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Abstract 
 
In this work we introduce a function based on the well-known Besicovitch-Eggleston sets, and prove that the 
Hausdorff dimension of its graph is 2. 
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1. Introduction 
 
Let  0,1x , and let  denote its 
binary expansion. For any 
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Besicovitch [2] proved that  
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where dimH A  denotes the Hausdorff dimension of the 
set A . This result was generalized to the -ary case 
by Eggleston [8]. Billingsley proved a more general ver-
sion of this result in the context of probability spaces [3]. 
Billingsley’s result was related to densities in [5], and a 
similar result involving packing dimensions was proved 
in [6]. Sets such as 

N

pK  are studied in the context of 
multifractal theory (see [1,7,9,11,14-16]) and Billing- 
sley-type results have been proved by several authors in 
this context. Recently, such a result has been proved for 
a countable symbol space in [13]. 

In this paper, we are interested in a natural function 
that may be defined using Besicovitch’s result. We call 
this the Besicovitch-Eggleston function: let  1, , = #N n x  
of ’s in the first  digits of the dyadic expansion for 1 n
x . Define 
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This function allows us to visualize the multifractal 
components of  0,1  as level sets. If we let p  denote 
the invariant multifractal measure on pK  then it is clear 

that    d =p .f y y

> 0

p  
In the next section, we state and prove our main result, 

and finally we close with some open problems. 

2. Main Result 

We will need the following result by Besicovitch and 
Moran. This is not the form in which it was originally 
stated and proved. However, this modern version may be 
found in [12]. 

Theorem 1. For any  there exists a constant 

s  such that for all Borel sets  we must 
have  
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where   E= : ,yE x x y  .  
We are now ready to state the main result: 
Theorem 2. Let      = 0,1Graph f  B

= 2H B
0,1 . Then 

 and dim  2 B

p

= 0 .  
Proof. The upper bound is obvious while the lower 

bound follows from Theorem 1. Fix  and   0,1s

choose  such that 
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s  Therefore 

   1 =f ps  . We can choose an interval sI   

containing  such that  for every p   =s
yB  sy I . 

It follows from Theorem 1 that . Observ-
ing that  was arbitrary gives us the lower bound. 
Moreover, since every vertical line meets  exactly 
once, Fubini’s theorem tells us that in fact 
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3. Concluding Remarks 

Here we pose some problems related to the Besicovitch- 
Eggleston function. 
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1) Can one find the precise scaling function   such 
that ? Is the set  0 < <B    0,1 1 \ B 0,  
immesaurable, that is, either null or non- -finite for 
every translation invariant Borel measure on ? See 
[10], where it is shown that the set 

2R

<1/20<
\ pp

KR   is 
immeasurable. 

2) What is the relationship between  f x  and 
 2f x ? 

3) How large is the set of points x  such that 
 = ?x f x  Can we characterize this set of fixed points? 
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