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Abstract 

An important issue in society is the attempt to balance communities working co- 
operatively and cohesively with one another while allowing members the ability to 
retain individuality and fostering an environment of cultural diversity. We seek to 
study the cohesive properties of a culturally diverse dynamic social network. By con-
sidering a multi-agent dynamic network, we seek to model a social structure and find 
conditions under which cohesion and coexistence are maintained. We present a spe-
cific illustration that serves to establish the framework in which explicit sufficient 
conditions in terms of system parameters are found for which the network is cohe-
sive. By utilizing Lyapunov’s Second Method and comparison equations, we are able 
to find such conditions for the given illustration. Further, for the illustration, we de-
compose the cultural state domain into invariant sets and consider the behavior of 
members within each set. Moreover, we analyze the relative cultural affinity between 
individual members relative to the center of the social network. We also demonstrate 
how conservative the estimates are using Euler type numerical approximation schemes 
based on the given illustration. We are then able to consider how changes in the var-
ious parameters affect the dynamics of the illustrated network. By gaining such in-
sight into the behavior of the illustrated network, we are able to better understand 
the impact of both attractive and repulsive influences on the network. This leads to 
establishing a schema for helping when creating policies and practices catered to 
promoting both diversity and cohesion within a cultural network. 
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1. Introduction 

The goal of this work is to explore the cohesive properties and behavior of individual 
members of a dynamic social network. Dynamic network systems are often used to 
model the behavior patterns of animals, autonomous vehicles, the spread of a contagion, 
traffic flow, and many other types of situations. In this work, we are interested in mod-
eling the behavior of members within a social network. In particular, we are interested 
in the cultural shifts of members within culturally diverse groups. We seek to better 
understand the internal and environmental factors that may foster a sense of coopera-
tion between members of the network while allowing individuality and diversity to be 
maintained and enhanced. 

One of the concepts studied using network dynamics is that of consensus [1] [2] [3] 
[4]. In such models, the conditions under which a group collectively comes to an 
agreement are studied. Another question of interest for such a network is when the 
group might subdivide into smaller subgroups each converging to a consensus but nev-
er reaching a consensus as an overall group. Such dynamic network models are useful 
in many areas beyond just social networks. For example, work in both biological net-
works and control theory considers such large-scale dynamic models in the context of 
connectivity, stability and convergence [5] [6] [7]. Using these ideas, much of the work 
done in these areas look to develop consensus seeking algorithms and consider long 
term co-existence, cohesion, and stability of the network under consideration [8] [9] 
[10] [11].  

Cohesion within a social network is a current topic of great interest and many au-
thors have done research within this area [12] [13]. The concepts of cohesion and co-
operation within a group are often multi-faceted, dynamic, and complex but are im-
portant concepts when trying to better understand how nations or human groups inte-
ract and function [14]. As Knoke and Yang note [15], it is social cohesion that enables 
information to spread and allows a group to act as a unit rather than individuals.  

We often seek to create situations for which people of different backgrounds and be-
liefs are able to coexists and create a thriving sense of community. We seek to better 
understand the group dynamics of such a society in order to create policies and prac-
tices that encourage a sense of community among individuals from a variety of cultural 
backgrounds. We use the term multicultural social network to describe a social network 
in which the agents have a diverse cultural and/or ethical background and are actively 
seeking to enhance and to maintain diversity with harmony and prosperity. In such a 
network, the goal of agents is not in approaching a consensus but rather the ability to 
live and work cooperatively with one another for a common good and goal. For exam-
ple, consider a population in an area for which there exists a sub-populace of immi-
grants. In such a situation, the subgroups or sub-communities of immigrants desire to 
be an integral part of the community and seek to be respectable productive members of 
the community and the society in general while retaining their cultural diversity. In ex-
ploring the dynamics of a multi-cultural network, we are looking to better understand 
the delicate balance between a culturally diverse cohesive social structure and a social 
structure for which cohesion does not exists. For when cohesion is lacking in the social 
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network, cooperation may not be as prevalent and we begin to see features such as se-
gregation, violence, economic destabilization and crime within the network. 

We seek to model such a situation and better understand the social dynamics of a 
group seeking to find such a balance. In particular, we are looking to model a dynamic 
social network for which there is a balance between consensus and cohesion. We wish 
to model a network that is cohesive but for which there is not a consensus of culture, 
that is to say the network does not develop a singular cultural identity. In doing so, we 
are interested in better understanding the cohesive properties of a multicultural social 
network. We present a prototype of a dynamic model for which we explore the features 
of such a network. The presented example is used to exhibit the quantitative and qua-
litative properties of the network. Further, the techniques used are computationally at-
tractive, easy to verify and algebraically simple. In addition, the presented results are in 
terms of network parameters that characterize the attributes of the network. The by-
product of this provides tools for planning and making policies regarding a dynamic 
network. 

In Section 2, we present an example of such a network, as well as assumptions and 
notations used throughout this work. In Section 3, using Lyapunov’s Second Method 
and the comparison method [16], we consider the dynamics of individual members 
within the network. In Section 4, long and short term behaviors of group members and 
invariant cultural state sets are investigated. In Section 5, we consider numerical simu-
lations of the network to better understand the extent that conservative estimates in 
Sections 4 and 5 are in a given example. Finally, in Section 5, we consider parametric 
variations within the model affecting the dynamics of the network. Further, we will 
consider how the model relates to a multicultural network. 

2. Problem Formulation 

We wish to model a multi-cultural social network and therefore desire to capture the 
behavior of individual agents who are seeking to belong to the group but also wanting 
to retain individuality and diversity from other agents. In order to do so, we therefore 
consider dynamic equations subjected to both attractive and repulsive forces. In [17], 
one such function considered when modeling biological dynamic networks is given by 

( )
2

exp ,
y

g y y a b
c

  −  = − −
    

                    (1) 

where a, b and c are positive constants and ny∈ . The function g has long-range at-
traction and short-range repulsion.  

In the following, we formulate a modified version of a network dynamic model in 
which individuals seek to retain a balance between individual member identity and a 
group/community membership. We consider a network whose dynamics are described 
by incorporating a long-range attraction and short-range repulsion similar to that in 
Equation (1).  

Let us consider a network of m members. For each member ( ) { }1, 1,2, ,i I m m∈ =  , 
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n
ix ∈  is a cultural position at time t > 0. The vector ( )ix t  can be representative of 

many various aspects of culture such as beliefs, behaviors, ways of life, etc. depending 
on the network being considered. Further, let us define a relative cultural state of ith 
member with a kth member of the community as ik i kx x x= − , and a center of cultural 
state of the network 

1

1
k

m

k
x x

m =

= ∑                            (2) 

Consider the network whose dynamic is given by 

( )
0

2

2

1 1 1

0

d sin exp d ;

.

m m m ij
i ij i ij i ij

j j j

i i

x
x a x q x x x b x x x t

c

t xx

= = =

  
  = − − + − −
  
   
=

∑ ∑ ∑       (3) 

The constant coefficient parameters, a, b, c and q +∈  represent the weight of the 
social moderation attractiveness (q), the repulsive forces (a), the rate of decay of the 
long range attractiveness (c), and the long-range attractiveness (b) between individual 
members and social groups. We say that the network is cohesive if there exist constants 
T and M such that 0t T t≤ ≤  and ( )0 0, ,ix t t x x M− ≤  that is to say that the mem-
bers of the network after some point in time remain within a certain distance of the 
network center. Further, we say that the network reaches a consensus if  

( )0 0, , 0ix t t x x− →  as t →∞  for all ( )1,i I m∈ . In this case each member of the 
network draws closer to each other and the network center. Moreover, we define the 
term relative cultural affinity to be ( ) ( ) ( )0 0 0 0, , , ,ik i i k kx t x t t x x t t x= − , the distance 
between the cultural vector states of members ix  and kx . 

3. Characteristics of the Network 

In this section, we wish to explore the dynamics of the agents with the network dy-
namic described by Equation (3). We will be considering the cohesion, qualitative and 
quantitative properties such as the overall stability of the network center, and various 
types of invariant sets. While exploring these ideas, we will also consider what happens 
as the size of the network increases and what roles the parameters a, b and c play within 
the model. Moreover, the presented example is utilized to exhibit the quantitative and 
qualitative properties of the network. In order to accomplish such a task, we utilize 
Lyapunov’s Second Method [16]. This method is algebraically simple, easy to verify and 
computationally attractive. Furthermore, the results depend on the system parameters a, 
b, c and q.  

Let us first consider the dynamic of the network center, x  as defined in Equation 
(2). We note that 0ikx =∑∑ , and 

( ) ( )

( )

2

1 1
2

1

d

 sin exp d 0

m m

k k
k k

m
k

k
k

x a x x q x x x x

x x
b x x x x t

c

= =

=

= − − − −
 −
 + − − − =
  

∑ ∑

∑
             (4) 
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and x  is a stationary center of the network. We define the transformation of the net-
work by i iz x x= − , noting that  

1

.

m

i ik
k

ik ik i k

mz x

x z z z
=

=

= = −

∑                          (5) 

Therefore, the dynamics of the transformed network are given by 

( )

( )
0

2
2

1

0

d d

    d

   sin exp d ;

.

i i

i

m
ik

i i i i ik
k

i i

z x x

x

z
amz qm z z b z z t

c

z t z

=

= −

=

 
 = − + −
  

=

∑
          (6) 

Dynamic Equation (6) can be useful in modeling a variety of multicultural social 
networks. In Equation (6), the magnitude of the repulsive force is represented by 

iam z  and the magnitude of the long range attractive force is described by 
2

expik ikb z z c − ∑ . Furthermore, sin iz  is the sine-cyclical influence due to the  

magnitude of the deviation of the ith agent’s cultural state from the center of the net-
work. Attractive influences can be thought of as attributes that bring people to active 
membership within the group. Social acceptance, gaining social status, economic op-
portunity, career growth, common purpose and membership, personal development, 
and a sense of mutual respect, trust and understanding are examples of attractive in-
fluences within a social cultural network. Repulsive forces are attributes that create 
some desire for individuals to leave or be less involved in the group or to preserve some 
personal identity from one other with their individual magnitude of inner repulsive 
force. A desire to retain a sense of individuality, economic or emotional cost, interper-
sonal conflict within the group, or disagreement with parts of the overall philosophies 
of the group are forces that may be considered as repulsive forces. In short, economic, 
educational, and social inequalities coupled with the race, gender, ethical and religious 
bias are sources of repulsive forces. A balance between the total attraction and repulsive 
forces attributes to a general sense of individual agents maintaining a “live and let live” 
philosophy for the greater benefit of the community and the common good of society. 

In order to better understand the dynamics of Equation (6), we will use Lyapunov’s 
Second Method in conjunction with the comparison method [16]. These methods will 
provide a computationally attractive means to better understand the movement of 
members within the network. To that end, let us consider a candidate for energy func-
tion defined by 

( ) 21 .
2i iV z z=                            (7) 

Then the differential of V along the vector field generated by Equation (7) is given by 
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( ) ( )
2

2 4T T

1
d d sin exp d d ,

m
ik

i i i i i i i ik i
k

z
V z z z am z qm z b z z z t LV z t

c=

  
  = ⋅ = − + − =
    

∑  (8) 

where 

( )
2

2 4

1
sin exp .

m
ikT

i i i i i ik
k

z
LV z am z qm z b z z z

c=

 
 = − + −
  

∑        (9) 

In Subsections 3.1 and 3.2, we will find upper and lower estimates for ( )iLV z  re-
spectively. Using Lyapunov’s Second Method and the comparison method [16], we will 
then use these estimates to consider the behavior of the agents over time t. For instance, 
we consider the stability of the network, and establish invariant sets for the network. 

3.1. Upper Estimate of ( )iLV z  

In this subsection, we seek constraints on a, b, c, and q such that for iz  outside of a 
given ball, we can establish an upper estimate of ( )iLV z . We will then use these as-
sumptions in conjunction with the Lyapunov method and comparison theorem [16] to 
establish the case for which 

( ) ( )0 0, , ,iV z r t t u≤                        (10) 

where ( ) ( )0 0 0 0, , ,  tr t t u r u=  is the maximal solution of a comparison differential equ-
ation through ( )0 0,t u .  

By considering the derivative of the function,  

( )
2

exp rf r r
c

 
= − 

 
                      (11) 

We note that 
2

exp ik
ik

z
z

c

 
 −
  

                        (12) 

has a global maximum when 2ikz c=  with a maximum value of 

1exp .
2 2
c  −  

                         (13) 

From Equation (12), Equation (13), and the fact that sin 1iz ≤ , for ( )1,i I m∈ , 
Equation (9) reduces to:  

( )

( )

( ) ( )

( )
( )

2
2 4

2 4

2 4 4

2 4 3

exp

11 exp
2 2

11 1 exp
2 2

11 exp
2 21 .

1

m
ik

i i i i ik
k i

i i i

i i i i

i i i i

z
LV z am z qm z b z z

c

cam z qm z b m z

cam z qm z b m z

cb m
am z z qm z

z

z
qm

≠

 
 ≤ − + −
  

 ≤ − + − −  
 = − − − + − −  

  − −    = − − − −
 −
 
 

∑

     (14) 
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Assumption H_1: Suppose 1 0qm − > . Let us define 

( )
1
3

1

11 exp
2 2 ,

1

cb m

qm
β

  − −    =
 −
 
 

                  (15) 

and let ( ) { }1 10, :nB x xβ β= ∈ < ‖ ‖ . Further, let us denote the compliment of the 
( )10,B β  by ( )10,cB β . For any ( ) ( )10, , 1,c

iz B i I mβ∈ ∈ , Equation (14) yields the 
following inequality: 

( )

( ) ( )

2 4

4 .
2

i i i

i i

LV z am z z

amV z V z

≤ −

 = − 
 

                  (16) 

Using Equation (16) along with the comparison theorems [16], we establish the fol-
lowing result. 

Lemma 1. Let V be the energy function defined in Equation (7), iz  be a solution of 
the initial value problem defined in Equation (6). For each ( )1,i I m∈  satisfying the 
differential inequality Equation (16), it follows that the network is cohesive and 

( )( ) ( )0 0, , ,iV z t r t t u≤                       (17) 

where ( )r t  is the maximal solution of the initial value problem 

( )0 0d 4 d ,     
2

amu u u t r t u = − = 
 

                  (18) 

provided that 
0

2

02iz u≤ ; that is, 

( )

2 0
0

0 0 0

1 ,   for .
2 2 exp 2

2

i
u am

z t t
amu u am t t

≤ ≥
    + − − −     

        (19) 

Proof: Under the assumptions of the lemma and using the standard argument [16] 
combined with the above discussion, the proof of the lemma follows from Equation 
(16). The cohesiveness of the network follows by definition as the solution to Equation 
(18) is bounded.                                                        □ 

Remark 1: We remark that the assumption H1 is an alternative sufficient condition as: 
From Equation (14), we have 

( ) ( )

( )

( ) ( ) ( )

2 4 2
1 1

2 21
1

1

1
1

11 exp
2 2

1 1exp
2 2

4 ,    0, ,

i i i i

i i i i

c
i i i

cLV am r z qm z r z b m z

b mam r cqm z z r z z
qm r

am rqmV z V z z B
qm

β

 ≤ + − − + − −  
 − +  = − − − −         

 +
≤ − ∈ 

 

     (20) 

where ( ) { }1 10, :nB x xβ β= ∈ < , and  
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( )
1

1

1 1exp
2 2

b m c
r

β
−  = −  

,                   (21) 

for any 1 0r ≥ . 

3.2. Lower Estimate of ( )iLV z  

Next, we look to establish a lower estimate of ( )iLV z  such that 

( ) ( )0 0, , ,iLV z t t uρ≥                       (22) 

where ( )tρ  is the minimal solution to a comparison equation through ( )0 0,t u .  
Imitating the argument used to arrive at Equation (14) and noting that, for  

 0, xα α> <  if and only if xα α− < < , for ( )1,i I m∈ , Equation (9) reduces to the 
inequality 

( )

( )

( )

2 4

2 4

2 4

1exp
2 2

11 exp
2 2

1exp
2 21 .

m

i i i i
j i

i i i

i i i i

cLV z am z qm z b z

cam z qm z b m z

cb
a z qm z a m z z

a

≠

 ≥ − − −  

 = − − − −  
  −    = − + − −
 
 
 

∑

     (23) 

Assumption H2: Let us define 

2

1exp
2 2 ,

cb

a
β

 −  =                       (24) 

and ( ) { }2 20, :nB x xβ β= ∈ < , with its complement being ( )20,cB β . For  
( ) ( )20, , 1,c

iz B i I mβ∈ ∈ , Equation (23) reduces to the following differential inequali-
ty: 

( )

( ) ( )

2 4

4 .
2

i i i

i i

LV z a z qm z

aqmV z V z
qm

≥ −

 
= − 

 

               (25) 

Using Equation (25) along with the comparison theorems [16], we establish the fol-
lowing result. 

Lemma 2. Let V be the energy function defined in Equation (7) and zi a solution of 
the initial value problem defined in Equation (6). For each ( )1,i I m∈  satisfying the 
differential inequality Equation (25), it follows that 

( )( ) ( )0 0, , ,iV z t t t uρ≥                      (26) 

where ( )tρ  is the minimal solution of the initial value problem 

( )0 0d 4 d ,   ,
2

au qmu u t u t u
qm

  
= − =  

  
             (27) 
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Provided ( ) 2
0 02iz t u≥ ; that is, 

( )
( )

2 0

0 0 0

1 .
2

2 exp 2
2

i
au

z t
aqm u u a t t
qm

≥
  

 + − − −    
  

        (28) 

Proof: Under the assumptions of the lemma and using the standard argument [16] 
combined with the above discussion, the proof of the lemma follows from Equation 
(25).                                                                  □ 

Remark 2: A remark similar to remark 1 is as follows: From Equation (23), we have 

( ) ( )

( )

( ) ( ) ( )

2 4 2
2 2

2 22
2

2

2
2

11 exp
2 2

1 1exp
2 2

4 ,     0, ,

i i i i

i i i i

c
i i i

cLV am r z qm z r z b m z

b mam r cqm z z r z z
qm r

am rqmV z V z z B
qm

β

 ≥ − − − + − −  
 − −  = − + − −         

 −
≥ − ∈ 

 

    (29) 

where ( ) { }2 20, :nB x xβ β= ∈ < , where 

( )
2

2

1 1exp ,
2 2

b m c
r

β
−  = −  

                 (30) 

For any 2 0r > . 

4. Long and Short Term Behavior of Members and Invariant Sets 

After First let us note from ( )tρ , the minimal solution to the initial value problem in 
Equation (23) in Lemma 2, we find 

( )
( )

0

0 0 0

lim lim
2 exp 2

2

.
2

t t

au
t

am u u a t t
m

a
qm

ρ
→∞ →∞

=
    + − − −     

=

          (31) 

Similarly, from the solution of the comparison differential Equation (17) and Lemma 
1, we note that 

( )
( )

0

0 0 0

lim 0 lim
2 exp 2

2

.
2

t t

amu
r

amu u a t t

am

→∞ →∞
=

    + − − −     

=

           (32) 

Therefore, by Lemmas 1 and 2, when ( ) ( )1 20, 0,c c
iz B Bβ β∈ ∩ , it follows that 

( )lim .it

a z t am
qm →∞

≤ ≤                     (33) 

From Equations (31), (32) and (33), we consider one case and the associated inva-
riant sets. First, let us consider the case for which 2 1β β≤ . That is, let us suppose that  
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( )
1 3

1 1exp 1 exp
2 2 2 2 .

1

c cb b m

a qm

    − − −        ≤
 −
 
 

              (34) 

Let us further suppose that it is the case that  

( )
1 3

1 1exp 1 exp
2 2 2 2 .

1

c cb b m
a

a qm qm

    − − −        ≤ ≤
 −
 
 

          (35) 

For 1β  and 2β , let us define the following sets (Figure 1): 

( )

( )

( )

( ) ( )
( )

2

2

1

1

0,

0, 0,

0, 0,

0, 0,

0, .

c

c

c

c

A B

aB B B
qm

aC B B
qm

D B B am

E B am

β

β

β

β

=

 
= ∩   

 
 

= ∩  
 

= ∩

=

                  (36) 

In the following, we state and prove a few qualitative properties of the solution 
process of the center of the multi-agent determinist dynamic network described by Eq-
uation (3). The following result exhibits the major influence of long range attractive 
forces. 
 

 
Figure 1. An example in 2

  of the sets defined in Equation (36). Under the assumptions in 
Equation (34), the sets form concentric annuli. 
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Theorem 1. For 0 1< < , if for all ( )0
$,$ 0, 2ii I z B∈ ∈  , a neighborhood of the 

center x , then Equation (9) reduces to the inequality 

( ) ( ) ( ) ( )4 1 .
2 2i i i
a bLV z qmV z V z m
q

 
≥ − − − 

 
                (37) 

Further, if ( ) 02a q u> , there exists 0 1< ≤  such that ( ) 0iz t >  for 0t t≥  when, 
for all ( ) ( )0

1, , 0, 2ii I m z B∈ ∈  . 
Proof. Let 0 1< <  and 2

iz < ‖ ‖  for all i I∈ . Then,  

( )

( ) ( ) ( )

2
2 4 2 2 2

2 4

2 2

1sin exp
2

2

1
2

4 1
2 2

k

m
ik

i i i i ik
k i

m

i i
k i

i i

i i

z
LV am z qm z b z z z z

c

bam z qm z

a bqm z z m
q

a bqmV z V z m
q

≠

≠

 
   = − + − + −    

≥ − −

 
= − − − 

 
 

= − − − 
 

∑

∑





  (38) 

Considering the non-homogeneous comparison equation,  

( ) ( )0 0d 4 1 d ,   ,
2 2
a bu qmu u m t u t v
q

  
= − − − =  

  
             (39) 

it follows that  

( ) ( ) ,iV z u t≥                           (40) 

where ( )u t  is the minimal solution of Equation (39) when ( )0 0iV z u≥ . Let ( )û t  be 
the solution of the homogeneous differential equation 

( )0 0ˆ ˆ ˆ ˆd 4 d ,   
2
au mqu u t u t u
q

 
= − = 

 
                  (41) 

Then, by using the method of variation of parameters, the solution to the non-ho- 
mogenous differential equation given in Equation (39) is given by 

( ) ( ) ( ) ( )( )
0

ˆ ˆ1 , , d ,
2

t

t

bu t u t m t s u s s= − − Φ∫                (42) 

where 

( ) ( )0 0 0 0
0

ˆ
, , , , .ut t u t t u

u
∂

Φ =
∂

                    (43) 

Using separation of variables, the solution of the homogeneous differential equation 
is given by 

( )
( )

0

0 0 0

ˆ ,
2 exp 2

2

u a
u t

aq u u am t t
q

=
  

 + − − −    
  

             (44) 

and 
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( )
( )

( )

2
0

0 0 2
0 2

0 0 0

exp 2ˆ
, , .

ˆ4 exp 2
2

a am t tu t t u
u aq u u am t t

q

 − −∂  =
∂   

 + − − −    
  

         (45) 

Therefore, from Equation (42), 

( )
( )

( )
( )

( )

( )

( ) ( )( )

0

0

0 0 0

2
0

2
2

0 0 0

0

0 0 0

2

0

0

2 exp 2
2

exp 2
 1

2
ˆ4 exp 2

2

2 exp 2
2

1 1 1 exp 2
2 2

 2

t

t

u a
u t

aq u u am t t
q

a am t tb m
aq u u am t t
q

u a
aq u u am t t
q

b m a
am t t

am

au

α

=
  

 + − − −    
  

 − − − −
  

 + − − −    
  

=
  

 + − − −    
  


−   − − − − 



+

∫



( ) ( )

( ) ( )( )

0 0 0

2

0

0 0

exp 2
2

2
 exp 4 exp 2 ,

2

u t t am t t
q

a u
q

am t t am t t
am

 
 − − − −   

 
 

−  
     − − − − − −    



     (46) 

where 

( )
2

0 0 0exp 2 .
2
au a u am t t
q

α
  

 = + − − −    
  

               (47) 

Let ( )g t  be the function defined as 

( ) ( ) ( )( )

( ) ( )

( ) ( )( )

2

0

0 0 0 0

2

0

0 0

1 1 1 exp 2
2 2

2 exp 2
2

2
exp 4 exp 2 ,

2

b m a
g t am t t

am

au u t t am t t
q

a u
q

am t t am t t
am

α


−   = − − − 



 
 + − − − −   

 
 

−  
     − − − − − −    



       (48) 

We note that ( )g t  is continuous on [ ) ( )0 0, , 0t g t∞ =  and 
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( ) ( )
2
0

1
lim .

2t

b m
g t

amu→∞

−
=                         (49) 

As the limit as t →∞  of ( )g t  is finite, for any given 0,δ >  there exists a 0T t>
such that 

( ) ( )
2
0

1
,   for ,

2
b m

g t t T
amu

δ
−

− < >                    (50) 

and so ( )g t  has an upper bound on ( ), ,T ∞  say 1M . Further, as ( )g t  is continuous 
on [ ]0 ,t T , ( )g t  has an upper bound on this interval, say 2M . Let { }1 2max ,M M M= . 
As ( )00 g t M= ≤ , it must be the case that 0M >  and hence Equation (42) reduces 
to  

( )
( )

0

0 0 0

.
2 exp 2

2

u a
u t M

aq u u am t t
q

≥ −
  

 + − − −    
  

           (51) 

Suppose that it is the case that ( ) 02a q u> and so the solution ( )u t  is monotoni-
cally increasing as t →∞ . Choosing 0 1< < , such that ( )2a q<  and 0 Mu< , 
it follows that Equations (51) has the lower bound  

( ) 00,   for u t t t> >                        (52) 

Thus, ( ) 0iz t >  for all 0t t≥  when 
0i

z ≤   for all i I∈ .                □ 

Theorem 2. Let the hypotheses of Lemmas 1 and 2 be satisfied. Then 
1) the set ( )( )0,cC D E B a qm∪ ∪ =  is conditionally invariant relative to E ; 

2) the set D  is either self-invariant or ( )( ) ( )0, 0,c aC D B qm B am∪ = ∩  is con-

ditionally invariant relative to D ; 
3) set C is either self-invariant or C D∪  is conditionally invariant relative to C; 
4) the set C D∪  is self-invariant; 
5) the set ( ) ( )20, 0,cB C D B B amβ∪ ∪ = ∩  is conditionally invariant relative to 

B . 
Proof. For iz E∈ , ( )1,i I m∈  the hypotheses of Lemmas 1 and 2 are satisfied. Thus 

by the application of these Lemmas, we have 

( ) ( )( ) ( )0 0 0 0 0 0, , , , , , ,it t V z t t z r t t rρ ρ ≤ ≤              (53) 

for 0t t> , ( )0
0,c

iz B am∈ , where ( ) { }0, :c nB am x x am= ∈ > ; ( )0 0, ,t tρ ρ  

and ( )0 0, ,r t t r  are the minimal and maximal solutions of the comparison differential 

equations given in Equations (27) and (18) respectively. Moreover, for ( )0,c
iz B am∈ , 

with ( ) ( )
0 0

2

0 0 1 2i ir V z zρ= = =  and ( )
00i iz t z= , the solutions ( )0 0, ,r t t r  and  

( )0 0, ,t tρ ρ  are both monotonically decreasing and approaching to ( ) 2am  and  
( )2a qm  respectively. This yields 

( ) ( ) ( )
2

0 0 0 ,0 0 02 , , , , 2 , , ,i it t z t t z r t t rρ ρ ≤ ≤               (54) 
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for 0t t≥ . From Equation (54), 
0i

z E∈  and the definitions of self-invariant and con-
ditionally invariant [18], it follows that statement 1) is valid. The proofs of 2), 3) and 4) 
follow by imitating the argument used in the proof of 1). For 

0i
z D∈ , we note that 

( )0 0, ,t tρ ρ  is monotonically decreasing and ( )0 0, ,r t t r  is monotonically increasing to 
( )2a qm  and ( ) 2am  as t →∞  respectively. This together with Equation (54) estab-

lishes that ( )00, ,i iz t t z C D∈ ∪  proving statement 2). For 
0i

z C D∈ ∪ , ( )0 0, ,t tρ ρ  is 
decreasing and the proof of 3) and 4) follows from 1) and 2). Similarly, the proof for 
statement 5) also follows by imitating the argument used in 1). For 

0i
z B∈ , the solu-

tions to the comparison equation given by Equation (27), ( )0 0, ,t tρ ρ  is monotonically 
increasing to ( )2a qm  as t →∞ . Therefore, by Equation (54), ( )00, ,i iz t t z B C D∈ ∪ ∪  
proving statement 5).                                                    □ 

Let us expand upon the results of Theorems 1 and 2. First, let us note that these two 
theorems provide the qualitative and quantitative requirements on the cultural state 
parameters to insure that the model is cohesive (Theorem 2) and simultaneously does 
not reach a cultural consensus (Theorem 1). We introduce the definition of cultural 
bound to describe the boundary between two cultural sets, dividing the degree of in-
dividual versus community level interaction domains of the cultural state. Suppose 

iz A∈ . It can be shown that there exists a neighborhood, ( )0, 2B   of the center 
such that for ( )0, 2iz B∈  , the individual member cultural state is pushed out/re- 
pulsed from the cultural state center x  at some time T  depending on 0> . 
Therefore, if the cultural state of the ith member ix  of the network is such that the 
relative cultural affinity between ix  and the center, x  of the network is sufficiently 
close to zero, then the agent’s cultural state is repulsed from the center. That is to say, 
the membership of the social network will obtain and then maintain a relative cultural 
affinity between members and the center that is bounded below by a value strictly 
greater than zero. Once the state of the ith member iz  has moved away from the cen-
ter, it may be the case that iz  remains in A  or the case that the state iz  moves to 
the cultural set B , at which time the agent’s cultural state behavior will follow that of 
another category of membership described by the cultural state set B  discussed be-
low.  

Suppose the initial value, that is the function of the magnitude of the cultural state, 

0ρ  of the comparison equation is such that ( )0 2a qmρ ≤ . Then the solution to the 
lower comparison equation grows as t grows and approaches asymptotically to the 
threshold limit ( )2a qm  from below resulting in stronger ties with the community 
center state, x . If the initial value of the lower comparison equation is such that

( )0 2a qmρ ≥ , then the solution decays and asymptotically approaches to the threshold 
limit ( )2a qm  from above. Therefore, if iz  is a member of the transformed social 
network such that iz B∈ , then by Theorem 2, over time, iz  moves to the cultural 
bound of the set C . It may also cross the cultural bound or it may be the case that iz
approaches asymptotically to the cultural bound of C . Similarly, if iz C∈ , iz  may 
stay in C , approaching the cultural bounds of sets B  and/or D  or it may be the 
case that iz  crosses the cultural bound of D  at which point the member will behave 
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as other members of D . However, if iz C∈ , even though it may approach the cultural 
bound of B , it will never cross the bound. In terms of a given social network, this im-
plies that members with a distinct enough cultural state from the weighted average of 
cultural states will retain that distinctiveness of culture. Thus, if the relative cultural af-
finity between a member ix  and the center of the network is at least ( )a qm  in-
itially, then the relative cultural affinity will always be at least that value. 

Turning to the upper comparison equation, we can consider the behavior of the 
transformed network members whose initial positions are in the sets D  and E . Let 

0r  be the initial position of the solution ( )0 0, ,r t t r  to the upper comparison equation 
given in Lemma 1. If ( )0 2r am< , then the solution ( )0 0, ,r t t r  grows and approaches 
asymptotically to the value ( )2am  from below. If ( )0 2r am> , the solution decays 
and approaches asymptotically to the limit from above. Therefore, if iz D∈ , iz  may 
approach and cross the cultural boundary of C  (but will remain in C D∪ ) or iz
may approach but not cross the cultural boundary of E . For iz E∈ , iz  may either 
cross the cultural boundary of D  or the member’s cultural state will approach asymp- 
totically to the cultural boundary of D . Thus, for agents ix  within the network whose 
initial relative cultural affinity with respect to the center is sufficiently large, as t →∞ , 
the relative cultural affinity will remain large and the although the agent is attracted 
back towards the center of the network, the relative affinity is bounded below by

( )a qm . 
Further, from Lemmas 1 and 2, if all parameters other than the size of the network 

are held constant, then as the size of the network increases, so also the difference be-
tween the upper and lower bounds on the relative cultural affinity between agents and 
the center of the network increases. Naturally, increasing the size of the network leads 
to the concept of the crowding effect. Competition over ideology or cultural traits 
creates a stronger desire for agents to retain more of their individuality within the so-
ciety or group. Cultural subgroups that have a high degree of separation in terms of 
their relative cultural affinities are an emergent characteristic of such large scale multi- 
cultural networks. In the modeling for members whose cultural state is in   (so one 
aspect of culture/interest being considered), we see the network dividing into two sub-
groups with agents converging to states that are symmetric with respect to the time axis. 
One can think of situations like a large urban environment in which there exist com-
munities each with a strong cultural identity. In such a case, agents within the commu-
nity seek to retain their cultural diversity. Thus, it is expected that a large relative cul-
tural affinity between agents of different communities, but a small relative cultural af-
finity between agents within the same community, is expected to exist. 

5. Numerical Simulation 

In this section, using Euler’s type numerical to approximation scheme applied to Equa-
tion (6), we consider the numerical simulations for the network dynamics governed by 
Equation (6). The goal is to compare the long term behavior of the simulated solution 
with the theoretical long term behavior given in Section 4. We consider a network con-
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sisting of 50 members with parameters a = 0.5, q = 0.04, b = 0.41, and c = 2. Further, we 
note that in this case, 1 22.3, 0.5β β= ≈  and 

0.5      5.a am
qm

= =                     (55) 

In this example, the conditions for the invariant sets given in Theorems 1 and 2 in 
Section (4) are satisfied. Hence, for iz  such that 0.5 iz≤ , it is the case that after some 
time, 0.5iz ≥ ; that is, the member does not move towards the center of the network. 
Further, for iz  such that 2.3 iz≤ , after some time, 0.5 5iz≤ ≤ . Figure 2 is a plot 
of the approximate solutions for the full membership of the network. In order to make 
the dynamics of the network clearer, Figure 3 is a plot of the approximate solution of 
Equation (6) for six of the members of the network. 

Next, we consider the network with the same initial values with the parameters a = 
0.25, b = 0.14 and q = 0.04. In this case 1 21.61, 0.35β β≈ ≈  and 

0.35     3.54.a am
qm

≈ ≈                   (56) 

For iz  such that 0.35iz ≥ , the member does not move towards the center of the 
network and for iz  such that 1.61iz ≥ , after some time, 0.35 3.54iz≤ ≤ . Similar 
to above, we have plotted the approximate solution for the full network in Figure 4 and 
the approximate solution for the same six members as Figure 3 in Figure 5. 
 

 
Figure 2. Euler approximation of the solution to the differential equation given by Equation (6) 
with parameters a = 0.5, b = 0.41, and q = 0.04 yielding the cultural positions over time t for the 
full 50 members of the network. 
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Figure 3. Euler approximation of the solution to the differential equation given by Equation (6) 
with parameters a = 0.5, b = 0.41, and q = 0.04 yielding the cultural positions over time t for six of 
the network members. 
 

 
Figure 4. Euler approximation of the solution to the differential equation given by Equation (6) 
with parameters a = 0.25, b = 0.14, and q = 0.04 yielding the cultural positions over time t for the 
full 50 network members. 
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Figure 5. Euler approximation of the solution to Equation (6) with parameters a = 0.25, b = 0.14, 
and q = 0.04 yielding the cultural positions over time t for six of the network members. 
 

The last case we considered is the network with the same initial positions with the 
parameters a = 0.5, b = 0.18 and q = 0.2. Thus, with the given parameters,  

1 20.84, 0.22β β≈ ≈ , and  

0.22      5.a am
qm

≈ =                    (57) 

For iz  such that 0.22iz ≥ , the member does not move towards the center of the 
network and for iz  such that 0.84iz ≥ , after some time, 0.22 5iz≤ ≤ . Similar to 
above we have plotted the approximate solution for the full network in Figure 6 and 
the approximate solution for the same six members in Figure 7. 

6. Conclusions 

We have considered requirements on network parameters for long term qualitative 
properties of the network. We develop a model and establish conditions on the para-
meters that ensure a balance between cohesion and consensus. Further, we have consi-
dered how the initial cultural state of a network member affects the behavior of that 
member over time. The presented conditions of the system are algebraically simple, 
easily verifiable and computationally attractive. The developed results provide a tool for 
planning, decision making, and performance. Furthermore, the presented sufficient 
conditions are conservative but robust, verifiable, and reliable. From the above condi-
tions, we are able to consider certain dynamic properties of the social networks go-
verned by Equation (3). 
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Figure 6. Euler approximation of the solution to the differential equation given by Equation (6) 
with parameters a = 0.5, b = 0.18, and q = 0.2 yielding the cultural positions over time t for full 50 
network members. 
 

 
Figure 7. Euler approximation of the solution to the differential equation given by Equation (6) 
with parameters a = 0.5, b = 0.18, and q = 0.2 yielding the cultural positions over time t for six 
network members. 
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In this paper, we explored the features of a multi-cultural network with dynamics 
described by a specific differential equation and the long term stability and behaviors of 
individual members within such a network. We are interested in further exploring so-
cial networks in the context of better understanding the relative cultural affinity be-
tween agents ijx  and not just the cultural affinity between an agent and the center of 
the network. Our hopes are to better understand what factors may lead to preserving a 
lower bound on the relative cultural affinity ijx  that is strictly greater than zero as
t →∞ . In modeling such a network, we are looking to better understand how diversity 
between all members may be maintained over the long term within a culturally diverse 
network. Further, we are exploring the effect of noise on the network by considering 
similar dynamics and stochastic differential equations. The goal for both such questions 
is to better understand the impact of perturbations/impulses, both internal and external, 
on the behavior and diversity of multi-cultural networks. 
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