .3 :
g, SINGg 2(1-€*) a’mgly, sin 26, (35)
><|:(|B3 — 1y, )sin® gy, sin2(0 -y, )][1+ecos(6’—w)}3,
lg, 05 SiNG, B 3ty
B B — 3
lg, 2a° (1—e2) Mg lg, (36)

><[(IBl — I, )sin 20, sin? (0 -y, )J[Hecos(&—a))f.

From Equation (29), we have
775 COS O +65 =0. (37)
Integrating the Equation (36) and putting the value of 7, in the Equation (37) and
neglecting the secular terms, we get
&y +1maén = 11,] C,c08(0 - ) +C, c0s2(0 - )+ C, c0s3(0 - w)
+C,c0s2(0 -y, )+Cscos(30-2y, - o)

+Cyc0s(0 -2y, +0)+C, cos(40 -2y, —20) (38)

+Cy c0s(50 -2y, ~3w)+C, cos(0+2y,, ~30)]

where C,,C,,C,,C,,---,Cy are constants independent of t and 7, =

Considering Kepler’s equation up to the 1* order approximation & =nt, the solu-
tion of the Equation (38) is given by
C, cos(6 - w) s C,c0s2(0-w) C,cos3(6-w)
-n®+ni —4n* +n} -9n* +nj}

§A:XAcosIA+y{

N C,cos2(0-y, ) N Cycos(30 -2y, —0) . Cycos(0 -2y, +0)

39
—4n* +n} -9n* +nj} -n® +nj} (39)
C, cos(40 -2y, —@) Cyc08(50 -2y, —30) C,cos(6—2y, —30)
+ +
—16n° +n} -25n° +n} —n®+n’

Here we can see that if any one of the denominator vanishes, the motion is indeter-
minate at the point. It depends on the mean motion and the angular velocity of rotation
of the body. There are many points at which resonance will occur but for discussion we
have consider only one point 2n=n, and for other we can use the similar proce-
dure. We further assume that |2n -n A| is a small quantity and at the equilibrium point
2n—n, ie mean motion and angular velocity of the rigid body A are in the ratio of

%%
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1:2. In order to study the behavior at this point we will follow the procedure of Brown
and Shook [15].

6. Resonance at the Critical Points

From right hand side of Equation (39), we have n, =n,2n,3n,4n are the critical points.
Here we consider n, =2n for discussing resonance. Now we shall calculate the am-
plitude and period of vibration in the variable &, .

We may write the Equation (39) as

., P
Sa+ N :ﬂAal (40)

where,
H, = £[C,cos(6-®)+C, cos2(0 - w)+C,cos(0—w)+C,cos2(0 -y, )
+Cycos(30 -2y, —@)+Cycos(0 -2y, +0)+C, cos(40-2y, —20)
+C,c08(50 2y, —3w)+C, cos(0+2y,, —3a>)]

The solution of the equation
E s, =0, (41)
is periodic and given by
En=Xucosly, Iy=nt+&,, ny=1(X,). (42)

Let &, be the function of two independent variable X, andl, ie. &, =&, (X, 1,)-
The Equation (41) may be written as
0%,

32 +&,=0. (43)

Then

a5y _ 05, dly, 05, dX, (44)

dt o, dt oX, dt
We want to replace &, from Equation (40) by two new variables X, and |,
which are related to &, by Equation (42). As we are replacing one variable by other

two co-relations between the new variables is at our choice. Let us choose it in such a

KD
+%%, Scientific Research Publishing

way that
a5, dl, o5, OX, | 2 ”
o, dt oXx, dt ol,
Using Equations (44) and (45), we get di =n, ai.
dt ol,
As 1,,X,andn, are function of time t, therefore differentiating it with respect to
t, we get
;o d o’ dl 0%, | dX
§A: eZ"\:nA iA._A_;_ 0 nAi A (46)
dt ol, dt  0oX, a, ) dt
565
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Using Equations (40), (43) and (46), we get

e, (a, A oH,
— =N, |[+——| N, = —_— 47
LT (dt ’ ax Al dt Py (47)

Also from the Equation (46), we get

6§A[6| o, |+ 0%, dX, _ (48)
ol 0X, dt
. . . .. (dl, dx,
Obviously the Equations (47) and (48) are linear equations in Tt Ny
So solving these equations for these variables, we get
Xa H
X, _ Hy OHy (49)
dat K, al,
Ay a6 OHy | #a OHy (50)
dt K, 0X, 0, Ky, 0X,
2
where, KA:i nA% %—nAai’*-aéA is a function of X, only.
oX al, )ol, oly oX,
Also,
xA
HA=?[Cl{cos(e—awIA)+cos(6’—a)—IA)}
+C,{cos2(0-w)+1,)+cos2(0-w)-1,)|
c0s3(0-w)+1,)+cos3(0—w)-1,)}
cos(0 -y, +1, )+cos(6’—y/A—IA)}
c0s(30 -2y, —w+1,)+c0s(30-2p, —w-1,)} . (51)

cos(40 -2y, —20+1,)+cos(40-2y,, —20+1,)|

+C,f

+C, foos(

+C; foos(

{cos(H 2, +o+l, )+COS(9—21//AO+a)—IA)}
+C; foos(

+C, foos(

cos(560 -2y, —3w+1 )+cos(5¢9—2y/A0—3a)—IA)}

+C, [c0s(0+2y,, —3w+1, ) +cos(50 -2y, —3a)—|A)H

As n,, K, are function of X, only, we can write the Equation (51) into canonical

form with new variables X, and R, defined by
dX, =K,dK,, drR,=-n,dX, =-n,K,dX,

dl, -0

dX, 0 dl, _
dt  ox,

at o,

(Ry+1,Hy), (Ry+ 4H,) so differentiating the Equation

and dl , we get
dt

d’ly _ a oy oH, 0°H, o°H,
dt? K, |éX, al, “aloX, al,oX,

Hp| O*H, OHp 0 [ 1 0H,) oH,
KZ| 01,0, X, “oX, (K, oX,) a, |
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Neglecting higher powers of 1, , we get

Eﬂ“_ﬁi{&u.aHA_n 62HA__62HA}

dt? K, |oX, al, "aloX, aloX,

(52)

Here we observe that |, and| are present in H, only as the sum of the periodic
terms with argument {ilA —j(nt+ 8)} where nande are given constants, thus we

have

aHA___(ijaHA
ot i ) al,

The Equation (53) can be written

Pl e 2 M| 0 1 oH, |
dﬁ'+§:UnA Jn)iKA{aXA{(mA—jn) al, =0 5%

Now we are considering here the case in which the critical argument is at the point

n, =2n then the affected Hamiltonian is given by

HA:%(C4XACOS|). (54)
Taking | =1, -2(nt+¢) as the critical argument in our case so the Equation (53)
becomes
2
d—zl—(nA—Zn)2 Hu | 0 ] CXa sinl =0. (55)
dt 2K, | 0X, [Ny =2n

As the first approximation, if we put X, =X, , n Ka=n, (All constants)

A= Naps
then Equation (54) becomes

2
d—zl—(nA—Zn)2 Ha 0 CuXa sinl =0. (56)
dt 2K,A0 axAO nAO—Zn

This is the equation of motion of a simple pendulum. If co-efficient of Sinl is nega-

tive then

n,—-2n=0, &, —2¢=00rm

If the oscillation is small, we can take sinl~I, n, =Ny, X, = XAO, K,= K,A0 as |

oscillates about the value of 0 or n. Then Equation (56) becomes

2
d—zl—z(nA—Zn)2 K | O ] CXa =0
dt 2K, [ 0Ky | Ng —2N
0

where P? =

#,Cy4 X ( ony J
A
2K, "X, ),
Ly@asin6, 3u(l, =1, ) (1+3¢%) 1

3 2 T2 |
1,28 (1-€*) m,

C, =
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Its solution is given by
|=2,sin(PJ+2, ) (57)

where Z, and Z, are arbitrary constants. Thus amplitude and period of vibration
2n

are given by Z, and B respectively with similar approximation in the first relation
A

of Equation (50) and using the Equations (54) and (57), we get.

C,X,1Z
Xp=Xp —y(z“T:]F:cos(PAHZAO)

where X, canbe determined from the equation n, =2n as n, is known function.

Ao

7. Equilibrium Points for the Body A4 in Terms of Eulerian Angles

Now we calculate the libration in the variables 7, (or=y,) and ¢,.

Integrating the Equation (33) and ignoring secular terms, we get

: 3up, . [3e 3ezj 1. 3% .
£ = I, —1,)sin26, | =—=—|-=sin+=—sin2(0 - o)
* 2a3(1—e2)3mAlAl( o Al) "2 8 )n 8

3 2
+%sin3(9—a))+4—1n(1+3%)sinZ(H—WAO)

e 3°) 1 . 3 3°) 1.
+[——_].—s|n(3€—2y/%—a))+(Z—Ej~HSIn(9—2y/Aﬁ+a))

2 3

3 _ .
# oSN (40 -2y, ~20) + £ sin (56 - 2y, ~30)

e . IAG .
1SN (0-30+ ZWAO)_KWA SiN 6, 77,

where constants of integration are taken to be zero.

Putting the value of &, in Equation (32) and ignoring secular term, we get
2
I
i —[Q)A—Asj Na = Ha[ G SIN(0—0) +C,5In 2(0 - 0) + ¢, sin(0-0) +C,5in2(0 -y, )
IA1
+cssin<36—2y/% —a))+063in(9—21//% +a))+c7 sin(49—2¢//ﬁ0 —Za))
+Gysin (50 -2y, —30)+¢ysin(0+2y,, 30),

where ¢, =1,2,3,---,9 etc. are constants.

And the perturbed solution for 7, is given by

c . c, . C, .
=X, cosl, + ————sin(f-w)+————sin2(f—-w)+————-sin(f-w
A A AT Hp Tn? it ( ) “an? n? ( ) 9n?+n? ( )
C, . Cs . Co .
+msln Z(H—W%)+msm(39—2l//% —a))+msm(¢9—2y/% +a)) (58)

b sin(40- 2y, ~20)+ ——2—sin(50 -2y, ~3w)+
A

C .
————sin({0+2y, —3w
~16n% +n? —25n +n 24n2 (0+20, )}

—-n~+n

K2
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Obviously in the case of one of the denominator becomes zero, the motion cannot be
determined at that point, known as critical point and hence resonance arise at that
point. In this case usual method fails to determine the motion, so for the present pur-
pose the present purpose we will use the method as that of &, .

The equation for 77, can be written as
.. OH;
T+ Malln = fip——
0,

H, :%[cl {sin(0-w+1,)+sin(0-w-1,)}
+, {sin (20— 2w+1,)+sin (20 — 20 -1, )|
+C,{sin(30 —3m+1,) +sin (30 -3w—1,)}

¢, {sin(20-2y,, +1,)+sin(20 -2y, -1, )}

+

+¢,{sin(30 -2y, —w+1,)+sin(30-2y, —a)—IA)}

+

c, {sin (40 -2y, —2w+1,)+sin(40-2y, —2a>—IA)}

Sin

fsin(

fin

fin
+06{5|n(9—2y/%+a)+IA)+sin(9—2t//A0+w—lA)}

fin

fin

50 -2y, ~3w+1,)+sin(50 -2y, ~30-1,)|
4y {sin(0+2p,, —30+1,)+sin(0+2y, —3a)—|A)ﬂ.

On taking the first approximation, we can see that critical argument oscillates about

L or %t Also the solution for | is given by

2
|:z;\sin(P,;t+z,;0) (59)
where Z, and Z, arearbitrary constant.

2
Thus amplitude and period of vibration are given by Z, and § respectively,

A
/uAC4x/[af7Aj
2K, M lax,

where P; =

>

Ky =0 (HA%j%_nAazm.@m
X al, )ol, oy oX,
3uw, | 2
c, = O 4 - ><<IA3—IA1)><2c059A0>{1+3ijxi
| ,2a°(1-€*) m, 2. ) 4n
A
3ull, -1 2
+ ( A‘; Al) x[l+3iJ .
2(1—e2) a’m,l, 2
The solution for X is given by
r_ 2 C4x,’A Z,’A 2 ’
xA_x%_ﬂ[—ZK; JOXP—A(PAt+ZAO) (60)
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n = 2n as n, isa known func-

tion. From the Equation (34) it is obvious that ¢, depends on 77, so that all the re-

where X, can be determined from the equation n

sults of ¢, can be found in terms of 7,.

8. Equilibrium Points for the Body B in Terms of Eulerian Angles

By proceeding exactly same as above case, we can find out the libration in the variables
05.ws and ¢ . Here, we assume that [2n—ng| is a small quantity and at the equili-
brium point 2n=n; Zie mean motion and angular velocity of the body B are in the
ratio of 1:2. Therefore at this point the resonance will arise. By taking

Mg

:1— = e—
Hp Ha Mg +m,

and the solution up to first order approximation of u,, we get

&g = Xgcosly + g _nzD—lzcos(e—a))+ cos2(6-w)

+n; —4n* +n?

D
cos3(0-w)+—-—=2—cos2(6 -
-9n? +nB (0-w)+ —4n? 4+ n? ( WB")

D5
+mCOS(30 - 21//50 - 0))

cos(f0-2y, +w (61)
—n2+n§ (020, + )

T cos(49 2y, —20)

_ZSTCOS<59 2yr, ~30)

D9
+———cos(d+ 2y, —3w
n® +n? ( s, ~30)

Mg = Xg COSly + 4 [%sin(@—wﬁ%sin 2(0-w)
— + -

B B

sin 3(0—w)+%sin 2(0-ys,)

2 2
-9n° +ng —4n° +ng

+msin(39—2(//50 - o)

2

d
+—% sin(0-2p. +o 62
-n?+n? ( Ve ) (62)

+Tsm(46’ 2y, —20)

+_25T3|n(59 2(//80 —3(0)

d,
+m5|n (9 + 2l//BO - 30)):|

Xg and X are arbitrary constants.
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[N |
A N (63)
|51

I =ngt+eg, Ny =

Also we see that in the libration in the variable &, the critical argument variable |

makes oscillation about the value Oor n and the period of libration is given by R
B

The solution of 1= for small oscillation is given by |, =Z, Sin(PBt +Zg, ) , Where

Zy and Z, arearbitrary constant.

D,Xg(1- -
PBZ=|: 4 B( ﬂA) s +1 2/”A{ 0 X D4XB.6KB+ 0 XBD4)}

D
2K Xy K2 axB( = Kg Xg axB(

-D,Xg X
B

2
Oce -n T is a function of X, only.

Kg = 0 (nB%j'_ B
1) ol, ) oy O0Xg

_Slu(lBg_IBl) 1 362J+_3'u|53m33in030<|53_IBl)

D, = in@, | =+—
) IQZa'z(l—ez)gmBsm BO[ZJF 4 I;Za’3(1—e2)3m5

2
><1+3ii.
2 )2n

Solution for X, is given by

1y (DX, ) Z
Xg = Xg, —75[&} —:cos(PBt+ZBO )
0

B
Also when we consider the libration in the variable y, we see that the critical
argument |, will make oscillation about the value g or B?T[ and the period of libra-
R T
tion is given by —.
PB
The solution of |, for small oscillation in this case will be |, =Z; Sin(PB't—i-Zéo ) ,

where Z; and Z; arearbitrary constant.

PBz/:{dtiB'(l_ﬂA)ans +1_2,UA{ 0 (Xéd‘l)[dAXB.aKB_F 0 (d4xs)j

2K, oX,  KZ |oX, K, X, oXj
faz r
0
, 0 ong | on o°ns n
KB—_, nB_B ’ B_nB zB' .
Xy ®al, ) el oz oX,

3/MBIB3.(IB3_IB1)20050

d, =
I3 22" (1-¢* )3 m, K

(s_s_Jl (e, 15 (13—J

4n 2(1—(32)3 a’m,l, 2

And the solution for X; is given by
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1 _ ' /uB d4xé Zé ’ ’
Xy =X —7[K—élp—écos(PBl +24 ). (64)

where Xj can be determined from the equation ng =2n as ng is a known func-
tion.

From the Equation (37) it is obvious and ¢; depends on 77, so that the result of

¢y canbe found in term of 77;.
9. The Solution for the Generalized Momenta Variables
Corresponding to Constants of Integration

We have from Equation (16),
a = constant = 4y, €= constant = €-

Integrating the Equation (17) with respect to t, we get
Ft
By = —— + constant

(1-¢?
S B I U IAl)(1—§sin2HAJ—M(L%SW%) .

a’ (1—e2 )3/2 2m, 2mg

Initiallyat t=0 take f =7, and using the Equation (16), we get

7 =Mt+7,
-F
where, M = —7
(1-€})
Again from Equation (18), we have
nFt
B, =———7 +constant.

ol

Initiallyat t=0 take S, =@, and using the Equation (14), we get

~Ft
By == +aw, = Nnt+@,,

(1-€3 )2

where, N :i

(1-€5 )2 '

Now we find the time At that elapses between the instant at which r attains suc-
cessive minima and A@ the corresponding changein 4.

We have r=a(l-ecosE)=a,(1-e,cosE). Clearly r attains it successive mini-
maat E=0o0rE =2mn.

Let E=0 when t=t and E=2n when t=t,. Then from Equations (14) and (34),
we have

2n

At ——.,
n(1-M)

Again from the Equations (13) and (36), we get

K2
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COSE —e
0 =Nnt + @, +cos™* (cosE —e)
1-ecosE

Let E=0 when #=6¢ and E=2n when 6=6,.

N
The corresponding change in 6 is givenby Af= 27{14— =Y }

10. Conclusions

In the section of “Equations of motion”, we have derived the perturbed and unper-
turbed Hamiltonian and the canonical equations of motion with respect to the com-
plete Hamiltonian H where are generalized co-ordinates and are the corresponding ge-
neralized momenta. In Section 3, unperturbed solutions can be derived by usual course
from the Kepler’s equation of motion. For appropriate variational equation, the required
generalized co-ordinates have been calculated in Section 5. In section 6, the effect of
resonance has been shown in the solutions of the equations of motion of two cylindrical
rigid bodies. In Section 7 and 8, equilibrium points have been calculated in terms of
Eulerian angles for both the bodies.. Finally the appropriate variational equation in Sec-
tion 4 has been completely solved in Section 9.

The tools obtained in different sections of the manuscript can be used to discuss the
motion of cable connected two artificial satellites. Thus, we may conclude that this ar-

ticle is highly applicable in Astrophysics and Space Science.
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