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Abstract 
Classical machine learning, which is at the intersection of artificial intelligence and 
statistics, investigates and formulates algorithms which can be used to discover pat-
terns in the given data and also make some forecasts based on the given data. Clas-
sical machine learning has its quantum part, which is known as quantum machine 
learning (QML). QML, which is a field of quantum computing, uses some of the 
quantum mechanical principles and concepts which include superposition, entan-
glement and quantum adiabatic theorem to assess the data and make some forecasts 
based on the data. At the present moment, research in QML has taken two main ap-
proaches. The first approach involves implementing the computationally expensive 
subroutines of classical machine learning algorithms on a quantum computer. The 
second approach concerns using classical machine learning algorithms on a quantum 
information, to speed up performance of the algorithms. The work presented in this 
manuscript proposes a quantum support vector algorithm that can be used to fore-
cast solar irradiation. The novelty of this work is in using quantum mechanical prin-
ciples for application in machine learning. Python programming language was used 
to simulate the performance of the proposed algorithm on a classical computer. Si-
mulation results that were obtained show the usefulness of this algorithm for pre-
dicting solar irradiation. 
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1. Introduction 

Machine learning is a subfield of artificial intelligence. It is a set of techniques that are 
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used to analyze and find patterns in input data to make predictions/inferences [1]-[10]. 
It has applications in areas such as image recognition, natural language processing, ro-
botics, spam filtering, drug discovery, medical diagnosis, financial analysis, bioinfor-
matics, marketing and even politics [10] [11] [12]. 

There are various classical machine learning algorithms, and these include Bayesian 
networks, artificial neural networks, deep learning, clustering and Support Vector Ma-
chine (SVM) to name but a few. The main focus of this paper is on the quantum ver-
sion of SVM algorithm, which was introduced by Vapnik in the 1990s [13]. Machine 
learning algorithms can be divided into three major categories, namely supervised 
learning, unsupervised learning and reinforcement learning, depending on the type of 
data to be used for predictive analytics [1] [3] [10] [13]. 

The field of Quantum Information Processing (QIP) exploits quantum mechanical 
concepts such as superposition, entanglement and tunneling for computation and com-
munication tasks [14]. Recently, there has been a concerted effort to explore the bene-
fits of using QIP for machine learning applications. This results in the field of Quantum 
Machine Learning (QML). It has also been demonstrated that QML techniques provide 
a performance speedup compared to their classical counterparts [11] [15]. This speedup 
is the major motivation for exploring QML algorithms. 

There are two basic approaches to QML [9]. The first approach uses the classical data 
as input, and transforms it into quantum data so that it could be processed on a quan-
tum computer. In essence, this approach implements classical machine learning algo-
rithms on a quantum computer. The second approach involves making use of quantum 
mechanical principles in order to design machine learning algorithms for classical com-
puters. In the work reported in this paper, we used the first approach to model solar 
power using quantum SVM. 

The remainder of this paper is structured as follows. The next section provides back-
ground information on machine learning, QIP and QML. This is followed by Section 3, 
which discusses the design and implementation of the sun power prediction model re-
ported in this Manuscript. Section 4 provides the results and discusses the results ob-
tained. Finally, the last section concludes this paper. 

2. Background Information 

Machine learning, which is used interchangeably with predictive analytics, is a sub-field 
of artificial intelligence which is concerned with building algorithms that make use of 
input data to make predictions [1] [2] [3] [4]. There are three main categories of ma-
chine learning, and they are [1] [10]: 

-Supervised learning: makes use of both training data and data label to make predic-
tions about future points. Examples of supervised learning algorithms are logistic re-
gression, artificial neural networks and support vector machines. 

-Unsupervised learning: makes use of training data only to make a model that maps 
inputs to output. As opposed to supervised learning, unsupervised learning does not 
make use of data label. Examples of unsupervised learning are clustering and anomaly 
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detection algorithms. 
-Reinforcement learning: uses reinforcement in the form of reward or punishment. If 

the algorithm succeeds in making correct predictions, it is rewarded. However, if it 
fails, it is punished. Reinforcement learning is used mainly in robotics and computer 
games. 

2.1. Support Vector Machines 

Support vector machine learning is the most commonly used “off-the-shelf” super-
vised learning algorithm [1]. SVM solves problems in both classification and regres-
sion. It uses the principle of maximum margin classifier to separate data. For a d- 
dimensional data, SVM uses a d – 1 hyperplane for data separation. For instance, if 
data are supplied on a plane (two dimensions), SVM would use a line (one dimen-
sion) for classification. The principle of maximum margin classification ensures that 
there is a maximum separation between positive results (y = 1) and negative results 
(y = −1). The margin in this case is the distance between the decision boundary and 
the support vectors, where support vectors are data points closest to the decision boun- 
dary. 

One of the key advantages of support vector machines is that unlike other supervised 
learning algorithms, its loss function is a global optimization problem, hence it is not 
prone to local optima [4]. Additionally, SVM is robust against over-fitting, hence it is 
suitable for making generalizations even with a small dataset. Lastly, by using a tech-
nique known as kernel trick, SVM can separate data which is not linearly separable in 
its input space. This technique enables SVM to transform input data into higher-dimen- 
sional space, where a separating linear hyperplane can be found. 

2.2. Quantum Information Processing 

In stark contrast to classical computers, which use a binary digit (bit) as a unit of in-
formation, quantum computers use a quantum bit (qubit) as a unit of information. 
Mathematically, a qubit is given as [14] [16] 

0 1ψ α β= +                          (1) 

where α and β are probability amplitudes. These amplitudes satisfy the condition 
2 2 1α β+ =                           (2) 

It is worth noting that a qubit, which is a unit of information for a two-state system, 
can be generalized to any arbitrary d-state. Such a generalized unit of information is 
known as a quantum digit (qudit) [16]. Just like a classical computer, which use gates 
for computation, quantum computers also use quantum gates to perform operations 
on qudits. Essentially, a quantum gate operation on a quantum state ψ  (which is 
represented as a column vector) is a linear operation. Therefore, mathematically speak-
ing, quantum information processing makes use of vectors, matrices and tensors, hence 
it involves linear transformations. 
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2.3. Quantum Machine Learning 

Machine learning generally represents data in vector and matrix form. This is also the 
case with QIP, hence why QIP concepts find applications in machine learning. This re-
sults in the new field of research called quantum machine learning. Quantum machine 
learning can take two forms: where classical machine learning algorithms are trans-
formed into their quantum counterparts; to be implemented on a quantum information 
processor, or taking some of the computationally expensive classical machine learning 
sub-routines and implementing them on the quantum computer. 

2.4. Model Evaluation and Validation 

Different measures are used to evaluate and validate models. These measures include 
mean squared error (MSE), Root mean squared error (RMSE), mean absolute error 
(MAE), and R2 error. 

2.4.1. Mean Squared Error 
Mean squared error is one of the measures of the goodness of fit. It measures the close-
ness of a data line to the data points. For n as the number of predictions, y  as the 
vector of predicted values, and Y as the vector of observations, MSE is given as  

( )2

1

1MSE n
i ii

y Y
n =

= −∑                         (3) 

2.4.2. Root Mean Squared Error 
Root mean squared error, which is also a measure of goodness of fit, is the average Euc-
lidean distance of the line from the data points. It is given as  

( )2

1

1RMSE n
i ii

y Y
n =

= −∑                       (4) 

where n is the number of predictions, y  is the vector of predicted values, and Y is the 
vector of observations. 

2.4.3. Mean Absolute Error 
Mean absolute error measures the closeness of predicted results to the observations. It 
is given as  

1

1MAE n
i ii

y Y
n =

= −∑                          (5) 

2.4.4. R2 Error 
R2 error is also known as coefficient of determination. It is the measure of degree of va-
riance. It is given as 

2 SStot
SSres

R s= −                            (6) 

where, for a mean of observations У , SStot is given as 

( )2

1
SStot Уn

i ii
Y

=
= −∑                         (7) 
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and  

( )2

1
SSres n

i ii
y Y

=
= −∑                          (8) 

3. Implementation 

In this work, quantum support vector machine was implemented using a recorded data 
from Digital Technology Group (DTG) Weather Station in Cambridge University1. The 
dataset consists of forty nine instances, which are the training examples. These in-
stances represent the measurements that were recorded at DTG, with a time interval of 
thirty minutes. Additionally, this dataset consists of three features, namely temperature, 
humidity and wind speed. 

The recorded classical information is converted to quantum state such that for a 
training example x  and number of training examples N: 

( )1

1 n

j
x x j j

x =
= ∑ 



                        (9) 

This is then followed by optimizing the quantum support vector hyperplane para-
meters, as articulated in [17]. The optimization is done by reducing this optimization 
problem into a system of linear equations, and then using a quantum algorithm for 
solving a system of linear equations, which uses matrix inversion. This quantum algo-
rithm is known to have an exponential speedup over its classical counterpart. 

The quantum support vector machine was implemented using Python programming 
language. 

Python machine learning package used for this task was Scikit-learn version 0.18.0 
[5]. The graphical user interface (GUI) part of the implementation was realized using 
Orange data mining software package, release number 3.3.82. This GUI helped visualize 
the input dataset and the plots for the results obtained from this implementation. It also 
supports other python packages such as scikit-learn. 

The results were then recorded and errors calculated. The following errors were cal-
culated, for different training sizes: 

_mean square error (MSE), 
_root mean square error (RMSE), 
_mean absolute error (MAE), 
_coefficient of determination, R2. 

4. Results and Discussion 

The dataset was broken down into different portions, with some part being used for 
training data, and the other part being used for cross-validation. Table 1 shows differ-
ent calculated errors for different training data sizes. From the table, it can be observed 
that the best results are obtained when the training size is 70% of the dataset. Therefore, 
the training size of 70% was chosen for this implementation. 

 

 

1The official website of DTG is: http://www.cl.cam.ac.uk/research/dtg/weather/  
2The official website for Orange software package is: http://orange.biolab.si/  

http://www.cl.cam.ac.uk/research/dtg/weather/
http://orange.biolab.si/
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The next step was to analyze the correlation of the three features used (temperature, 
humidity and wind speed). Figure 1 and Figure 2 show the scatter plots of these corre-
lations. Since the graphs in the figures are not linear, it implies that the features were 
not correlated, hence they were independent. Finally, Sieve diagrams were plotted, and 
are shown in Figure 3 and Figure 4. These results underline the robustness of the pro-
posed algorithm. 

5. Conclusions 

We have reported an algorithm for solar power prediction using quantum support vector 
machine learning algorithm. The algorithm is a quantum counterpart of a classical sup-
port vector machine, which is known to have a unique solution, and hence it converges  
 
Table 1. Calculated errors for different dataset training sizes. 

Training Size (%) MSE RMSE MAE R2 

60 3.629 1.905 1.435 0.978 

66 3.098 1.760 1.283 0.826 

70 2.643 1.626 1.171 0.852 

75 2.992 1.730 1.259 0.835 

80 3.014 1.736 1.257 0.835 

 

 
Figure 1. This figure shows the relationship between temperature (in degrees Celsius) and humidity. The non-linearity of the data points 
implies that the two features are not correlated. 
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Figure 2. This figure shows the relationship between temperature (in degrees Celsius) and wind speed (in knots). Since the data point 
portray non-linearity, it can be observed that these two features are independent. 

 

 
Figure 3. A sieve diagram for temperature and humidity attributes. 
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Figure 4. A sieve diagram for temperature and wind speed attributes. 

 
to a global optimum. This is in contrast to other machine learning algorithms such as 
neural networks, which can converge to local optima, since they may not have unique 
solutions. 

In the work reported in this paper, the quantum support vector algorithm was simu-
lated using Python programming language. A dataset with forty nine instances and 
three features (temperature, humidity and windspeed) was used for this simulation. 
The results obtained from the simulation underline the utility of the proposed quantum 
support vector algorithm for solar power prediction. However, it should be noted that 
in the implementation, a generic optimization algorithm was used for implementing 
quantum SVM. Future work should explore the feasibility. 
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