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Abstract 
A modification of ranked set sampling (RSS) called maximum ranked set sampling 
with unequal sample (MRSSU) is considered for the Bayesian estimation of scale pa-
rameter α of the Weibull distribution. Under this method, we use Linex loss func-
tion, conjugate and Jeffreys prior distributions to derive the Bayesian estimate of α. 
In order to measure the efficiency of the obtained Bayesian estimates with respect to 
the Bayesian estimates of simple random sampling (SRS), we compute the bias, mean 
squared error (MSE) and asymptotic relative efficiency of the obtained Bayesian es-
timates using simulation. It is shown that the proposed estimates are found to be 
more efficient than the corresponding one based on SRS. 
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1. Introduction 

In certain practical problems, actual measurements of a variable interest are costly or 
time-consuming, but the ranking items according to the variable is relatively easy with- 
out actual measurement. Under such circumstances McIntyre [1] proposed a sampling 
scheme called ranked-set sampling (RSS) which can be employed to gain more 
information than simple random sampling (SRS), while keeping the cost of, or the time 
constraint on, the sampling about the same. In RSS; one first draws 2m  units at 
random from the population and partition them into m sets of m units. The m units in 
each set are ranked without making, an actual measurement. The first set of m units are 
ranked and the smallest is selected for actual quantification. From the second set of m 
units, the unit ranked and the second smallest is measured, and so on. This method of 
selection continues until the unit ranked largest is measured from the m-th set. If a 
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large sample is required, then the procedure can be repeated r times to obtain a sample 
of size n rm= . These chosen elements are called ranked set sampling. The mathe- 
matical support and statistical theory was provided by Takahasi and Wakimoto [2]. 
Dell and Clutter [3] studied theoretical aspects of this technique on the assumption of 
perfect and imperfect judgment ranking. Shaibu and Muttlak [4] used median and 
extreme ranked set sampling method for estimating the parameters of normal, expo- 
nential and gamma distributions. Al-Omari et al. [5] Used extreme ranked set sampling 
method to find the estimates of the population mean. Islam et al. [6] Obtained the 
modified maximum likelihood estimator of location and scale parameters depend on 
selected ranked set sampling for normal distribution. Ibrahim and Syam [7] used 
stratified median ranked set sampling method for estimating the population mean. 

Some research works have investigated ranked set sampling from a Bayesian point of 
view. Varian [8] and Zellner [9] introduced Bayesian estimation by using asymmetric 
loss functions. Al-Saleh and Muttlak [10] obtained the Bayesian estimates of the 
exponential distribution. Ahmed [11] obtained the Bayesian estimators of log-normal 
distribution based on RSS and SRS using Bayes risk. Sadek et al. [12], and Sadek and 
Alharbi [13] used the asymmetric loss function to obtain the Bayesian estimate of the 
exponential and Weibull distributions respectively, based on SRS and RSS. Al-Hadhrami 
and Al-Omari [14] showed that the Bayesian estimation of the mean of normal distri- 
bution based on moving extreme ranked set sampling (MERSS) is more efficient than 
SRS. Hassan [15] obtained the maximum likelihood estimator and Bayesian estimates 
of shape and scale parameters of the exponentiated exponential distribution based on 
SRS and RSS. For more research work on Bayesian one may refer to Mohammadi and 
Pazira [16], Ghafoori et al. [17], Said Ali Al-Hadhrami and Amer Ibrahim Al-Omari 
[18], Mohie El-Din et al. [19]. 

In this paper, we derive the Bayesian estimates of the Weibull scale parameter α 
based on gamma and Jeffreys prior distributions by MRSSU method proposed by 
Biradar and Santosha [20]. In Section 2, the preliminaries are discussed. The Bayesian 
estimates under SEL and LINEX loss functions of the parameter of Weibull distribution 
using SRS and MRSSU are presented in Section 3. Simulation results and Conclusions 
are presented in Section 4 and 5 respectively. 

2. Preliminaries 

Let 1 2, , , mX X X  be a sequence of independent and identically distributed (iid) 
random variables from a Weibull distribution with probability density function (pdf)  

( ) 1= e , 0, > 0, > 0xf x x x
ββ ααβ α β− − ≥                 (1) 

And cumulative distribution function (cdf)  

( ), , 1 e , 0, > 0.xF x x
βαα β α−= − ≥                   (2) 

where α  is the scale parameter and β  is shape parameter. 
In order to derive, and to measure the performance of an estimator we use squared 

error, loss function (SEL) (see, Berger [21]) and Linex loss function. 
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The Linex loss function for the parameter α  can be expressed as  

( ) ( )e 1 ,cL d c∆∆ = − ∆ −  

where ( )α̂ α∆ = − ; α̂  is an estimate of α  and, c and d are shaped and scale 
parameters. The sign and magnitude of the shape parameter c indicate that the 
direction and degree of symmetry, respectively. When the value of c is zero, the Linex 
loss function is approximately squared error loss, when c is less than zero, the Linex 
loss function gives more weight to under-estimation against over-estimation, and it is 
reversed when c value is greater than zero. The conjugate prior for α , ( ),Gamma a b  
is considered, whose pdf is given by  

( ) ( )
1

e , 0 ,
a

bbα
ααπ α α

α

−
−= < < ∞

Γ
                    (3) 

where , 0a b > . If 0a b= = , then ( )π α  becomes the Jeffreys prior. 

3. Bayesian Estimates 

In this section, we derive the Bayes estimates of the Weibull parameter α  based on 
simple random sampling and maximum ranked set sampling with unequal samples by 
assuming that the shape parameter β  is known. In each case, we use both conjugate 
and non-informative prior for the scale parameter α . Also, we use the symmetric loss 
function (squared error loss) and asymmetric loss function (Linear-exponential, Linex) 
to derive the corresponding Bayesian estimates. And we denote ( )|k Xα  and ( )|k Yα  
as posterior densities of α , given SRS( X ) and RSS( Y ) respectively. 

3.1. Bayesian Estimation Based on SRS 

Let 1 2, , , mX X X  be a sequence of iid random variables, has the Weibull distribution 
with parameters ( ,α β ) and ( )π α  be the conjugate prior. In this case, the posterior 
density based on SRS is given by  

( )

( )

( )

11

1
e

| .

m
i

i

m ab x m
m a

i
i

b x
k x

m a

βα
βα

α

=

  +− +  + −  

=

∑  + 
 =

Γ +

∑
               (4) 

Hence, the Bayesian estimation of α  depend on squared error loss (SEL) is  
( )* |Sel E Xθ θ=  because the Bayes estimate with respect to SEL is the posterior mean 

then  

( ) ( )*
0

1

| d .Sel m

i
i

m aX k x
b xβ

α α α α
∞

=

+
= =

+
∫

∑
                 (5) 

While the Bayesian estimate of α  based on Linex loss function is  

( )* 1 ln e c
Lnx E

c
αα − = −    

where,  
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( ) ( )

1 1
0

1
e d

e
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i
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i
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b x
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m a

βα
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Then,  

( )

( )

* 1

1

1 ln .

m an

i
i

lnx n

i
i

b x
X

c b x c

β

β
α

+

=

=

 + 
 = −
 + +  

∑

∑
                  (6) 

3.2. Bayesian Estimation Based on MRSSU 

Assume that the variable of interest X has density function ( )|f x α  and distribution 
function ( )|F x α  is known. Let { }1 2, , ,i i iiX X X , 1, ,i m=   be m sets of random 
samples from X, and they are independent. Denote, { }1 2Max , , ,i i i iiY X X X=  ,  

1, ,i m=  . Let 1Y  is taken from the first set, 2Y  is taken from the second set and mY  
is taken from the last set, then { }1 2, , , mY Y Y  be a one cycle MRSSU from X and all 

iY ’s are independent. In this study we assume that there is no error in ranking. The 
density of iY  has the same density as the ith order statistic (maximum) of an SRS of 
size i from ( ),f y α , i.e., iY  has the density  

( ) ( ) ( )1
| , , .

i
if y i F y f yα α α

−
=     

Let MRSSU be drawn from Weibull distribution, then the density function of iY  is  

( ) ( ) ( )
1 1

11 1

0

1
| 1 e e 1 e .i i i

i i qy y y q
i i i

q

i
f y i y i y

q
β β βα α αβ βα αβ αβ

− −
− − − +− −

=

−  = − = −     
∑  

Then the joint density of MRSSU in this case due to independence of iy ’s is given by  

( ) ( ) ( ) ( )

( ) ( )
1 2

1
11

01 1

0 1 1
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where ( ) ( )
1

1 ik
k
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i
A i i

k
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 and ( ) ( )1 1e
m

iii y k
kD i

βα =− +∑= . 

Then the posterior density of α is  

( ) ( ) ( )
( ) ( )
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The Bayes estimate of α  based on the squared error loss function is  

( ) ( ) ( )
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Next, in order to derive the Bayesian estimation of α  based on LINEX loss function, 
first we need to compute the posterior expectation of e cα−  from Equation (7) as  

( )
( ) ( )

( )

( ) ( )
( )

1 2
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0 0 0 11
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         (9) 

Now the Bayesian estimation of α  on LINEX is  

( )1 ln e .c
Lnx E

c
αα − = −                          (10) 

where e cE α−    is as derived in Equation (9). 

3.3. Bayesian Estimation Based on Non-Informative Prior 

The non-informative prior distribution of the parameter α  is obtained from Equation  

(3) and it is given by ( ) 1 , 0π α α
α

∝ > . Then, we obtain the Bayesian estimates of α   

in this case as follows: 
1) Simple Random Sample:  

( )*
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.j
Sel m

i
i

mX
x

α

=

=
∑

                           (11) 
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2) Maximum ranked set sampling with unequal samples:  
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and  
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4. Simulation Results 

To illustrate the performance of the derived Bayesian estimates of scale parameter ( )α  
of the Weibull distribution with informative and non-informative prior based on SRS 
and MRSSU, we carry out the Monte Carlo simulations using R-Software version 3.1.1. 
We compute bias, mean squared error and relative efficiency of the estimators by 
assuming the shape parameter ( )0.5β =  is known. The numerical results obtained for 
fixed values of α , [ 0.5α =  and 1] and sample size m [3, 4 and 5] for 1000 runs. The 
bias of the Bayesian estimates based on SRS and MRSSU are presented in Table 1 and 
Table 2, and MSE of the Bayesian estimates based on SRS and MRSSU is presented in 
Table 3 and Table 4. 
 
Table 1. Bias of the Bayesian estimates based on SRS and MRSSU. For 0.5α =  (when 0.5β = , 

1a = , 0.5b = ). 

 Bias( Selα ) Bias( Selα )  Bias( Lnxα ) Bias( Lnxα ) 

 Jeffrey prior Gamma prior  Jeffrey prior Gamma prior 

m SRS MRSSU SRS MRSSU c SRS MRSSU SRS MRSSU 

3 0.2487 0.1151 0.3420 0.1811  1 0.1379 0.0750 0.2433 0.1401 

     −1 0.4071 0.1689 0.5318 0.2335 

4 0.1585 0.0636 0.2355 0.1068  1 0.0914 0.0429 0.1733 0.0853 

     −1 0.2454 0.0874 0.3207 0.1314 

5 0.1255 0.0424 0.1936 0.0731  1 0.0794 −0.0538 0.1481 0.0231 

     −1 0.1831 −0.0064 0.2536 0.0664 

 
Table 2. Bias of the Bayesian estimates based on SRS and MRSSU. For 1α =  (when 0.5β = , 

1a = , 0.5b = ). 

 Bias( Selα ) Bias( Selα )  Bias( Lnxα ) Bias( Lnxα ) 

 Jeffrey prior Gamma prior  Jeffrey prior Gamma prior 

m SRS MRSSU SRS MRSSU c SRS MRSSU SRS MRSSU 

3 0.4975 0.2302 0.4778 0.2781  1 0.1369 0.0853 0.2209 0.1484 

     −1 0.8876 0.4671 1.0272 0.4803 

4 0.3171 0.1271 0.3422 0.1700  1 0.0883 0.0493 0.1626 0.0954 

     −1 0.7232 0.2321 0.6499 0.2657 

5 0.2510 0.0848 0.2939 0.1190  1 0.0864 −0.1250 0.1523 −0.0088 

     −1 0.5139 0.0508 0.5115 0.1397 
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The relative efficiency of the Bayesian estimates based on maximum ranked set 
sampling with unequal samples with respect to simple random sampling can be defined 
as follows  

( )
( )
( ) ( )

( )
( )

andSRS Sel SRS Lnx
Sel Lnx

MRSSU Sel MRSSU Lnx

MSE MSE
eff eff

MSE MSE
α α
α α

= =  

And are presented in Table 5. 
 

Table 3. MSE of the Bayesian estimates based on SRS and MRSSU. For 0.5α =  (when 0.5β = , 
1a = , 0.5b = ). 

 MSE( Selα ) MSE( Selα )  MSE( Lnxα ) MSE( Lnxα ) 

 Jeffrey prior Gamma prior  Jeffrey prior Gamma prior 

m SRS MRSSU SRS MRSSU c SRS MRSSU SRS MRSSU 

3 0.4193 0.1147 0.3899 0.1357  1 0.1849 0.0800 0.2179 0.0980 

     −1 1.0296 0.1870 1.2535 0.2015 

4 0.2850 0.0555 0.2470 0.0651  1 0.1389 0.0450 0.1524 0.0528 

     −1 0.4709 0.0712 0.4577 0.0823 

5 0.1584 0.0304 0.1696 0.0355  1 0.1004 0.0387 0.1170 0.0505 

     −1 0.2593 0.0615 0.2823 0.0542 

 
Table 4. MSE of the Bayesian estimates based on SRS and MRSSU. For 1α =  (when 0.5β = , 

1a = , 0.5b = ). 

 MSE( Selα ) MSE( Selα )  MSE( Lnxα ) MSE( Lnxα ) 

 Jeffrey prior Gamma prior  Jeffrey prior Gamma prior 

m SRS MRSSU SRS MRSSU c SRS MRSSU SRS MRSSU 

3 1.6772 0.4586 0.8381 0.3874  1 0.4288 0.2397 0.3299 0.2208 

     −1 3.9104 1.2337 3.8436 0.8687 

4 1.1400 0.2220 0.5929 0.2103  1 0.3550 0.1507 0.2771 0.1453 

     −1 3.0419 0.3914 1.7406 0.3360 

5 0.6337 0.1215 0.4605 0.1228  1 0.2852 0.1327 0.2464 0.1168 

     −1 1.6544 0.3654 1.0991 0.2718 

 
Table 5. Relative efficiency when 0.5α =  and 1α = . 

 ( )Seleff -Jeffrey ( )Seleff -Gamma  ( )Lnxeff -Jeffrey ( )Lnxeff -Gamma 

m 0.5α =  1α =  0.5α =  1α =  c 0.5α =  1α =  0.5α =  1α =  

3 3.6570 3.6570 2.8736 2.1630  1 2.3096 1.7889 2.2232 1.4942 

     −1 5.5066 3.1696 6.2195 4.4246 

4 5.1355 5.1355 3.7963 2.8197  1 3.0854 2.3558 2.8862 1.9076 

     −1 6.6168 7.7715 5.5641 5.1806 

5 5.2143 5.2143 4.7793 3.7483  1 1.7104 2.1492 2.3176 2.1088 

     −1 2.3269 4.5273 5.2070 4.0432 
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5. Conclusions 

We present Bayesian estimation based on SRS and MRSSU. The Weibull distribution is 
used as an application example to illustrate our results. We compute bias, MSE and 
relative efficiency of the derived Bayesian estimates and then make a comparison 
between SRS and MRSSU. Our observations of the results are stated in the following 
points: 

1) From Table 1 and Table 2, first, we found that the Bayesian estimates of α  are 
all biased. Next, we found that the Bayesian estimates based on Jeffreys prior are less 
biased than gamma prior. Also, we observed that the Bayesian estimates based on 
MRSSU are considerably less biased than SRS. 

2) From Table 3 and Table 4, it is observed that the mean squared error of all 
estimates decreases when sample size m increases. Next, we observed that the Bayesian 
estimates based on MRSSU have a much smaller mean squared error than the 
corresponding Bayesian estimates based on SRS in all cases considered.  

3) From Table 5, we observe that the relative efficiency of the Bayesian estimator 
based on MRSSU w.r.t. SRS Bayesian estimators are greater than 1 and increases with 
m. Also, decreases in Linex function as m increases for 5m = .  

Therefore, we conclude that the Bayesian estimates based on maximum ranked set 
sampling with unequal samples are more efficient than the corresponding Bayesian 
estimates of simple random sampling. 

Finally, we conclude that the results of the simulation experiment showed that the 
Bayesian estimates based on maximum ranked set sampling with unequal samples are 
more efficient, when compared with the Bayesian estimates of simple random sam-
pling. 
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