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Abstract 
A survival analysis on a data set of 295 early breast cancer patients is per-
formed in this study. A new proportional hazards model, hypertabastic model 
was applied in the survival analysis. We assume a proportional hazards model, 
and select two sets of risk factors for death and metastasis for breast cancer 
patients respectively by using standard variable selection methods. To eva-
luate the performance of the new model and compare it with other popular 
distributions, Cox, Weibull and log-logistic models were fitted to the data be-
sides the hypertabastic model. Result shows that the hypertabastic propor-
tional hazards model outperformed all the comparison models and provided 
the best fit for the breast cancer data. In addition, we observed that the gene 
expression variable, wound response signature, combined with other clinical 
variables, can provide an effective model to predict the overall survival and 
hazard rate for breast cancer patients. 
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1. Introduction 

Time to event models, commonly known as survival or reliability model, have 
been studied and applied in a variety of scientific disciplines such as medicine, 
biology, engineering and business. Cox proportional hazards model is one of the 
most commonly used nonparametric/semiparametric models; it does not require 
any specific assumption about the shape of survival function. However, it usually 
does not provide a very good fit to the data through the simulation studies. On 
the other hand, if the assumption for parametric distribution is met for the data 
under consideration, it will be more efficient and easier to interpret estimates 
than nonparametric/semiparametric models. Some well established parametric 
models, such as Weibull, log-normal and log-logistic model have been widely 
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used to model the time to event data in many applications. The Hosmer and 
Lemeshow [1], Klein and Moeschberger [2], and Therneau and Grambsch [3] 
gave an overview of survival data modeling techniques. Foulkes et al. [4] used 
several parametric models to access the prognostic factors in the recurrence of 
ischemic strokes. Kannan et al. [5] used log-logistic probability distribution to 
model altitude decompression sickness risk and symptom onset time. Sama et al. 
[6] used five parametric models to analyze the survival time data of Plasmodium 
falciparum infections and found that the best fit could be obtained from a para-
metric model—Weibull distribution. In this article, a new parametric model— 
hypertabastic survival model is briefly reviewed in Section 2. To compare the 
performance of these models, a breast cancer data with 295 patients from the 
Netherlands Cancer Institute was studied. This data had previously been used to 
identify and validate a prognostic gene expression profile. It also had been used 
to test the reproducibility of the association between the wound-response signa-
ture and breast cancer progression. The authors studied two events, death due to 
breast cancer and metastasis (spread of breast cancer) separately in this article. A 
data description and analysis methods are given in Section 3. Variable selection 
and results for model comparisons are discussed in detail in Section 4. The main 
results for metastasis are given in Section 5. A discussion is given in Section 6. 

2. Hypertabastic Proportional Hazards Model 

Tabatabai et al. [7] proposed a new probability distribution, hypertabastic dis-
tribution, and hypertabastic survival model. Let T be a continuous random va-
riable representing the waiting time until the occurrence of an event. The hyper-
tabastic baseline survival function is defined by  

( ) ( ) ( )0S t P T t Sech W tα= > =                      (1) 

where ( ) ( )( )1W t t Coth tβ βα β= − , α  and β  are the model parameters 
and both positive. Correspondingly, the hypertabastic baseline hazard function 
is given by  

( ) ( ) ( )( ) ( )2 1 2 1
0h t t Csch t t Coth t Tanh W tβ β β βα − −= −            (2) 

With the change of the value of β , the baseline hazard function can have 
more flexible form compared to other parametric models. Under the propor-
tional hazards assumption, they introduced the hypertabastic proportional ha-
zards model. The hazard function for this model is given by  

( ) ( ) ( )0,h t X h t g Xθ θ=                      (3) 

where X  is a p-dimensional vectors of covariates, θ  is a vector of unknown 
parameters, ( )g X θ  is non negative function of X  satisfying the condition 
that ( )0 1g θ = , and ( ) 1

p
k kkg X Exp xθ θ

=
 = − ∑ . Similarly, the hypertabastic 

survival function for this model is defined by  

( ) ( ) ( )
0,

g X
S t X S t

θ
θ =                          (4) 

Then, the hypertabastic probability density function for the proportional ha-
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zards model is given by  

( ) ( ) ( ) ( ) ( )1
0 0,

g X
f t X f t S t g X

θ
θ θ

−
=                    (5) 

where ( )0f t  is the baseline density function and defined as  

( ) ( ) ( ) ( )( ) ( )2 1 2 1
0f t Sech W t t Csch t t Coth t Tanh W tβ β β βα α− −= −          (6) 

All the unknown parameters, including X  and θ , can be estimated using 
the maximum likelihood method. If the sample consists of only right censored 
data, the hypertabastic proportional hazards log-likelihood function with log 
time can be written as  

( ) ( )( ) ( )

( ) ( )( ) ( )( )( ) ( )
1

1 2 2 1

, , : ln 1

ln 1

n

i i i
i

i i i i i i i i i

LL x t Coth t g X

t t Csch t t Coth t Tanh t Coth t g X

β β

β β β β β β

θ α β α β θ

δ α α α β θ

=

− + − +

 = − 

 + − × −  

∑
 

where  

0 if  is a right censored observation
1 otherwise

i
i

t
δ


= 


 

For further details, see [7]. 

3. Data Description and Analysis Methods 

The breast cancer data includes a series of 295 consecutive women with breast 
cancer who were treated at the hospital of the Netherlands Cancer Institute. All 
295 patients’ age at diagnosis was 52 years or younger. The calendar year of di-
agnosis was between 1984 and 1995. Van et al. [8] used the data as a validation 
set for the seventy gene signature (70G). Tabatabai et al. [9] studied the effect of 
70G, core serum response signature correlation (CSR) and ErbB2+ correlation 
(CERBB) on survival using the hypertabastic model. Chang et al. [10] identified 
a set of “core serum response” (CSR) genes. In their study, 295 tumor samples 
were grouped by similarity of the expression pattern of the CSR genes by using 
hierarchical clustering. The samples were segregated into two classes, activated 
vs. quiescent by the predominant expression of the serum-induced and serum 
repressed CSR genes. 

The data was censored on the date of the last follow up visit, death from caus-
es other than breast cancer, etc. All the 295 patients had stage I and II breast 
cancer but had no previous history of cancer. The main clinical variables we stu-
died are age of patient, diameter of tumor, number of positive lymph nodes, tu-
mor grade (3 levels: grade 1, well differentiated; grade 2, moderately differen-
tiated; grade 3, poorly differentiated), estrogen receptor status (ER, two levels: 
positive and negative), chemo therapy status (two levels: with and without che-
mo therapy). In general, grade 1 tumors resemble normal cells, and tend to grow 
and multiply slowly. Grade 1 tumors are generally considered the least aggres-
sive in behavior. Grade 3 tumors tend to grow rapidly and spread faster than 
tumors with a lower grade. A score of estrogen receptor positive (ER+) means 
that estrogen is causing the tumor to grow, and that the cancer should respond 
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well to hormone suppression treatments. If the score is estrogen receptor nega-
tive (ER−), then the tumor is not driven by estrogen, and the results will need to 
be evaluated along with other tests. 

The primary gene expression variable considered in this study is wound re-
sponse gene expression signature (WRS, two levels: activated and quiescent). 
Wound response signature has been found in different studies that it predicted 
the poor overall survival and increased risk of metastasis [10] [11]. 

The proportional hazards assumption was examined first in this study. Four 
survival models including Cox, Weibull, log-logistic, and hypertabastic models 
were applied to the breast cancer data and survival analysis for both death due to 
breast cancer and metastasis were performed. Models were compared by using 
standard measures of goodness of fit. SAS 9.3 was used for all the model fittings 
and graphs. 

When the effect of risk factors is to change the baseline hazard function by a 
proportionate amount over the survival time, a proportional hazards model is 
usually assumed. In Chang et al. [10], Cox proportional hazards model was fitted 
to the data. Figure 1 gives the Kaplan-Meier (KM) survival curves for both time 
to death and time to metastasis. To further assess the proportion hazards (PH) 
assumption, the log-log KM survival curves for each of the variables was ex-
amined. The graphs should result in parallel curves if the assumption is met. 
Figure 2 gives the plots for WRS and tumor grade when the time to death is 
modeled. Figure 3 shows the graphs for WRS and tumor grade when the time to 
metastasis is modeled. Although the curves are not parallel on some time inter-
vals, no apparent interactions between curves showed on the graphs. They indi-
cate that the proportional hazards assumption is satisfied for these variables for 
both events. 

4. Variable Selection and Model Comparisons 

To study the time to death due to breast cancer, a set of significant risk factors 
(predictor variables) for death was selected first. Using the stepwise and forward 
selection methods outlined in Hosmer and Lemeshow [1] [12], Cox proportional 
hazards model was fitted to the data first and identified a set of significant risk 
factors that are given in Table 1. Next, the hypertabastic proportional hazards 
model was also fitted to the data using forward selection method and partial li-
kelihood ratio test, it identified the same set of risk factors as the Cox model ex-
cept the diameter. Since diameter is selected by the Cox model, it was included 
in each comparison model. In addition, the possibility of interactions among va-
riables is also considered. The significance of each interaction is assessed by 
adding it to the main effect model and using the partial likelihood ratio test, no 
significant interactions were identified by the selection process. 

Parametric models, such as Weibull and log-logistic models have been widely 
applied for survival analysis. To study the risk factors for death due to breast 
cancer and compare the performance of different models, Cox, Weibull, log-lo- 
gistic and hypertabastic model were fitted to the data set assuming proportional  
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(a) 

 
(b) 

Figure 1. (a) Kaplan-Meier survival curve (time to death); (b) Kaplan-Meier surviv-
al curve (time to metastasis). 
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(a) 

 
(b) 

Figure 2. (a) Plot of log(−log(S)) vs. log of time stratified by WRS; (b) Plot of 
log(−log(S)) vs. log of time stratified by tumor grade (time to death). 
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(a) 

 
(b) 

Figure 3. (a) Plot of log(−log(S)) vs. log of time stratified by WRS; (b) Plot of 
log(−log(S)) vs. log of time stratified by tumor grade (time to metastasis). 
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Table 1. Analysis of risk factors for death for four comparison models 

 Parameter Estimate Chi-Square P-value Hazard ratio 

Hypertabastic α 0.6284 5.67 0.0172  

Log L β 0.5729 23.84 <0.0001  

(−199.22) Age −0.0739 21.11 <0.0001 0.93 

 Diameter 0.0155 1.54 0.2146 1.02 

AIC WRS 0.8377 8.47 0.0036 2.31 

(410.44) ER −0.5292 4.22 0.0399 0.59 

 Tumor grade     

BIC Grade 2 vs. 1 0.9816 4.43 0.0353 2.67 

(432.56) Grade 3 vs. 1 1.0993 5.37 0.0205 3.00 

Weibull α 0.0296 0.96 0.3271  

Log L β 1.2589 108.16 <0.0001  

(−204.28) Age −0.0399 6.36 0.0117 0.96 

 Diameter 0.0143 2.01 0.1563 1.01 

AIC WRS 0.7156 9.25 0.0023 2.05 

(420.56) ER −0.3807 3.45 0.0633 0.68 

 Tumor Grade     

BIC Grade 2 vs. 1 1.0016 5.01 0.0252 2.72 

(442.68) Grade 3 vs. 1 1.1232 6.00 0.0143 3.07 

Log-logistic α E−10 9.9E7 <0.0001  

 β 4.0228 12.55 0.0004  

Log L Age −0.0961 68.96 <0.0001 0.91 

(−216.84) Diameter 0.0089 0.52 0.4708 1.01 

 WRS 0.6643 5.68 0.0171 1.94 

AIC ER −0.5509 4.52 0.0335 0.58 

(445.69) Tumor Grade     

BIC Grade 2 vs. 1 0.7015 3.02 0.0822 2.02 

(467.81) Grade 3 vs. 1 0.7197 3.13 0.0768 2.05 

Cox Age −0.0485 6.09 0.0135 0.95 

Log L Diameter 0.0201 2.56 0.1097 1.02 

(−386.24) WRS 0.8105 7.76 0.0053 2.25 

AIC ER −0.4747 3.35 0.0672 0.62 

(784.48) Tumor Grade     

BIC Grade 2 vs. 1 1.2911 5.55 0.0185 3.63 

(806.60) Grade 3 vs. 1 1.4686 6.88 0.0087 4.34 

WRS represents wound response signature, activated vs. quiescent; ER represents estrogen receptor status, 
positive vs. negative. 

 

hazards. Models were compared by using log-likelihood value (Log L), Akaike 
Information Criterion (AIC), and Bayesian Information Criterion (BIC) which 
assess the goodness of fit of the models. The model with the lowest AIC or BIC 
corresponds to the best fit model and is preferred. The result including parame-
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ter estimates, p-value and hazard ratio for each model is given in Table 1. It 
shows that the log-likelihood is the highest for the hypertabastic model, AIC and 
BIC statistics are the lowest for the hypertabastic model when fitted to the breast 
cancer data. This indicates that the hypertabastic proportional hazards model 
fits the breast cancer data best. 

Among all the variables included in the model, WRS (Wound response gene 
expression signature) is clearly the most significant with the smallest p-value and 
a hazard ratio around 2. Age of patients, ER status and tumor grade have rela-
tively small p-values and hazard ratios below or above 1. They are considered as 
significant (at significance level of 0.05) based on the hypertabastic model. The 
mean age of patients is 44 years, and the mean tumor diameter is 22.54 mm. 
Based on the hypertabastic proportional hazards model, holding age and diame-
ter at mean level, we computed the median survival time for some combinations 
of different levels of other risk factors. The result is given in Table 2. Figure 4 
gives the graphs of the hypertabastic baseline survival and hazard functions for 
this data. Holding age and diameter at mean level and ER score positive, Figure 
5 gives the graphs of the hypertabastic survival and hazard functions at different 
types of wound response signature when tumor grade is poorly differentiated. 
Similarly, Figure 6 gives the graphs of the hypertabastic survival and hazard 
functions at different levels of tumor grade when wound response signature is  
 
Table 2. Median survival time at mean age and mean diameter. 

Wound Response 
Signature 

Estrogen 
Receptor 

Tumor 
Grade 

Median Survival 
Time (years) 

activated positive poorly differentiated 11.08 

quiescent positive poorly differentiated 30 

activated negative poorly differentiated 6.7 

quiescent negative poorly differentiated 15.6 

 

 
(a)                                                          (b) 

Figure 4. (a) Hypertabastic baseline survival function; (b) Hypertabastic baseline hazard function (time to death). 
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(a) 

 
(b) 

Figure 5. (a) Hypertabastic survival function stratified by WRS; (b) Hypertabastic 
hazard function stratified by WRS (time to death). 
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(a) 

 
(b) 

Figure 6. (a) Hypertabastic survival function stratified by tumor grade; (b) Hyper-
tabastic hazard function stratified by tumor grade (time to death). 
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activated. They indicate that patients with activated wound response signature 
have about half the median survival time compared to those with quiescent 
wound response signature when other factors are held constant. Similarly, hold-
ing other factors constant, patients with a ER score positive have twice the me-
dian survival time as those with a ER score negative. 

5. Results for Metastasis 

Followed the similar procedure as in the study of time to death and assumed 
proportional hazards, four comparison models, Cox, Weibull, log-logistic and 
hypertabastic model were fitted to the breast cancer data. The estimates of pa-
rameters, p-value, and hazard ratio for each variable are given in Table 3. The 
significant risk factors for metastasis were found to be patient’s age, diameter of 
tumor, number of positive lymph nodes, tumor grade, wound response signature 
and chemo therapy status. No significant interactions among variables were 
identified. The result again shows that the AIC and BIC statistics are the smallest 
for the hypertabastic model. It indicates that the hypertabastic proportional ha-
zards model fits the data best when the interested survival time associated with 
metastasis. 

The mean positive lymph nodes number is 1.4 for this data. Based on the 
hypertabastic proportional hazards model, the relative risk for a breast cancer 
patient without chemotherapy compared to a patient with chemotherapy is 1.54 
holding other factors constant. At mean level of age, diameter and lymph nodes 
number, when the wound response signature is activated, the tumor grade is 
poorly differentiated, and without chemotherapy, the median survival time is 8 
years. Similarly, at mean level of age, diameter and lymph node number, when 
the wound response signature is activated, the tumor grade is poorly differen-
tiated and with chemotherapy, the median survival time is 14 years. The median 
survival time increases to 33.2 years when the wound response signature is 
quiescent, with chemotherapy, and other factors holding constant as above. 
They indicate that patients with chemotherapy have lower hazard rate and long-
er median survival time compared to those without chemotherapy when other 
factors are fixed. Based on both studies, time to death and time to metastasis, 
wound response signature can be used to predict survival probability and rela-
tive risk for early breast cancer patients. 

6. Discussion 

The author studied some predictor variables including clinical and gene expres-
sion variables for survival time associated with death due to breast cancer and 
metastasis in this article. Age of patients, diameter of tumor, tumor grade and 
wound response signature are the common risk factors that can be used to pre-
dict the survival probability related with both events. Among these risk factors, 
wound response signature is found to be a significant gene expression variable 
that is consistent with the result in other studies. The analysis performed is from 
a statistical point of view; clinical justification needs to be considered in practice. 
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Table 3. Analysis of risk factors for metastasis for four comparison models. 

 Parameter Estimate Chi-Square P-value Hazard ratio 

Hypertabastic Age −0.0822 40.91 <0.0001 0.92 

 Diameter 0.0201 3.61 0.0574 1.02 

Log L Lymph 0.0780 3.49 0.0617 1.08 

(−268.02) WRS 0.5666 6.12 0.0134 1.76 

AIC Tumor grade     

(550.04) Grade 2 vs. 1 0.6725 4.12 0.0423 1.96 

BIC Grade 3 vs. 1 0.7196 4.44 0.0351 2.05 

(575.85) Chemo 0.4320 2.92 0.0875 1.54 

Weibull Age −0.0587 10.81 0.001 0.94 

 Diameter 0.0233 4.39 0.0362 1.02 

Log L Lymph 0.1092 6.22 0.0126 1.12 

(−275.05) WRS 0.5863 6.13 0.0133 1.80 

AIC Tumor Grade     

(564.10) Grade 2 vs. 1 0.8041 4.76 0.0291 2.23 

BIC Grade 3 vs. 1 0.8742 5.21 0.0225 2.40 

(589.91) Chemo 0.5718 4.66 0.0308 1.77 

Log-logistic Age −0.0962 117.51 <0.0001 0.91 

 Diameter 0.0174 2.77 0.0960 1.02 

Log L Lymph 0.0467 1.35 0.2452 1.05 

(−269.23) WRS 0.4891 4.63 0.0314 1.63 

AIC Tumor Grade     

(552.46) Grade 2 vs. 1 0.5814 3.36 0.0667 1.79 

BIC Grade 3 vs. 1 0.6309 3.69 0.0547 1.88 

(578.27) Chemo 0.2956 1.46 0.2269 1.34 

Cox Age −0.0545 10.19 0.0014 0.95 

 Diameter 0.0249 5.31 0.0211 1.03 

Log L Lymph 0.0988 5.43 0.0198 1.10 

(−511.12) WRS 0.5245 5.11 0.0238 1.69 

AIC Tumor Grade     

(1036.24) Grade 2 vs. 1 0.7976 5.03 0.0249 2.22 

BIC Grade 3 vs. 1 0.8873 5.77 0.0163 2.43 

(1062.05) Chemo 0.5506 4.55 0.0329 1.73 

Lymph represents number of positive lymph nodes; Chemo represents chemo therapy status, without che-
mo therapy vs. with chemo therapy. 

 
Based on the results of model comparisons for both events, the hypertabastic 
proportional hazards model outperforms all the comparison models. More ap-
plications can be considered to further study the property of this model. Weibull 
and log-logistic models performed better than the Cox model with lower AIC 
and BIC values. In the Cox model, the baseline hazard function is regarded as a 
nuisance parameter, while in parametric models, the hazard function reflects the 
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time course of the process under study. Result indicates that parametric models 
provide a better fit to the breast cancer data. 

In addition, hypertabastic accelerated failure time model (AFT model) was 
also introduced by Tabatabai et al. [7], and has been applied to a medical data 
and an engineering data by Tabatabai et al. in [7] and [13] respectively. The 
hypertabastic AFT model also shows flexibility and performs well compared 
with other models. In case the proportional hazards assumption is not satisfied, 
AFT model should be applied to study the survival probability. The assessment 
of the performance of the hypertabastic AFT model will be a topic of our future 
research. 
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