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Abstract 
This is a survey on our recent works on bi-harmonic maps on CR-manifolds and fo-
liated Riemannian manifolds, and also a research paper on bi-harmonic maps prin-
cipal G-bundles. We will show, (1) for a complete strictly pseudoconvex CR manifold 
( ),M gθ , every pseudo bi-harmonic isometric immersion ( ) ( ): , ,M g N hθϕ →  into 
a Riemannian manifold of non-positive curvature, with finite energy and finite bi- 
energy, must be pseudo harmonic; (2) for a smooth foliated map of a complete, pos-
sibly non-compact, foliated Riemannian manifold into another foliated Riemannian 
manifold, of which transversal sectional curvature is non-positive, we will show that 
if it is transversally bi-harmonic map with the finite energy and finite bienergy, then 
it is transversally harmonic; (3) we will claim that the similar result holds for prin-
cipal G-bundle over a Riemannian manifold of negative Ricci curvature. 
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1. Introduction 

The theory of harmonic maps has been extensively developed and applied in many 
problems in topology and differential geometry (cf. [1] [2] [3], etc.). Eells and Lemaire 
raised ([3]) a problem to study k -harmonic maps and G. Y. Jiang calculated [4] the 
first variational and second formulas of the bienergy. 

On the other hand, B.Y. Chen proposed [5] the famous conjecture in the study of 
sub-manifolds in the Euclidean space. B. Y. Chen’s conjecture and the generalized B. Y. 
Chen’s conjecture are as follows: 
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The B. Y. Chen’s conjecture: Every biharmonic isometric immersion into the Eucli- 
dean space n  must be harmonic (minimal). 

The generalized B. Y. Chen’s conjecture: Every biharmonic isometric immersion of 
a Riemannian manifold ( ),M g  into a Riemannian manifold ( ),N h  of non-positive 
curvature must be harmonic (minimal). 

The B. Y. Chen’s conjecture is still open, but the generalized B. Y. Chen’s conjecture 
was solved negatively by Ye-Lin Ou and Liang Tang [6], due to several authors have 
contributed to give partial answers to solve these problems (cf. [7]-[17]). 

For the first and second variational formula of the bienergy, see [4]. 
Then, the CR analogue for harmonic maps and biharmonic maps has been raised as 

follows. 
The CR analogue of the generalized Chen’s conjecture: Let ( ),M gθ  be a complete 

strictly pseudoconvex CR manifold, and ( ),N h , a Riemannian manifold of non-positive 
curvature. Then, every pseudo biharmonic isometric immersion ( ) ( ): , ,M g N hθϕ →  
must be pseudo harmonic. 

For the works on CR analogue of biharmonic maps, see [18] [19] [20]. We will show 
(cf. [20]): 

Theorem 1.1. (cf. Theorem 2.1) Let ϕ  be a pseudo biharmonic map of a strictly 
pseudoconvex complete CR manifold ( ),M gθ  into another Riemannian manifold 
( ),N h  of non positive curvature. 

If ϕ  has finite pseudo bienergy ( ),2bE ϕ < ∞  and finite pseudo energy ( )bE ϕ < ∞ , 
then it is pseudo harmonic, i.e., ( ) 0bτ ϕ = . 

Next, let us consider the analogue of harmonic maps and biharmonic maps for folia-
tions are also given as follows. Transversally biharmonic maps between two foliated 
Riemannian manifolds were introduced by Chiang and Wolak (cf. [21]) and see also 
[22] [23] [24] [25] [26]. They are generalizations of transversally harmonic maps in-
troduced by Konderak and Wolak (cf. [27] [28]). 

Among smooth foliated maps ϕ  between two Riemannian foliated manifolds, one 
can define the transversal energy and derive the Euler-Lagrange equation, and trans-
versally harmonic map as its critical points which are by definition the transversal ten-
sion field vanishes, ( ) 0bτ ϕ = . The transverse bienergy can be also defined as  

( ) ( ) 2
2

1
2 b gM

E vϕ τ ϕ= ∫  whose Euler-Lagrange equation is that the transversal biten-  

sion field ( )2,bτ ϕ  vanishes and the transversally biharmonic maps which are, by defi-
nition, vanishing of the transverse bitension field. 

Recently, S.D. Jung studied extensively the transversally harmonic maps and the 
transversally biharmonic maps on compact Riemannian foliated manifolds (cf. [29] [30] 
[31] [32]). 

Then, we will study transversally biharmonic maps of a complete (possibly non- 
compact) Riemannian foliated manifold ( ), ,M g   into another Riemannian foliated 
manifold ( ), ,M g′ ′ ′  of which transversal sectional curvature is non-positive. Then, 
we will show (cf. [33]) that: 
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Theorem 1.2. (cf. Theorem 2.6) Let ( ), ,M g   and ( ), ,M g′ ′ ′  be two Riemannian 
foliated manifolds, and assume that the transversal sectional curvature of ( ), ,M g′ ′ ′  
is non-positive. Let ( ) ( ): , , , ,M g M gϕ ′ ′ ′→   be a smooth foliated map which is an 
isometric immersion of ( ),M g  into ( ),M g′ ′ . If ϕ  is transversally biharmonic with 
the finite transversal energy ( ) <E ϕ ∞  and finite transversal bienergy ( )2E ϕ < ∞ , 
then it is transversally harmonic. 

Finally, in Section 5, instead of isometric immersions, we will consider a principal 
G-bundle ( ) ( ): , ,P g M hπ → , and show a new result whose details will be appeared in 
[34]. 

Theorem 1.3. (cf. Theorem 5.1) Let ( ) ( ): , ,P g M hπ →  be a principal G-bundle 
over a Riemannian manifold ( ),M h  whose Ricci tensor is negative definite. Then, if 

( ) ( ): , ,P g M hπ →  is biharmonic, then it is harmonic. 

2. Preliminaries 
2.1. First and Second Variational Formulas for the Energy 

First, let us recall the theory of harmonic maps. For a smooth map ϕ  of a Riemannian 
manifold ( ),M g  into another Riemannian manifold ( ),N h , the energy functional 
( )E •  is defined by 

( ) 21: d
2 gM

E vϕ ϕ= ∫                         (2.1) 

whose first variational formula is: 

( ) ( )
0

d , .
d t gM

t

E V v
t

ϕ τ ϕ
=

= −∫                    (2.2) 

Here, V is a variational vector field is given by ( ) ( )
0

d
dx t x

t

V x T N
t ϕϕ

=

= ∈ , ( )x M∈ ,  

and the tension field ( )τ ϕ  is given by 

( ) ( )( )
1

: , ,
m

i i
i

B e eτ ϕ ϕ
=

= ∑                                    (2.3) 

( )( ) ( ) ( ) ( ) ( )d, : d d , , ,h g
XXB X Y Y Y X Y Mϕϕ ϕ ϕ= ∇ − ∇ ∈X         (2.4) 

where g∇  and h∇  are Levi-Civita connections of ( ),M g  and ( ),N h , respectively. 
Then, ( ) ( ): , ,M g N hϕ →  is harmonic if ( ) 0τ ϕ = . 

The second variation formula of the energy functional ( )E •  for a harmonic map 
( ) ( ): , ,M g N hϕ →  is: 

( ) ( )
2

2
0

d , ,
d t gM

t

E J V V v
t

ϕ
=

= ∫                    (2.5) 

where 

( ) ( ): ,J V V V= ∆ −                                   (2.6) 

( ) ( )( ) ( )
1

: , : ,d d ,
m

h
i i

i
V V V R V e eϕ ϕ

∗

=

∆ = ∇ ∇ = ∑            (2.7) 
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where { } 1

m
i i

e
=

 is a locally defined frame field on ( ),M g . The k -energy functional 
due to J. Eells and L. Lemaire ([1] [2] [3]) is 

( ) ( ) ( )
21: 1, 2,

2
k

k gM
E d v kϕ δ ϕ= + =∫                  (2.8) 

which turn out that 

( ) ( ) ( ) 22
1 2

1 1d , .
2 2g gM M

E v E vϕ ϕ ϕ τ ϕ= =∫ ∫               (2.9) 

Furthermore, the first variation formula for ( )2E ϕ  is (cf. [4]): 

( ) ( )2 2
0

d , ,
d t gM

t

E V v
t

ϕ τ ϕ
=

= −∫                     (2.10) 

( ) ( )( ) ( ) ( )( )2 : .Jτ ϕ τ ϕ τ ϕ τ ϕ= = ∇ −                 (2.11) 

Then, one can define that ( ) ( ): , ,M g N hϕ →  is biharmonic (cf. [4]) if ( )2 0τ ϕ = . 

2.2. The CR Analogue of the Generalized Chen’s Conjecture 

In this part, we first raise the CR analogue of the generalized Chen’s conjecture, and 
settle it for pseudo biharmonic maps with finite pseudo energy and finite pseudo 
bienergy. 

Let us recall a strictly pseudoconvex CR manifold (possibly non compact) ( ),M gθ  
of ( )2 1n + -dimension, and the Webster Riemannian metric gθ  given by 

( ) ( )( ) ( ) ( ), d , , , 0, , 1g X Y X JY g X T g T Tθ θ θθ= = =  

for ( ),X Y H M∈ . Recall the material on the Levi-Civita connection gθ∇  of ( ),M gθ . 
Due to Lemma 1.3, Page 38 in [35], it holds that, 

( ) 2 ,g A T Jθ τ θ θ∇ = ∇ + Ω− ⊗ + ⊗ +                 (2.12) 

where ∇  is the Tanaka-Webster connection, dθΩ = , and ( ) ( ), ,A X Y g X Yθ τ= , 
( ),X T T Xτ ∇= , and T∇ is the torsion tensor of ∇. And also, ( )( ) ( ),X Y Y Xτ θ θ τ⊗ = ,  

( )( ) ( ) ( ){ }1,
2

J X Y X JY Y JXθ θ θ= +  for all vector fields X, Y on M. Here, J is the  

complex structure on ( )H M  and is extended as an endomorphism on ( )M  by 
0JT = . 

Then, we have 

( ), ,
k

g
k X k k kX k

X X A X X Tθ∇ = ∇ −                   (2.13) 

0,g
T Tθ∇ =                                     (2.14) 

where { }2

1

n
k k

X
=

 is a locally defined orthonormal frame field on ( )H M  with respect 
to gθ, and T is the characteristic vector field of ( ),M gθ . For (3.6), it follows from that 
( ), 0k kX XΩ = , ( )( ), 0k kX Xτ θ⊗ =  and ( )( ), 0k kJ X Xθ =  since ( ) 0kXθ = . 

For (3.7), notice that the Tanaka-Webster connection ∇  satisfies 0TT∇ = , and also 
0Tτ =  and JT = 0, so that ( ) ( ) ( )( ) ( )( ), 0, , 0, , 0 , 0T T A T T T T J T Tτ θ θΩ = = ⊗ = =  

which imply (3.7). 
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Let us consider the generalized B.-Y. Chen’s conjecture for pseudo biharmonic maps 
which is CR analogue of the usual generalized Chen’s conjecture for biharmonic maps: 

The CR analogue of the generalized B.-Y. Chen’s conjecture for pseudo bihar- 
monic maps: 

Let ( ),M gθ  be a complete strictly pseudoconvex CR manifold, and assume that 
( ),N h  is a Riemannian manifold of non-positive curvature. 

Then, every pseudo biharmonic isometric immersion ( ) ( ): , ,M g N hθϕ →  must be 
pseudo harmonic. 

Then, we will show: 
Theorem 2.1. Assume that φ is a pseudo biharmonic map of a strictly pseudoconvex 

complete CR manifold ( ),M gθ  into another Riemannian manifold ( ),N h  of non 
positive curvature. 

If φ has finite pseudo bienergy ( ),2bE ϕ < ∞  and finite pseudo energy ( )bE ϕ < ∞ , 
then it is pseudo harmonic, i.e., ( ) 0bτ ϕ = . 

2.3. The Green’s Formula on a Foliated Riemannian Manifold 

Then, we prepare the materials for the first and second variational formulas for the 
transversal energy of a smooth foliated map between two foliated Riemannian mani-
folds following [31] [32] [36]. Let ( ), ,M g   be an ( )n p q= + -dimensional foliated 
Riemannian manifold with foliation   of codimension q and a bundle-like Rieman-
nian metric g with respect to   (cf. [37] [38]). Let TM be the tangent bundle of M, L, 
the tangent bundle of  , and Q = TML, the corresponding normal bundle of  . We 
denote Qg  the induced Riemannian metric on the normal bundle Q, and Q∇ , the 
transversal Levi-Civita connection on Q, QR , the transversal curvature tensor, and 

QK , the transversal sectional curvature, respectively. Notice that the bundle projection 
:TM Qπ →  is an element of the space ( )1 ,M QΩ  of Q-valued 1-forms on M. Then, 

one can obtain the Q-valued bilinear form α  on M, called the second fundamental 
form of  , defined by 

( ) ( )( ) ( ) ( )( ), π π , , .Q
X XX Y D Y Y X Y Lα = − = ∇ ∈Γ  

The trace τ  of α , called the tension field of   is defined by 

( )
, 1

, ,
p

ij
i j

i j
g X Xτ α

=

= ∑  

where { } 1

p
i i

X
=

 spanns ( )L UΓ  on a neighborhood U on M. The Green’s theorem, 
due to Yorozu and Tanemura [36], of a foliated Riemannian manifold ( ), ,M g   says 
that 

( ) ( ) ( )( )div , ,D g Q gM M
v g v Qν τ ν ν= ∈Γ∫ ∫             (2.15) 

where ( )div D ν  denotes the transversal divergence of ν  with respect to Q∇  given 
by ( ) ( )( ), 1div : ,π

a

q ab
D Q X ba b g g D Xν ν

=
= ∑ . Here { } 1

q
a a

X
=

 spanns ( )L U⊥Γ  where  

L⊥  is the orthogonal complement bundle of L with a natural identification :Q Lσ
≅

⊥→ . 
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2.4. The Variational Formulas for Foliations 

Let ( ), ,M g  , and ( ), ,M g′ ′ ′  be two compact foliated Riemannian manifolds. The 
transversal energy ( )E ϕ  among the totality of smooth foliated maps from ( ), ,M g   
into ( ), ,M g′ ′ ′  by 

( ) 21 .
2 T gM

E d vϕ ϕ= ∫                       (2.16) 

Here, a smooth map ϕ  is a foliated map is, by definition, for every leaf L of  , 
there exists a leaf L′  of ′  satisfying ( )L Lϕ ′⊂ . Then, : ;Td d Q Qϕ π ϕ σ′ ′= →   
can be regarded as a section of 1Q Qϕ∗ − ′⊗  where Q∗  is a subspace of the cotangent 
bundle T*M. Here, π, π ′  are the projections of TM Q TML→ =  and 

/TM Q TM L′ ′ ′ ′→ = . Notice that our definition of the transversal energy is a slightly 
different from the one of Jung’s definition (cf. [32], p. 5). 

The first variational formula is given (cf. [?]), for every smooth foliated variation  

{ }tϕ  with 0ϕ ϕ=  and 
0

d
d

t

t

V
t
ϕ

=

=  in which V  being a section 1Qϕ− ′ , 

( ) ( )
0

d , .
d t b gM

t

E V v
t

ϕ τ ϕ
=

= −∫                  (2.17) 

Here, ( )bτ ϕ  is the transversal tension field defined by 

( ) ( )( )
1

,
q

b E T aa
a

d Eτ ϕ ϕ
=

= ∇∑                     (2.18) 

where ∇  is the induced connection in 1Q Qϕ∗ − ′⊗  from the Levi-Civita connection 
of ( ),M g′ ′ , and { } 1

q
a a

E
=

 is a locally defined orthonormal frame field on Q. 
Definition 2.2. A smooth foliated map ( ) ( ): , , , ,M g M gϕ ′ ′ ′→   is said to be 

transversally harmonic if ( ) 0bτ ϕ ≡ . 
Then, for a transversally harmonic map ( ) ( ): , , , ,M g M gϕ ′ ′ ′→  , the second 

variation formula of the transversal energy ( )E ϕ  is given as follows (cf. [?], p. 7) : let 

, :s t M Mϕ ′→  ( ),s t− < <   be any two parameter smooth foliated variation of ϕ   

with 
( ) ( )

,

, 0,0

s t

s t

V
s
ϕ

=

∂
=

∂
, 

( ) ( )

,

, 0,0

s t

s t

W
t
ϕ

=

∂
=

∂
 and 0,0ϕ ϕ= , 

( ) ( )
( ) ( )

( )

( )

2

,
, 0,0

,

Hess , :

, ,

s t
s t

b gM

E V W E
s t

J V W v

ϕ

ϕ

ϕ
=

∂
=
∂ ∂

= ∫
              (2.19) 

where ,bJ ϕ  is a second order semi-elliptic differential operator acting on the space 

( )1Qϕ− ′Γ  of sections of 1Qϕ− ′  which is of the form: 

( ) ( )

( ) ( )( ) ( )

,

1 1

: trace ,

,
a a aEa

Q
b Q T T

q q
Q

E E E T a T a
a a

J V V R V d d

V R V d E d E

ϕ ϕ ϕ

ϕ ϕ

′∗

′
∇∇

= =

= ∇ ∇ −

= − ∇ ∇ −∇ −∑ ∑

 

  

    (2.20) 

for ( )1V Qϕ− ′∈Γ . Here, ∇  is the Levi-Civita connection of ( ),M g , and recall also 
that: 
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( )
1

: ,
a a aa

q

E E EE
a

V V∗
∇

=

∇ ∇ = − ∇ ∇ −∇∑                               (2.21) 

( ) ( )( ) ( )
1

trace , : , .
q

Q Q
Q T T T a T a

a
R V d d R V d E d Eϕ ϕ ϕ ϕ′ ′

=

= ∑          (2.22) 

Definition 2.3. The transversal bitension field ( )2,bτ ϕ  of a smooth foliated map ϕ  
is defined by 

( ) ( )( )2, ,: .b b bJ ϕτ ϕ τ ϕ=                       (2.23) 

Definition 2.4. The transversal bienergy E2 of a smooth foliated map ϕ  is defined 
by 

( ) ( ) 2
2

1: .
2 b gM

E vϕ τ ϕ= ∫                      (2.24) 

Remark that this definition of the transversal bienergy is also slightly different from 
the one of Jung (cf. Jung [32], p. 13, Definition 6.1). On the first variation formula of 
the transversal bienergy is given as follows. For a smooth foliated map φ and a smooth 
foliated variation { }tϕ  of ϕ , it holds (cf. [32], p. 13) that 

( ) ( )2 2,
0

d , .
d t b gM

t

E V v
t

ϕ τ ϕ
=

= −∫                 (2.25) 

Definition 2.5. A smooth foliated map ( ) ( ): , , , ,M g M gϕ ′ ′ ′→   is said to be 
transversally biharmonic if ( )2, 0bτ ϕ ≡ . 

Then, one can ask the following generalized B.Y. Chen’s conjecture: 
The generalized Chen’s conjecture: 
Let ϕ  be a transversally biharmonic map from a foliated Riemannian manifold 

( ), ,M g   into another foliated Riemannian manifold ( ), ,M g′ ′ ′  whose transversal 
sectional curvature QK ′  is non-positive. Then, ϕ  must be transversally harmonic. 

Then, we can state our main theorem which gives an affirmative partial answer to the 
above generalized Chen’s conjecture under the additional assumption that ϕ  has both 
the finite transversal energy and the finite transversal bienergy: 

Theorem 2.6. Let ( ) ( ): , , , ,M g M gϕ ′ ′ ′→   a smooth foliated map which is an 
isometric immersion of ( ),M g  into ( ),M g′ ′ . Assume that ( ),M g  is complete 
(possibly non-compact), and the transversal sectional curvature QK ′  of ( ), ,M g′ ′ ′  
is non-positive. 

If φ is transversally biharmonic having both the finite transversal energy ( )E ϕ < ∞  
and the finite transversal bienergy ( )2E ϕ , then it is transversally harmonic. 

Remark that in the case that M  is compact, Theorem 2.5 is true due to Jung’s work 
(cf. [32] Theorem 6.4, p. 14). 

3. Proof of Theorem 2.1 

The proof of Theorem 2.1 is divided into several steps which will appear in [20]. 
(The first step) For an arbitrarily fixed point 0x M∈ , let ( ) ( ){ }0 :rB x x M r x r= ∈ <  

where ( )r x  is a distance function on ( ),M gθ , and let us take a cut off function η  
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on ( ),M gθ , i.e., 

( ) ( )
( ) ( )( )
( ) ( )( )

( )

0

2 0

0 1 ,
1 ,

0 ,

2 ,

r

r

g

x x M
x x B x

x x B x

x M
r

θ

η
η

η

η

 ≤ ≤ ∈
 = ∈
 = ∈/

∇ ≤ ∈

                   (3.1) 

where r is the distance function from 0x M∈ , and gθ∇  is the Levi-Civita connection 
of ( ),M gθ , respectively. Assume that ( ) ( ): , ,M g N hθϕ →  is a pseudo biharmonic 
map, i.e., 

( ) ( )( )

( )( ) ( ) ( )( ) ( )
,2

2

1
,d d

0.

b b b

n
h

b b b j j
j

J

R X X

τ ϕ τ ϕ

τ ϕ τ ϕ ϕ ϕ
=

=

= ∆ −

=

∑            (3.2) 

(The second step) Then, we have 

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2

2
2

1

, d

,d d , d .

n
b b bM

n nh
b j j bM

j
R X X

τ ϕ η τ ϕ θ θ

η τ ϕ ϕ ϕ τ ϕ θ θ
=

∆

=

∫

∑∫

∧

∧
         (3.3) 

In (3.3), notice that ( ) ( )( ) ( ) ( ),d d ,h
b j j bR X Xτ ϕ ϕ ϕ τ ϕ  is the sectional curvature 

of ( )Nh  corresponding to the vectors ( )bτ ϕ  and ( )d jXϕ . Since ( ),N h  has the 
non-positive sectional curvature, (3.3) is non-positive. 

On the other hand, for the left hand side of (3.3), it holds that 

( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2

2

2
2

1

, d

, d

, d .

n
b b bM

H H n
b bM

n n
X Xb bj jM

j

τ ϕ η τ ϕ θ θ

τ ϕ η τ ϕ θ θ

τ ϕ η τ ϕ θ θ
=

∆ ∧

= ∇ ∇ ∧

= ∇ ∇ ∧

∫

∫

∑∫

              (3.4) 

Here, let us recall, for ( )1,V W TNϕ−∈Γ , 
2

1
, , , ,i i

nH H H H
e e X X

j
V W V W V Wα α

α =

∇ ∇ = ∇ ∇ = ∇ ∇∑ ∑  

where { }eα  is a locally defined orthonormal frame field of ( ),M gθ  and 
H
XW∇  

( ) ( )( )1,X M W TNϕ−∈ ∈ΓX  is defined by 

( ){ }H H HX Xj j j j
j

W X f V f V∇ = + ∇∑  

for i jjW f V= ∑  ( )( )jf C M∞∈  and ( )1
jV TNϕ−∈Γ . Here, HX  is the ( )H M

-component of X  corresponding to the decomposition of ( ) ( )x x xT M H M T= ⊕  
( )x M∈ , and ∇  is the induced connection of 1TNϕ−  from the Levi-Civita con- 
nection h∇  of ( ),N h . 

Since 
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( )( ) ( ) ( )2 22 ,j jX Xb j b bXη τ ϕ η ητ ϕ η τ ϕ∇ = + ∇               (3.5) 

the right hand side of (3.4) is equal to 

( ) ( ) ( ) ( ) ( ) ( )
2 222

1 1
d 2 , d .j j

n nn n
X Xb b j bM M

j j
Xη τ ϕ θ θ η τ ϕ η τ ϕ θ θ

= =

∇ + ∇∑ ∑∫ ∫∧ ∧   (3.6) 

Therefore, together with (3.3), we have 

( ) ( )

( ) ( ) ( ) ( )

( )

2 22

1

2

1

2

1

d

2 , d

: 2 , d ,

j

n n
X bM

j

n n
X b j bjM

j

n n
j jM

j

X

V W

η τ ϕ θ θ

η τ ϕ η τ ϕ θ θ

θ θ

=

=

=

∇

≤ − ∇

= −

∑∫

∑∫

∑∫

∧

∧

∧

             (3.7) 

where we define ( ) ( )1,    1, , 2j jV W TN j nϕ−∈Γ =   by 

( ) ( ) ( ): , : .jXj b j j bV W Xη τ ϕ η τ ϕ= ∇ =  

Then, it holds that 
210 i iV W≤ ±


 for every 0>  which implies that 

2 212 , .i i i iV W V W≤ + 


 

Therefore, we have that 
The right hand side of (3.7) 

( ) ( )
2 22 2

1 1

1d d
n nn n

j jM M
j j

V Wθ θ θ θ
= =

≤ +∑ ∑∫ ∫


∧ ∧            (3.8) 

foe every 0> . By taking 1
2

= , we obtain 

( ) ( )

( ) ( ) ( ) ( )

2 22

1

2 22 2 22

1 1

d

1 d 2 d .
2

j

j

n n
X bM

j

n nn n
X b j bM M

j j
X

η τ ϕ θ θ

η τ ϕ θ θ η τ ϕ θ θ

=

= =

∇

≤ ∇ +

∑∫

∑ ∑∫ ∫

∧

∧ ∧

     (3.9) 

Therefore, we obtain, due to the properties that 1η =  on ( )0rB x , and  
2

222
1

2n g
jj X

r
θη η

=

 ≤ ∇ ≤  
 

∑ , 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0

2 22 22

1 1

2 2 2

1

2

2

d d

4 d

16 d .

j
r

n nn n
Xb bB x M

j j

n n
j bM

j

n
bM

X

r

τ ϕ θ θ η τ ϕ θ θ

η τ ϕ θ θ

τ ϕ θ θ

= =

=

∇ ≤ ∇

≤

≤

∑ ∑∫ ∫

∑∫

∫

∧ ∧

∧

∧

      (3.10) 

(The third step) By our assumption that ( ) ( ) ( )2
,2

1
2

n
b bM

E dϕ τ ϕ θ θ= < ∞∫ ∧  and  



S. Ohno et al. 
 

2281 

( ),M gθ  is complete, if we let r →∞ , then ( )0rB x  goes to M, and the right hand 
side of (3.10) goes to zero. We have 

( ) ( )
2 2

1
d 0.j

n n
X bM

j
τ ϕ θ θ

=

∇ =∑∫ ∧                   (3.11) 

This implies that 

( ) ( )( )0 for all .X b X H Mτ ϕ∇ = ∈              (3.12) 

(The fourth step) Let us take a 1 form α  on M defined by 

( )
( ) ( ) ( )( )

( )
d , ,   ,

     
0,                           . 

bX X H M
X

X T

ϕ τ ϕ
α

 ∈= 
=

 

Then, we have 

( ) ( ) ( )

( )( ) ( ) ( )( )
( ) ( )

1
2 22

1

11
22 22

,2

d d

d d

2 < ,

nn n
jM M

j

n n
b bM

b b

X

d

E E

α θ θ α θ θ

ϕ θ θ τ ϕ θ θ

ϕ ϕ

=

 
=  

 

≤

= ∞

∑∫ ∫

∫

∧ ∧

∧ ∧        (3.13) 

where we put ( )2
1: dn

b i iid X Xϕ ϕ
=

= ⊗∑ , 

( ) ( ) ( )( ) ( ) ( )( )
2 22

, 1 1
, d ,d d ,d ,

n n

b i j i j i i
i j i

d g X X h X X h X Xθϕ ϕ ϕ ϕ ϕ
= =

= =∑ ∑  

and 

( ) ( )21 d .
2

n
b bM

E dϕ ϕ θ θ= ∫ ∧                      (3.14) 

Furthermore, let us define a C∞  function bδ α  on M by 

( )( ) ( )( ) ( ){ }2 2

1 1
,

j

n n

b X j j j X jj
j j

X X X Xδ α α α α
= =

= − ∇ = − − ∇∑ ∑         (3.15) 

where ∇  is the Tanaka-Webster connection. Notice that 

( ) ( )( ) ( )( )

( )( ) ( ){ } ( )( ) ( )

( )( ) ( )( ){ }
( )( ) ( ){ }

2

1

2

1

2

1

2

1

div

(

,

j

j

j

j

n
g g

j TX
j

n
g g

j H j H j H H TX
j

n
g

j j H jX
j

n

j j X j
j

b

X T

X X X T T T

X X X

X X X

θ θ

θ θ

θ

α α α

α π α π α π α π

α α π

α α

δ α

=

=

=

=

= ∇ + ∇

= − ∇ + − ∇

= − ∇

= − ∇

= −

∑

∑

∑

∑

   

(3.16) 

where ( ) ( ):H x xT M H Mπ →  is the natural projection. We used the facts that 
0g

T Tθ∇ = , and ( )g
H X XY Yθπ ∇ = ∇  ( )( ),X Y H M∈  ([35], p.37). Here, recall again 

gθ∇  is the Levi-Civita connection of gθ , and ∇  is the Tanaka-Webster connection. 
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Then, we have, for (3.16), 

( ) ( ) ( ) ( ){ }
( )( ) ( ) ( ) ( ) ( ) ( ){ }
( )( ) ( ){ } ( )

( )

2

1

2

1

2

1

2

d , d ,

d , d , d ,

d d ,

.

j

j j j

j j

n

b j j b X j b
j

n

X Xj b j b X j b
j

n

X j X j b
j

b

X X X

X X X

X X

δ α ϕ τ ϕ ϕ τ ϕ

ϕ τ ϕ ϕ τ ϕ ϕ τ ϕ

ϕ ϕ τ ϕ

τ ϕ

=

=

=

= − − ∇

= − ∇ + ∇ − ∇

= − ∇ − ∇

= −

∑

∑

∑

(3.17) 

We used (3.12) ( ) 0jX bτ ϕ∇ =  to derive the last second equality of (3.17). Then, due 
to (3.17), we have for ( ),2bE ϕ , 

( ) ( ) ( )

( )

( ) ( )

2
,2

1 d
2

1 d
2

1 div d
2
0.

n
b bM

n
bM

n

M

E ϕ τ ϕ θ θ

δ αθ θ

α θ θ

=

= −

=

=

∫

∫

∫

∧

∧

∧

                   (3.18) 

In the last equality, we used Gaffney’s theorem ([16], p. 271, [?]). 
Therefore, we obtain ( ) 0bτ ϕ ≡ , i.e., ϕ  is pseudo harmonic. 
We obtain Theorem 2.1. 

4. Proof of Main Theorem 2.6 

In this section, we give a proof of Theorem 2.6 which will appear in [34], by a similar 
way to the case of foliations as Theorem 2.1. 

(The first step) First, let us take a cut off function η  from a fixed point 0x M∈  on 
( ),M g , i.e., 

( ) ( )
( ) ( )( )
( ) ( )( )

( )

0

2 0

0 1 ,
1 ,

0 ,

2 ,

r

r

g

x x M
x x B x

x x B x

x M
r

η
η

η

η

 ≤ ≤ ∈
 = ∈
 = ∉

∇ ≤ ∈

 

where ( ) ( ){ }0 :rB x x M r x r= ∈ < , ( )r x  is a distance function from 0x  on ( ),M g , 
g∇  is the Levi-Civita connection of ( ),M g , respectively. 
Assume that ϕ  is a transversally biharmonic map of ( ), ,M g F  into ( ), ,M g F′ ′ ′ , 

i.e., 

( ) ( )( )
( ) ( )( )

2, ,

trace ,

0,

b b b

Q
b Q b T T

J J

R d d
ϕϕ τ ϕ

τ ϕ τ ϕ ϕ ϕ′∗

=

= ∇ ∇ −

=

             (4.1) 

where recall ∇  is the induced connection on 1Q T Mϕ− ∗′⊗ . 
(The second step) Then, by (4.1), we obtain that 
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( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( )

2 2

2

1

2
,

1

, trace , ,

, ,

0,

Q
b b g Q b T T b gM M

q
Q

b T a T a b gM
a
q

Q
a gM

a

v R d d v

R d E d E v

K vϕ

τ ϕ η τ ϕ η τ ϕ ϕ ϕ τ ϕ

η τ ϕ ϕ ϕ τ ϕ

η

′∗

′

=

′

=

∇ ∇ =

=

= Π

≤

∫ ∫

∑∫

∑∫

 

 (4.2) 

where the sectional curvature ( ),
Q

aK ϕ
′ Π  of ( ), ,M g′ ′ ′  corresponding to the plane 

spanned by ( )bτ ϕ  and ( )T ad Eϕ  is non-positive. 
(The third step) On the other hand, the left hand side of (4.2) is equal to 

( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( )

2

2

1

22

1 1

,

,

2 ,

a a

a a

b b gM

q

E b E b gM
a

q q

E b g E b a b gM M
a a

v

v

v E v

τ ϕ η τ ϕ

τ ϕ η τ ϕ

η τ ϕ η τ ϕ η τ ϕ

=

= =

∇ ∇

= ∇ ∇

= ∇ + ∇

∫

∑∫

∑ ∑∫ ∫

 

 

 

        (4.3) 

since 

( )( ) ( ) ( ) ( )2 2 2 .
a aE b E b a bEη τ ϕ η τ ϕ η η τ ϕ∇ = ∇ +   

Together (4.2) and (4.3), we obtain 

( ) ( ) ( ) ( )

( ) ( )

22

1 1

2 222

1 1

2 ,

1 2 .
2

b a

a

q q

g E b a b gM M
a a

q q

E b g a b gM M
a a

v E v

v E v

η τ ϕ η τ ϕ η τ ϕ

η τ ϕ η τ ϕ

= =

= =

∇ ≤ − ∇

≤ ∇ +

∑ ∑∫ ∫

∑ ∑∫ ∫

 



   (4.4) 

Because, putting ( ):
aa E bV η τ ϕ= ∇ , ( ) ( ):a a bW E η τ η=  ( )1, ,a q=  , we have 

2
2 21 10 2 ,a a a a a aV W V V W W≤ ± = ± + 


 

which is 

2 212 , .a a a aV W V W≤ + 


                     (4.5) 

If we put 1
2

=  in (4.5), then we obtain 

( )2 212 , 2 1, , .
2a a a aV W V W a q≤ + =                (4.6) 

By (4.6), we have the second inequality of (4.4). 

(The fourth step) Noticing that η = 1 on ( )0rB x  and 2 2
aE

r
η ≤  in the inequality  

(3.4), we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 22 2

0 01 1 1

2 22
2

1

164 .

a a a

q q q

E b g E b g E b gB x B x Mr ra a a
q

a b g b gM M
a

v v v

E v v
r

τ ϕ η τ ϕ η τ ϕ

η τ ϕ τ ϕ

= = =

=

∇ = ∇ ≤ ∇

≤ ≤

∑ ∑ ∑∫ ∫ ∫

∑∫ ∫

  

  (4.7) 
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Letting r →∞ , the right hand side of (4.7) converges to zero since 

( ) ( ) 2
2

1
2 b gM

E vϕ τ ϕ= < ∞∫ . But due to (4.7), the left hand side of (4.7) must converge 

to ( )
2

1 a

q
E b gaM

vτ ϕ
=
∇∑∫   since ( )0rB X  tends to M because ( ),M g  is complete.  

Therefore, we obtain that 

( )
2

1
0 0,

a

q

E b gM
a

vτ ϕ
=

≤ ∇ ≤∑∫   

which implies that 

( ) ( ) ( ) ( )( )0  1, , ,   . .,   0  .
aE b X ba q i e X Qτ ϕ τ ϕ∇ = = ∇ = ∀ ∈Γ 

      (4.8) 

(The fifth step) Let us define a 1-form α  on M by 

( ) ( )( ) ( ) ( )( ): d , , ,bX X X Mα ϕ π τ ϕ= ∈X                (4.9) 

and a canonical dual vector field ( )# Mα ∈X  on M by ( ) ( )( )# , : ,  Y Y Y Mα α= ∈X . 
Then, its divergence ( )#div α  written as 

( ) ( ) ( )# # #
1 1div , ,

i a

p qg g
E i E ai ag E g Eα α α

= =
= ∇ + ∇∑ ∑ , 

can be given as follows. Here, { } 1

p
i i

E
=

 and { } 1

q
a a

E
=

 are locally defined orthonormal 
frame fields on leaves L of   and Q, respectively, ( dim xL p= , dim xQ q= , x M∈ ). 

Then, we can calculate ( )#div α  as follows: 

( ) ( )( ) ( ){ } ( )( ) ( ){ }

( )

( ) ( ) ( )( ) ( ){ }
( )

( )( ) ( ) ( ) ( ) ( )( ) ( ){ }

#

1 1

1

1

1

1

1

div

d ,

  d , d ,

d ,

d , d , d ,

d

i a

i

a

i

a

i

p q
g g

i i E i a a E a
i a

p
g
E i b

i

q
g

a a b E a b
a

p
g
E i b

i

q
g

E a b a E b E a ba a
a

p
g
E i

i

E E E E E E

E

E E E

E

E E E

E

α α α α α

ϕ π τ ϕ

ϕ τ ϕ ϕ π τ ϕ

ϕ π τ ϕ

ϕ τ ϕ ϕ τ ϕ ϕ π τ ϕ

ϕ π

= =

=

=

=

=

=

= − ∇ + − ∇

  
= − ∇  

  

+ − ∇

  
= − ∇  

  

+ ∇ + ∇ − ∇

= − ∇

∑ ∑

∑

∑

∑

∑

∑

 

( )( ) ( )( ){ } ( )
1

d d , .
a a

q
g

E a E a b
a

E Eϕ ϕ π τ ϕ
=

  
+ ∇ − ∇  

  
∑ 

(4.10) 

since ( ) 0E ba
τ ϕ∇ =  in the last equality of (4.10). Integrating the both hands of (4.10) 

over M, we have 

( )

( )( ) ( )( ){ } ( )

1

1

d ,

d d , .

i

a

p
g
E i b gM

i

q
g

E a E a b gaM
a

E v

E E v

ϕ π τ ϕ

ϕ ϕ π τ ϕ

=

=

  
∇  

  

= ∇ − ∇

∑∫

∑∫ 

          (4.11) 

because of ( )#div 0gM
vα =∫ . Notice that both hands in (4.11) are well defined because 
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of ( )E ϕ < ∞  and ( )2E ϕ < ∞ . 

Since ( )#
1:

i

p g
E ii Eκ π

=
= ∇∑  is the second fundamental form of each leaf L in ( ),M g  

and 

( ) ( )( ) ( ){ }

( )( ) ( )( ){ }
1

1 1

d d

d d d ,

a a

a a a

q
g

b E a E a
a

q q
g g

E a E a E a
a a

E E

E E E

τ ϕ ϕ ϕ

ϕ ϕ π ϕ

=

⊥

= =

= ∇ − ∇

   = ∇ − ∇ − ∇    

∑

∑ ∑





      (4.12) 

the right hand side of (4.11) coincides with 

( ) ( )
1

d , ,
a

q
g

b E a b gM
a

E vτ ϕ ϕ τ ϕ
⊥

=

   + ∇    
∑∫                 (4.13) 

(4.11) is equivalent to that 

( ) ( ) ( ) ( ) ( )#

1
d , , d , .

a

q
g

b g b b g E a b gM M M
a

v v E vϕ κ τ ϕ τ ϕ τ ϕ ϕ τ ϕ
⊥

=

  
 = + ∇    
∑∫ ∫ ∫ (4.14) 

If ( ) ( ): , ,M g M gϕ ′ ′→  is an isometric immersion, then it holds that 
( ) ( )d , 0x x bT Mϕ τ ϕ = , which implies that both the left hand side and the second term 

of the right hand side of (4.14) vanish, that is, ( ) ( ), 0b b gM
vτ ϕ τ ϕ =∫ . Therefore 

( ) 0bτ ϕ ≡ . 
We obtain Theorem 2.6. 

5. Principal G-Bundles 

In this section, we show the following theorem which is quite new and the more detail 
[34] will appear elsewhere. 

Theorem 5.1 Let ( ) ( ): , ,P g M hπ →  be a principal G-bundle over a Riemannian 
manifold ( ),M h  whose Ricci tensor is negative definite. Then, if ( ) ( ): , ,P g M hπ →  
is biharmonic, then it is harmonic. 

Let us consider a principal G-bundle ( ) ( ): , ,P g M hπ →  whose the total space P is 
compact. Assume that the projection ( ) ( ): , ,P g M hπ →  is biharmonic, which is by 
definition, ( )( ) 0J τ π ≡ , where ( )τ π  is the tension field of π  which is defined by 

( ) ( ){ }
1

: ,ei i

p
h g
e i i

i
e eτ π π π∗ ∗

=

= ∇ − ∇∑                   (5.1) 

the Jacobi operator J is defined by 

( ) ( )( )1: π ,JV V V V TN−= ∆ − ∈Γ                (5.2) 

∆  is the rough Laplacian defined by 

( ){ }
1

: ,g
i i ei

p

e e ei
i

V V V∇
=

∆ = − ∇ ∇ −∇∑                  (5.3) 

and 

( ) ( ): , ,h
i iV R V e eπ π∗ ∗=                     (5.4) 
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where { } 1

p
i i

e
=

 is a locally defined orthonormal frame field on ( ),P g . 
The tangent space uP  ( )u P∈  is canonically decomposed into the orthogonal di-

rect sum of the vertical subspace { }u uG A A∗= ∈g  and the horizontal subspace uH : 

u u uP G H= ⊕ . Then, we have 

( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( )

2
1

1 1

1

,

, ,

, ,

p
h

i i
i
m k

h h
i i m i m i

i i
m

h
i i

i

R e e

R e e R A A

R e e

τ π τ π τ π π π

τ π τ π π π τ π π π

τ π τ π π π

∗ ∗
=

∗ ∗
∗ ∗ ∗ + ∗ +

= =

∗ ∗
=

= ∆ −

= ∆ − −

= ∆ −

∑

∑ ∑

∑

 

where dim , dim , dimp P m M k G= = = , respectively. Then, we obtain 

( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1

1

0 ,

, , ,

, , ,

gM
m

h
g i i gM M

i
m

h
g i i gM M

i

J v

v R e e v

v R e e v

τ π τ π

τ π τ π τ π π π τ π

τ π τ π τ π π π τ π

∗

∗ ∗
=

∗ ∗
=

=

= ∇ ∇ −

= ∇ ∇ −

∫

∑∫ ∫

∑∫ ∫

 

Therefore, we obtain 

( ) ( ) ( )( ) ( )

( )( )

( )( )

1

1

, , ,

,

Ric ,

m
h

g i i gM M
i
m

h
iM

i

h
gM

v R e e v

K e

v

τ π τ π τ π π π τ π

τ π π

τ π

∗ ∗
=

∗
=

∇ ∇ =

=

=

∑∫ ∫

∑∫

∫

        (5.5) 

where we denote by ( ),hK u v  ( ), xu v T M∈ , the sectional curvature of ( ),M h  
through two plane of xT M  given by , xu v T M∈ , and ( )Ric X  is the Ricci curvature 
of ( ),M h  along xX T M∈ . The left hand side of (5.5) is non-negative, and then, the 
both hand sides of (5.5) must vanish if the Ricci curvature of ( ),M h  is non-positive. 
Therefore, we obtain 

( ) ( )( ) ( )
( )( )

0 , . ., is parallel, and

Ric 0.
X

h

X P i eτ π τ π

τ π

∇ = ∀ ∈


=

X
          (5.6) 

Let us consider a 1-form α  on M defined by 

( ) ( )( ) ( )( ) ( ) ( )( ): , , , .xY x x Y Y M x Pπα π τ π= ∈ ∈X            (5.7) 

Then, for every ( ),Y Z M∈X , we have 

( )( ) ( )( ) ( )
( ) ( )

( ) ( ) ( )

, ,

, , ,

0,

h h
Z Z

h
Z

h h
Z Z Z

Y Z Y Y

Z Y Y

Y Y Y

α α α

τ π τ π

τ π τ π τ π

∇ = − ∇

= − ∇

= ∇ + ∇ − ∇

=

          (5.8) 

which implies that α  is parallel 1-form on ( ),M h . Since we assume that the Ricci 
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tensor of ( ),M h  is negative definite, α  must vanish (so called Bochner’s theorem, cf. 
[40], p. 55). Therefore, ( ) 0τ π ≡ , i.e., the projection of the principal G-bundle 

( ) ( ): , ,P g N hπ →  is harmonic. We obtain Theorem 5.1. 
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