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Abstract 
 
The dynamic portfolio selections in the sense of Markowitz’s mean-variance are addressed in an incomplete 
market and the effect of interest rate risk on them is discussed. According to Markowitz’s measure risk ap-
proach, the interest rate risk is divided into the controllable risk and the uncontrollable risk. The former can 
be hedged, but the latter cannot. The zero-coupon bond is an efficient tool to avoid the interest rate risk. The 
optimal payoff resulting from self-financed strategies and the mean-variance efficient frontier are expressed 
explicitly. The results show that the optimal payoff and the efficient frontier are not affected by the control-
lable risk of interest rate, but by the uncontrollable risk. The efficient frontier is a part of a hyperbola if there 
exists the uncontrollable risk. The expected optimal payoff grows with the increase of risk; however, the 
margin expected optimal payoff lowers. The efficient frontier is a straight line if and only if there is no un-
controllable risk. 
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1. Introduction 
 
The portfolio problem is one of major issues in applied 
and theoretical finance. And the interest rate is an impor-
tant factor in portfolio selections and a main reason why 
the global financial crisis took place in 2008. Markowitz 
[1] provides a powerful framework for assessing the risk- 
return of assets and the benefit of diversification. Opti-
mal multiperiod portfolios are characterized in Merton 
[2]. And then dynamic mean-variance portfolios are 
characterized in Richardson [3] for a fairly simple in-
vestment opportunity set, and in Bajeux-Besnainou and 
Portait [4] for more complex asset price dynamics. Tak-
ing advantage of the general stochastic linear-quadratic 
theory, Zhou and Li [5] and Lim and Zhou [6] gave an 
analytical optimal portfolio strategy and an explicit ex-
pression of the efficient frontier in the case of a continu-
ous-time mean-variance portfolio selection problem in a 
complete market. The typical examples of the incomplete 
market were studied on claim hedging in Karatzas [7] 
and He and Pearson [8], where the number of stocks is 
not greater than the number of Brownian motions in the 
price processes of stocks. The purpose of this paper is to 
address the dynamic mean-variance portfolio selections 

in the incomplete market with interest rate risk. 
The optimal payoff and the mean-variance efficient 

frontier are expressed in a financial background with 
respect to the variance-optimal martingale measures in-
troduced in Schweizer [9] or [10]. In general, the effi-
cient frontier is a part of a hyperbola. With the increase 
of investors’ risk, their expected return grows while the 
margin expected return lowers. 

The reasons for the non-straight-line efficient frontier 
are both the interest rate risk and market incompleteness. 
It is proved that the efficient frontier is a straight line 
under the assumption that either the interest rates are 
determined or the market is complete. 

The effect of the interest rate risk on portfolio selec- 
tion is analyzed. The interest rate risk is divided into the 
controllable risk and the uncontrollable risk. The con- 
trollable risk, related to capital market, can be hedged. 
The expected return produced by the controllable risk 
may be positive, zero or negative. On the contrary, the 
uncontrollable risk, having no relevance to capital mar-
ket, cannot be hedged. The latter affects investors’ ex-
pected return, but the former does not. The resolution of 
the interest rate risk is different from that by Markowitz. 
A reasonable interpretation for the optimal payoff and the 
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efficient frontier are given with the resolution. And both 
of them are not affected by the controllable risk, but by 
the uncontrollable risk. The efficient frontier is a line if 
and only if the uncontrollable risk does not exist  

The paper is structured as follows. The next section 
presents the model we used and the financial background. 
In section 3, we introduce several lemmas and the rela-
tions between the variance-optimal martingale measures 
and the orthogonal projections. Section 4 presents the 
solution to our problem and analyzes the meanings of its 
solution. We determine the mean-variance efficient fron-
tier and conclude our paper in the last section. 
 
2. Model and Financial Background 
 
Let  , ,F P

 , ,F P
 be a complete probability space and 

 be the space of all square-integrable real 
random variables with scalar product 

2L
 ,X Y E XY  

and norm 2X E X    . Let M  be a linear sub- 

space of . A given element 
 satisfies  and 

2 , ,L F P
 , ,F P


. .2B L  0B P a s  B M .  

The pair  ,M B  represents the financial environ-
ment in which the subsequent considerations take place. 
M  corresponds to a financial market without frictions, 
such as transaction costs, constraints or other restrictions 
on strategies. An element m of M  models the total 
gains from trade resulting from a self-financing trading 
strategy with initial capital 0.  is interpreted as the 
final value of some bond with initial value 1. In particu-
lar, the case  corresponds to interest rate 0. 

B

1B 
An example: Considering a finite time span  0,T , 

Let  , , F P


 be a probability space with a filtration 
   0, tF t T  satisfying the usual conditions of right- 
continuity and completeness. We also assume that 0F  
is trivial and TF F . There exist  primitive as-
sets comprising the 

1N 
1NR   valued price process 

: one bond whose price process is given by  0S , S
t

 0

0

exp dtS r s 
 
 s r
 

, where  is a progressively mea-  

surable process with respect to  tF , interpreted as the 
instantaneous interest rate, and  risky assets, whose 

 valued price process 
N

NR      , ,t Nt S t 1S S  is a 
continuous semimartingale. As in [11] and [12], we in-
troduce two sets  

 

2

2 0
0

1 d
: , is a local martingale

dT

Q
Q P L P S S Q

PS

 

 
   

 
，

, 

 

2

2 0
0

1 d
~ : , is a local martingale

d

e

T

Q
Q P L P S S Q

PS

 


 



and two standing assumptions: Assumption 1. 

 
0

d , .
T

r t t L P a s . L for some positive constant ; 

Assumption 2. 2
e   . Then we define the space of 

trading strategies  . Given a real-valued adapted proc-
ess  and -valued predictable process, we can 
define a portfolio of market value  with quantities 

V NR
V  , 

0  in the primitive assets , , satisfying S 0S
0 0 'V S S    and   0o

t t t t t . Portfolio V S S 
 ,V   is called self-financed with respect to the primi-
tive assets  , S0S  if  

o

 and  
0d d dt t t tV S    tS           (1) 

where   is the set of -valued nR 0S S  integrable 
predictable processes   such that 

 0
0

0

d
T

t
T t

t

S
S L

S
   2 P , and for each ，the process 2Q

0
0

d
T

t
t

t

S

S
   is a Q-martingale. From relation (1), 

0
0 0

0

d
T

t
T T t

t

S
V S V

S


 
  

 
 . Let  and 0

TSB 

0
0

0

d ;
T

t
T t

t

S
M m S

S
 

     
  

 . 

 ,M B  satisfies our assumptions, i.e., M  is a linear 
subspace of  2 , ,L F P  and . B M

In view of Markowitz’s mean-variance point [1], 
given a constant expected return, select optimal portfolio 
such that the risk of the portfolio is minimal. Thus con-
sider the following problem: 

(P) 
 

 
min Var

s.t. .

T
m M

T

V

E V V






 

where 0TV V B m   and V  is a real constant. The 
solution of problem (P) is expressed by . Point *

TV





, 

 2Var ,TV V R   
*  is call mean-variance efficient. The 

mean-variance efficient frontier is the set of all mean- 
variance efficient points. 

In the preceding example, problem (P) is equivalent to 
the following problem:  

(P’) 
 

 
min Var

s.t. .

T

T

V

E V V






 

where 0 0
0 0

0

d
T

t
T T T t

t

S
V S V S

S
     and V  is a real constant. 

In this paper, we address problem (P) under general 
assumptions (such as incomplete markets and stochastic 
interest rates) and our results apply to portfolios of 
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claims in a single period, multiperiod and continuous 
time. As mentioned in the introduction, Richardson [3] 
and Bajeux-Besnainou and Portait [4] solve the problem 
(P’) in the complete market by applying the method of 
dynamic programming. Instead of the dynamic stochastic 
control theory, Zhou and Li [5] and Lim and Zhou [6] 
discussed the same problem under market completeness. 
Although Sun and Wang [13] analyzed a similar problem, 
the original probability is replaced by an equivalent one, 
so called BP , and the interest rate risk is omitted.  

 
3. Methodology 
 
In this section an auxiliary problem is introduced and the 
relation between the auxiliary problem and problem (P) 
is discussed. And some lemmas and notions are pre-
sented. It should be mentioned that the orthogonal pro-
jection is an important tool to solve our problems. 

Problem (P) can be solved via the following utility op-
timization problem:  

(P*)  sup T
m M

u V


 

with the quasi-quadratic utility function  defined 
by 

 u Y
     Varu Y E Y A Y  ,  is a risk aversion 

parameter.  
0A 

The relation between problems (P) and (P*) is de-
scribed as the following.  

Lemma 1: If  is a solution to problem (P*) then *
TV

point  * *Var ,T TV E V        is mean-variance efficient.  

Proof: Let  be a solution to problem (P*) and se-
lect parameter 

*
TV
A  such that *

TV E V    . For each 
m M  satisfying equation  TE V V , we follow that 

   *
Tu V u V T . Thus  *Var VarT TV    V



  


, which 
means the lemma holds true. Q.E.D. 

Lemma 1 shows that the quasi-quadratic utility exhib-
its the mean-variance efficiency. Next we present some 
other lemmas for the solutions to problems (P) and (P*). 

Lemma 2: If  then 2 , ,Y L F P 
2       2

Var inf
a R

Y E Y E Y E Y a


        
. 

Lemma 3: .    2
inf Var inf inf
m M c R m M

B m E B m c
  

     
And if  and  are the solutions to, respectively,  m c c

 2
inf
m M

E B m c


   

 * *m c

 and , 

then  is the solution to 

  2
inf
c R

E B m c c



  

 inf Var
m M

B m



2

. 

Proof: From Lemma 2     Var B m E B m c     
for each . Thus c R

   2
inf Var inf inf
m M c R m M

B m E B m c
  

      . 

On the other hand, let  be the solution to m

 inf Var
m M

B m


 . Then 

 

   
2 2* *

inf Var Var

inf inf

m M

c R m M

B m B m

E B m c E B m c



 

    

            

*

 

The first part of the lemma holds. And the second can 
be seen from the proof above. Q.E.D. 

Lemma 4: If the solution to 

    2

0 0sup sup
m Ma R

E V B m A E V B m a


   



 exists (such 

as a R ,  m a M ), then the follow relation holds:  

    

   
0 0

2

0 0

sup Var

sup sup

m M

a R m M

E V B m A V B m

E V B m A E V B m a



 

  

    
. 

And  * *m a M  is the solution to problem 

    0 0sup ar
m M

V B m


VE V B m A   with  * * *a E m a   . 

The proof of lemma 4 is similar to that of lemma 3. 
The orthogonal projections  and  π B  π 1  are 

closely related to the problems  

(W)   2
min
m M

E B m


  
and 

(W’) .  2
min 1
m M

E m


  
The two problems have solutions  πB B  and 
 1 π 1 , respectively, and valves 

 
 and   2

πE B 
 

 π 1E    . Note that 1 M  by no-arbitrage condition. 
It implies  π 1 0  and  (as shown in 
[10]).  

 π 1   0E 

The orthogonal projections are also related to vari-
ance-optimal martingale measures closely. The two 
variance-optimal martingale measures B  and 1 , re-
spectively, can be defined in the example above as the 
solutions to the problems  

P P

(D) 
2

2
1 d

min
dQ

Q
E

B P

  
  
   

 

and 

(D’) 
2

2
d

min
dQ

Q
E

P

  
  
   

. 

Problems (D) and (D’) refer Schweizer [9] and [10], 
Delbaen and Schachermayer [11], Gourieroux et al. [12] 
and Laurent and Pham [14]. We can express projections 
 π B  and  π 1  with the measures B  and 1 . Un-

der the assumptions 1 and 2 in the example, we have 
P P

 
2

d d1 1
π

d d
BP P

B E
P B PB

 
 

 

 
B           (2) 
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and 

 
2

1 1d d
π 1

d d

P P
E

P P

 
  

 

 
.           (3) 

And the measures  and  are equivalent to 
measure . 

BP 1P
P

 
4. Solutions and Analysis 
 
The solutions to problem (P*) and then problem (P) are 
given and the meanings of their solutions are analyzed in 
 

this section. 
Proposition 1: The solution to problem (P*) is given 

below 

    
 

  

  
 

*
0

π
π 1 π 1

π 1

1 π 11

2 π 1

E B
m V B B

E

A E

        
    




  

 

Proof: From lemma 4, we have 

           
2

0 0

1 1
sup sup sup π 1 π 1 π π 1

2 2T
m M m Ma R

u V AE V B B m a V B a a
A A 

                     
      

1

4A
 

 

since      0

1
π 1 π 1

2
V B B m a M

A
       
 

 and 

   0

1
π 1

2
V B a

A
   
 

if  π 1E 1    and 
 
 

0 π

π 1

V E B
V

E

 
  

 . Adding  in 

both sides and taking expectation, we know 

0V B

π  are orthogonal to M , we fol-

low  

 

   

0

2

0

sup

1 1
sup π π 1

2 4

m M

a R

u V B m

AE V B a a
A A







           
    

 

 
 

 
 

0*
0

π 1 π 11

2π 1 π 1

V E B E
E V B m V

AE E

                 
 . 

Thus 

 
 

 
 

0 π π 11

2 π 1 1 π 1

V E B E
V

A E E

         
   as taking        *

0 π 1 2 1 π 1m V B B a A      . 
Thus the original problem is transformed to an optimiza-
tion problem with a quadratic function. It has solution 

    
 

     *
0

1
π 1 π 1 π 1

2
a V E B E E

A
           

  
. 

Substituting in relation (4), the first part of the propo-
sition is true. 

Now we turn to the second one. The solution to prob-
lem (P) is Substituting  for  in , we know the propo-

sition true from lemma 4. The proof is complete. Q.E.D. 
a *a *m

       *
0 0 0

1
π π 1 π 1

2TV V B V B B V E B
A

          
 Proposition 2: The solution to problem (P) is given as 

follow:  

    
 

  

 
 

  
 

*
0 0

0

π
π 1 π 1

π 1

π 1 π 1

π 1 1 π 1

T

E B
V V B V B B

E

V E B
V

E E

         
    

      
        

 

if  π 1E 1    and  0 πV V E B   . Relation 

 1 1πE      implies  π 1 1 . Thus  if *
0TV V B

 π 1E 1    and  0 πV V E B   . We complete the 
proof. Q.E.D. 

Next, consider problem  

 inf Var
m M

B m


 , 
for  and  π 1E    1

 
 

0 π

π 1

V E B
V

E

  
  

;  *

1

0TV V B
that is, seeking payoff  by a self-financed strategy 
such that a bond holder has minimal risk (by short-sell- 
ing stocks with payoff ). 

m

m
for  and  π 1E     0  

Proof: From proposition 1 and lemma 1, the optimal 
payoff is  

πE B  V V . 

    
 

  

  
 

*
0

π
π 1 π 1

π 1

1 π 11

2 π 1

E B
m V B B

E

A E

        
    




  

  (4) 

Proposition 3: The solution to problem  inf Var
m M

B m


  
is given by  

    
 

  *
π

π 1 π 1
π 1

E B
m B B

E

     
  

. 

Proof: From lemma 3, one has 
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 

          2

inf Var

inf inf π π 1 π 1 π 1

m M

c R m M

B m

E B B B m c c



 

 

        

 

Because  and  are orthogonal to  π B  π 1 M , we 
have 

      

      

2

2 2

inf Var inf π π 1

inf π 2 π π 1

m M c R

c R

B m E B c

E B cE B c E

 



   
   



        



 

by taking . The last       * π 1 π 1m c B B c   

optimization problem has solution 
 
 

*
π

π 1

E B
c

E

  
  

. 

Again from lemma 3,  is a solution to problem  * *m c

 inf Var
m M

B m


 . Q.E.D.  

Bond payoff  can be rewritten as B  B B B B   , 
where 

 
 
 

 
π

π 1 π 1
π 1

E B
B B

E

    
  

 .     (5) 

From proposition 3, B B  is the optimal replicable 
part of  in the sense of minimal risk, and B B is the 
leftover part. B  and B B  is called, respectively, as 
the uncontrollable payoff and the controllable one of . 
Their expectations are referred as the expected uncon-
trollable payoff and the expected controllable payoff, and 
their variances as the uncontrollable risk and the control-
lable risk of . 

B

B
The resolution of interest rate risk gives a reasonable 

interpretation of the solutions to problems (P*) and (P). 
The solution to problem (P*) has two terms: one payoff 
by a short-selling self-financed strategy to avoid the con-
trollable risk of interest rates; and the other by a 
self-financed strategy dependent on investors’ risk pref-
erence.  

 
5. Results and Conclusions 

 
At last, we determine the mean-variance efficient frontier, 
present its properties and conclude our paper.  

Let . Form proposition 1, we get * *
0TV m V  B

 
 

*
0

1 π 11

2 π 1
T

E
E V V E B

A E

           
 

and 

 
 

* 2
0 2

1 π 11
Var Var

4 π 1
T

E
V V B

A E

           
 

Thus we have 

 
 

*
0

* 2
0

1 π 1
Var Var

π 1

T

T

E V V E B

E
V V B

E

      

             

   (6) 

Proposition 4: The mean-variance efficient frontier of 
problem (P) is given by relation (6).  

Obviously, the expected optimal payoff is not affected 
by the controllable risk, but by the uncontrollable risk of 
interest rates. If one only takes the uncontrollable risk 
Var B   , her or his expected return is 0V E B   , the 
expected uncontrollable return. Define the excess ex-
pected return as  *

0TE V V E B       , the difference be-
tween the expected optimal return and the expected un-
controllable return, the excess risk as 

* 2
0Var VarTV V B       , the square root of the difference 

between the variance of the optimal payoff and the un-
controllable risk of interest rates 2

0 VarV   B , and the 

excess risk price as    1 π 1 π 1E E       . The product 

of the excess risk price and the excess risk 

    * 2
01 π 1 π 1 Var VarTE E V V                B c

n as the excess premium. Thus the excess expected 

an be 

see
return is equal to the excess premium.  

If the uncontrollable risk Var B    is zero, the excess 
ris d the ek, the excess risk price an xcess risk premium 
are the standard deviation of the optimal payoff, the risk 
price and the risk premium, respectively. In this case, the 
efficient frontier is a line 

 
 

* *
0

1 π 1
Var

π 1
T T

E
E V V E B V

E

             
 , (7) 

which is usually called as the capital market line.  
effi-

ci
5: The following statements are equiva-

le
e efficient frontier is a line; 

The following proposition further discusses the 
ent frontier. 
Proposition 

nt:  
1) Th
2) Var 0B    ; 
3) B  is determ ed; in
4) 0  ; 
5) e Ther exists a real number  such that 
   π 1B  ; 

M
π

6) 1 RB  . 
Pro eaof: It is cl r that the conditions a) and b) are 

equivalent and that condition b) is equivalent to c) and d). 
From relation (5) and Holder’s inequity, condition b) is 
equivalent to e). At last, we prove b) and e) are equiva-
lent. On one hand, condition e) implies f) since 

   1 π 1 1 π 1     ,  1 π 1 M     and 0  . On 
the other hand, if f) ho xist a mber lds, then there e real nu
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