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Abstract 
We investigated the application of Causal Bayesian Networks (CBNs) to large data 
sets in order to predict user intent via internet search prediction. Here, sample data 
are taken from search engine logs (Excite, Altavista, and Alltheweb). These logs are 
parsed and sorted in order to create a data structure that was used to build a CBN. 
This network is used to predict the next term or terms that the user may be about to 
search (type). We looked at the application of CBNs, compared with Naïve Bays and 
Bays Net classifiers on very large datasets. To simulate our proposed results, we took 
a small sample of search data logs to predict intentional query typing. Additionally, 
problems that arise with the use of such a data structure are addressed individually 
along with the solutions used and their prediction accuracy and sensitivity. 
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1. Introduction 

Bayesian networks modeled with cause and effects with each variable represented by a 
node, and causal relationships by an arrow (an edge), are known as Causal Bayesian 
Networks (CBNs) [1]. The direction of the arrow indicates the direction of causality 
and researchers represent it with directed acyclic graphs (DAGs) with causal interpreta-
tion on Bayesian network (BN). Hence, causal reasoning and causal understanding are 
the causal interpretation part of a CBN, while a CBN is used for human intentional ac-
tion recognition. Pereira [2] explores the usage of CBN for intention prediction in two 
different scenarios. The first is to Aesop’s fable of the crow and the fox in which the 
crow attempts to predict the intent of the fox and to choose an appropriate action in 
response. The second is the primary focus of the paper and uses CBN to predict the in-
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tent of an elder in order to provide appropriate assistance with an automated system. 
The crow and fox problem is implemented in three tiers (Figure 1). The first tier is 

an estimation of the fox’s starting attitude and contains two variables. The second tier is 
the fox’s possible intent and consists of three more variables. The final tier is simply the 
likelihood of the fox praising the crow given the variety of potential combinations of 
the previous variables. 

The elder care problem (shown in Figure 2, which is taken from [3]) also contains 
three separate tiers in the implemented CBN. The first is the starting conditions in-
cluding user preferences and contains 5 variables. The second tier, as with the fox and 
crow problem, is the intent tier and has four variables. The final tier is whether or not 
the user is looking for something and contains only the looking variable.  

These CBNs represent the inherent logical causes in such a way that, if the user is 
performing an action, what is his/her intent and thus, why he/she is performing the ac-
tion. This differs a bit from this project in that, while they are attempting to determine 
why the agent is performing a given action, we are attempting to figure out what the 
agent is going to do next. Beyond the examples above from Pereira [2] [3], very few ad-
ditional works were able to be located that directly addressed the practicality of imple-
menting a CBN in intention recognition. Among all recent applications, some noticea-
ble research are: software project risk analysis based on causal constraints [4], human 
behavior modeling and in developing intelligent data analysis in large scale data sets 
[5]. Research also advanced towards causal analysis of wrong doing including incest, 
intentionality, and morality [6]. Besides, some application of search query intent un-
derstanding [7], query intention with multidimensional web data [8], contextual query 
intention is analyzed [9]. 

Accordingly, some recent work addresses dynamic BN application in traffic flow 
count [10], in large biomedical data-identifying gene regulatory networks from time 
course microarray data [11], and social networks analysis [12]. Moreover, understand-
ing user intention with search queries will help to advance many Big Data applications 
including adaptive and assistive system design. Human intention is analyzed with BN 
[13] which is extended in context sensitive operation [14] and decision making pers-
pectives [15]. Moreover intention is modeled with Markov modeling [16], event calcu-
lus [17], logic based approaches [18] and many more [19]. Like search queries, different 
events are considered in intentional variable assumption, for example: user’s clicking 
event [20] [21], image recognition [22], and mutual exclusive event (for example change 
in variable X causes change in variable Y) [23]. These require the study of philosoph-
ical definition of human intention, plan and action [24], perception of intention [25] 
and causality after fact [26] and developmental stages of human (child) intention [27] 
[28]. 

In case of a large dataset, analyzing causal intention that requires the creation and 
utilization of the large number of nodes, is cumbersome, and a challenging research is-
sue. The reason behind this issue is that, the search queries require exploration of large 
heterogeneous data sets for dealing with missing values, uncertainties, and determining  
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(a)                                                           (b) 

Figure 1. Fox’s intentions—the problem scenario (shown in (a)) and corresponding CBN (shown in (b)) [2]. 
 

 
Figure 2. Elder care CBN, the picture adopted from [3]. 
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patterns and relationships. At this point CBNs are currently being used for intention 
prediction, specifically for the implementation of assisting a user with a given task. 
Historically, however, these CBNs are restricted to a very small and controlled dataset 
and do not implement the ability to learn and self-modify their own behavior. Imple-
mentation with larger and evolving datasets creates several obstacles that must be ad-
dressed in order for such an implementation to be feasible. The use of search queries in 
particular creates additional problems with the non-cyclic nature of CBNs. Hence, in-
corporation of causal variables (causes and effects) along with Bayesian Network (BN) 
is rational to intentional query search identification and modeling and imposes some 
challenges. The first and foremost is the creation of the CBN itself as most tools require 
a specific model for the implementation of a CBN. When working with Big Data, ma-
nual entry of data into a CBN is not a feasible choice. As such, a method must be 
created to either automatically populate such a structure and/or create a unique imple-
mentation of a CBN specifically for use with large datasets. Secondly, the calculation of 
probabilities for such a large and specific dataset cannot be inferred, assumed, or calcu-
lated by hand. An algorithm must be created and used to determine the probabilities 
for each possible configuration of the CBN. The occurrence of novel data must also be 
accounted for and factored in with the final product.  

This paper aims to expand the use of CBNs to much larger data sets in order to test 
the potential scalability of such a network. As with any Big Data problem, memory 
usage must be considered. The storage and access of data used must be efficient in or-
der to be practical. Growth factors for continued learning must also be considered in 
this aspect. Finally, an overarching issue that is taken into consideration through the 
entirety of this work is computing the run time of the algorithm used. When dealing 
with Big Data algorithm, efficiency is a key factor and algorithms that run in O(N) time 
should be the minimum standard. 

2. Experimental Dataset 

For the parser, we chose a script format, which was more straightforward, but made for 
several versions of the parser rather than a modular design. A modular design was 
opted not to be used since each search log had to be checked manually for format. From 
there it was best to simply modify the existing script to take into the new log into ac-
count. Log styles differed between search engines as well as years. 

Each search log used a different tab delimited format. Some started with the ID of the 
user, some included information such as date and time. Extraneous information such as 
date and time was thrown first, by automatically excluding certain columns of data. We 
also found that users would often make the same search query repeatedly during the 
same session. These identical repeated search queries were discarded, as we felt that 
they did not represent unique relationships. From there, extraneous characters were 
thrown away, and all queries were made lower case in order to increase relationships 
between words and prevent identical nodes from appearing. Then the ID of the user 
and their search queries were put into a log file to preserve them. The IDs ranged from 
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a session id to an IP address, but we felt that they represented unique enough identifi-
cation to be mixed in their varying styles. ID was simply kept for reference as it was tri-
vially easy to take it out. 

First, the file was read into memory and delimited into a list by the newline charac-
ter. An initial length was taken, for record and debugging purposes, and to see how ef-
fective the script was.  

The initial for loop was the primary difference between each script. It dictated which 
tab delimited columns were kept and loaded into the list and which were ignored. This 
section was kept to a runtime of n. Sections that were useful were appended to the ex-
isting section in order to keep the runtime to n. Steps are shown in Figure 3. 

The next for loop checks for duplicates. It checks for empty nodes and nodes with no 
search entry, which were logged by some engines. We also removed any new line cha-
racters and any entries that were clearly searching for a web address, although this was 
not robust. We decided here that interpreting users’ wills were outside the scope of this 
project, and while a best guess was made to strip out and sanitize our nodes, if the user 
wanted to search “4.jpg,” that with other unusual searches were flushed out when we 
calculated probabilities. Spelling errors were also outside the scope of this project, but 
when running the project, we found some common spelling errors to be the “most fre-
quent” next node. Again, the law of numbers dictates that these difference will not be a 
problem, that is, frequent misspellings will yield a large enough population group that 
they will have a substantial data set. The final step of this loop was checking for dupli-
cate entries by the same user id. We then filtered out all the empty nodes out of the list.  

After this, unwanted characters were filtered out. We took all printable characters 
and removed the letters, numbers, space, and period, so that images would not be split 
into two separate nodes. We then reduced all remaining white space to a single space in 
an n squared operation. Then we took the final length and printed our results. 

 

 
Figure 3. Steps in search query intent analysis. 

Step1: Assign 
Word to Node

Step2: Check Next 
Word Adjacency

Step 3: Append 
Words Together

Step 4: Set or 
Adjust Probability

Step 5: Sort New 
Probability 
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3. Causal Byes Net Data Structure 
3.1. CBN Structure 

The Bayesian Network (BN) is a class of multivariate statistical models applicable to 
many areas in science and technology. In particular, the Bayesian Network has become 
popular as an analytical framework in causal studies, where the causal relations are en-
coded by the structure (or topology) of the network. Causal Bayesian Network (CBN) 
incorporates Bayesian network in directed acyclic graph (DAG). Figure 4 shows an 
example of CBN with nodes and connecting edges. 

In Figure 4, Node 1 is the cause for node 4 and node 4 is the effect of node 1. Simi-
larly Node 4 is the common cause for node 2 and 3. However node 3 is another cause 
for node. Accordingly, there are different types of CBN Models that represents com-
mon cause, causal chain and common effects that are shown in Figure 5. 

3.1.1. Observations on CBN 
A causal observation provides information about statistical relations among a number 
of events. There are three common statistical relations that represent the principle of 
common causes between two events “X” and “Y”: 1) X causes Y, 2) Y causes X, or both 
events are generated by a third event “Z” or set of events, their common cause. For 
example, searching for a “computer” and searching for a “computer desk” are statisti-
cally related because computer causes people to go on buying a table for it. Similarly, 
searching for a “computer” may cause searching different computers, or printers. In 
searching different computers user may compare various features associated to the 
 

 
Figure 4. Example of Causal Bayesian 
Network (CBN). 

 

 
Figure 5. Common cause, casual chain and common effect of CBN models. 
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computer including the price. In these ways, a user may search ways, a computer within 
his/her budget or a computer with various features regardless of price. Hence, the caus-
al observation of one of these events helps the model to infer that other events within 
the underlying causal model will exit or not. 

3.1.2. Interventions on CBN 
Interventions often enable us to differentiate among the different causal structures that 
are compatible with an observation. If we manipulate an event A and nothing happens, 
then A cannot be the cause of event B, but if a manipulation of event B leads to a 
change in A, then we know that B is a cause of A, although there might be other causes 
of A as well. Forcing some people to go on a diet can tell us whether the diet increases 
or decreases the risk of obesity. Alternatively, changing people’s weight by making 
them exercise would show whether body mass is causally responsible for dieting. In 
contrast to observations, however, interventions do not provide positive or negative 
diagnostic evidence about the causes of the event on which we intervened. Whereas 
observations of events allow us to reason diagnostically about their causes, interven-
tions make the occurrence of events independent of their typical causes. 

3.1.3. Counterfactual Reasoning 
Counterfactual reasoning tells us what would have happened if events other than the 
ones we are currently observing had happened. If we are currently observing that both 
A and B are present, then we can ask ourselves if B would still be present if we had in-
tervened on A and caused its absence. If we know that B is the cause of A, then we 
should infer that the absence of A makes no difference to the presence of B because ef-
fects do not necessarily affect their causes. But, if our intervention had prevented B 
from occurring, then we should infer that A also would not occur. 

3.2. Modeling Observations 

The graph (Figure 5) encodes assumptions about dependence and independence, sim-
plifying the representation of the causal domain. One important assumption underlying 
Bayes nets is the Markov assumption, which states (informally) that each event in a 
causal graph is independent of all events other than its descendants (i.e., its direct and 
indirect effects) once the values of its parent nodes (i.e., its direct causes) are known. 
The graph of the common-cause model expresses the spurious correlation between ef-
fects Y and Z (because of their common cause) and their independence once the state of 
cause X is known. This is a consequence of the Markov condition. Once we know that 
X is present, the probability of Y is the same regardless of whether Z is present. Simi-
larly, the causal chain implies that the initial cause X and the final effect Z are depen-
dent but become independent when the intermediate event Y is held constant. Once we 
know that Y, the direct cause of Z, is present, the probability of Z stays constant re-
gardless of whether X has occurred. Finally, the common-effect model implies inde-
pendence of the alternative causes X and Y and their dependence once the common ef-
fect is held fixed. This is an example of explaining away. X and Y should occur inde-
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pendently, but once we know that X and its effect Z are present, it is less likely that Y is 
also present. Independence is advantageous in a probabilistic model not only because it 
simplifies the graph by allowing omission of a link between variables but also because it 
simplifies computation. Conceived as a computational entity, a Bayes net is merely a 
representation of a joint probability distribution—P (X, Y, Z) in Figure 5—that pro-
vides a more complete model of how the world might be by specifying the probability 
of each possible state. Each event is represented as a variable. Causal relations have 
some relation to the conditional probabilities that relate events; how conditional prob-
abilities and causal relations relate depends on one’s theory of the meaning of causa-
tion. The factorizations of the three models at issue are: 

Common cause: 

 
( ) ( ) ( ) ( ), , | |P X Y Z P Y X P Z X P X=                  (1) 

Causal chain: 

( ) ( ) ( ) ( ), , | |X Y Z P Z Y P Y X P X=                   (2) 

Common effect: 
( ) ( ) ( ) ( ), , | , * *P X Y Z P Z Y X P Y P X=                 (3) 

The equations specify the probability distribution of the events within the model in 
terms of the strength of the causal links and the base rates of the exogenous causes that 
have no parents (e.g., X in the common cause model). Implicit in the specification of 
the parameters of a Bayes net are rules specifying how multiple causes of a common ef-
fect combine to produce the effect (e.g., noisy or rule) or (in the case of continuous va-
riables) functional relations between variables. A parameterized causal model allows it 
to make specific predictions of the probabilities of individual events or patterns of 
events within the causal model. 

Modeling Interventions 
With the help of the graph surgery (Pearl, 2000), the procedure to model changes in a 
causal model caused by interventions, a “manipulated graph” is constructed. According 
to Pearl (2000), the traditional Bayes nets and other probabilistic theories lack the ex-
pressive power to distinguish observational and interventional conditional probabilities 
[29]. Hence, they do not well represent causal observations and interventions. More 
specifically, Bayes nets and other probability theories are rooted under the general con-
cept of conditional probability. To distinguish observations from interventions, a do- 
operator is introduced (Pearl 2000, Spirtes et al. 1993), which is known as natural causal 
effect. The natural causal effect (do-operator) works as an intervention on an event that 
provides the influence to the event to be independent of all its causes. Pearl (2000) ex-
plained it with an example, do (Y = 1) represents an event that Y was fixed to the value 
of 1 by means of an intervention, which implies the exclusion of all previous causal in-
fluences on the event Y. Within a causal model the do-operator works for precise in-
terventional predictions about events [30]. Figure 6 shows an example (taken from  
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Figure 6. Example of observations (symbolized as eyes) and interventions on (symbolized 
as hammers) the three basic causal models. 

 
[29]) causal chain model with factorization of the joint distribution. With (Y =1) and 
do(Y = 1), observation and intervention are defined as following: 

Observation of Y: 
( ) ( ) ( ) ( ), 1, | 1 * 1| *P X Y Z P Z Y P Y X P X= = = =              (4) 

Intervention on Y:  

( )( ) ( ) ( ), 1 , * | 1 *P X do Y Z P Z Y P X= =                    (5) 

Equation (4) and Equation (5) signifies that the probability of consequences of inter-
ventions can be calculated if the variables of the causal model are known. Hence, it im-
plies that Z occurs with the observational conditional probability, which is on the pres-
ence of Y (P (Z|Y = 1), and X occurs with a probability corresponding to its base rate 
(P(X)). This intervention on Y is defined as the causal chain model. 

CBN Models after intervention 
Naturally, both of these values are significantly smaller and can be ignored for the 

sake of simplicity. Hence, the maximum possible entities (or event) can be represented.  
It is noticeable that in the natural causal effect or graph surgery fewer variables are 

needed to me considered in interventional probability computation. The common cause 
can be computed from the probability corresponding to its base rate, and the first effect 
is determined by the base rate of its cause and the strength of the probabilistic relation 
between first and second causes. 

3.3. Causal Graph Data Structure 

The causal graph data structure is implemented with an adjacency matrix, linked list of 
directions edges connections.  

3.3.1. Adjacency Matrix 
As is commonly known there are two primary methods to use when dealing with graph- 
adjacency, adjacency matrices and adjacency lists. The pros and cons of each method 
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must be weighed to establish which is most efficient for dealing with Big Data CBN. 
Traditionally an adjacency matrix is the preferred method when dealing with large 
amounts of data so as to prevent redundant storage of values with multiple links. A 
problem arises in this project when the quantity of zero values is drastically greater than 
that of non-zero values.  

Initial evaluation of word frequency using logs from all the web determined that only 
9% of the 173665 unique search terms had 10 or more occurrences and thus 10 or more 
potential adjacencies. 

Using an adjacency matrix would potentially lead to 158035 × (173665 − 10) or more 
than 274 billion empty values per adjacency matrix per word position. Given the in-
credibly sparse nature of such an adjacency structure, an adjacency list was deemed the 
most appropriate option. 

3.3.2. Truth Tables 
The unique nature of search queries allowed for significant reduction in the size of the 
truth tables to be used in the CBN for this project. This uniqueness comes from the 
mutual exclusivity of search terms for each node. For example, if the word Truck is the 
first word used in the search term, then no other word can be true as the first word. A 
full-valued truth table for a given node would have a number of entries calculated by 
the equation in Equation (6). Where T is the number of entries in the truth table, N is 
the number of unique key words, and M is the word position of the current node. 

NM2T =                                  (6) 

Reduction caused by the mutual exclusivity of the nodes in a given word position 
reduce this to the still large but much more manageable maximum shown in Equation 
(7). 

( )T N! N M != −                             (7) 

In practice both of these values are significantly smaller, these equations simply represent 
the maximum possible entries in a given node’s truth table. 

3.3.3. Structure Layout 
Due to the large volume of data, a unique data structure needed to be created. This in-
cludes the establishment of a given node, the directed connection to following nodes, 
and the truth table needed to define the probabilities of a given state based on the ex-
isting previous node states. The code for this project was written in Python with intent 
to eventually transfer over to LISP code. Python was used due to the robust nature of 
the language combined with solid readability and pre-existing functions. 

Nodes were created as a Python library with the individual words as keys. These 
words are the initial basis for each node and are used as identifiers for both node popu-
lation and forward searching for prediction methods. Due to CBN being acyclic in na-
ture, a given node could not exist in more than one location so as to prevent a potential 
infinite loop. 

Given the limitations on variable naming conventions in programming languages, a 
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method to delineate the different occurrences of the same word in different locations is 
needed. In order for a node to be accessed normally, the word that is keyed to the node 
is used as an identifier. A problem occurs in that a word could potentially exist in any 
word position yet must be distinct for each position else the graphs become cyclical. 

Initially, a method was established to append word position to the initial key to 
create a unique identifier for each node. This was ultimately rejected due to the addi-
tional time it would take to append this value during data mining and removal of this 
value for forwards searching through the nodes via string matching. 

Instead, a sub-library was created within each node that would indicate the starting 
position based off of a non-indexed word position (starting at 1). This method sub-
verted both of the problems mentioned above as the key words could maintain their 
string identity while still maintaining the acyclic nature of the CBN which is a directed 
acyclic graph (DAG). Figure 7 shows such a causal graph (DAG) generated from a 
sample Altavista data set. 

Contained within the sub-libraries exist the word occurrence frequency (number of 
times that word occurs in that position), and the trimmed-down truth tables. These 
truth tables are calculated by dividing the number of specific occurrences of the specific 
path taken to reach that node by the total number of occurrences of that node in the 
given position. 

These sub-libraries are then ranked by these probability factors during creation and 
modification as to reduce the total amount of time between user input and program 
output. Further ordering (e.g. table entries with the same values) is arbitrary and will 
generally be ordered chronologically by creation time. 

3.4. Interpretation of Traversal 

Several steps are taken in order to correctly interpret user input, search the CBN for the 
appropriate values, and return suggestions to the user. The initial search terms are tak-
en as a single entry from the user, delimited by spaces. The interpreter then counts the 
number of terms being used and loads the last word in the search term as the KEY. 
Next, both the KEY and position index are used to locate the appropriate node and po-
sition to compare the entire search term to. 

Once the correct truth table is located, the interpreter compares the entire string 
from user input until the top 5 matches have been found. These top 5 matches are re-
turned as output to the user as the predictive text. The big data is proceeded through 
the facilities of BIG RED II from Indiana University, IN. An algorithm to convert a 
sample Python Code for Creation of Data Structure from CSV is shown in Figure 8 and 
the corresponding data structure is shown in Figure 9. 

4. Results and Discussion  

The final program created was broken up into three primary sections: Data Parsing, 
Data Structuring, and Interpretation. This was primarily done for timing reasons. The 
parsing of the data takes a considerable amount of time (upwards of 20 minutes) for 
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each search log, given the independence of the parsing of each line, this could easily be 
broken up to run in parallel on a supercomputer. This also allowed for all the parsed 
data to be combined into a single log file for breaking into data structures.  

The organizing of the “mega” log into data structures took significantly less time 
than the parsing (only about 5 minutes for the entire log.) The primary reason these 
two steps were not performed in the same program was that, as individual steps, addi-
tional analysis could be performed on the parsed CSV file in order to help determine 
the best ways to construct the data structure and to perform any secondary calculations 
needed to support proposed ideas. 

 

 
Figure 7. An example of Causal Bayes Net (CBN) for search query intent understanding. 
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Figure 8. Sample Python Code for creation of data structure 
from CSV. 

 

 
Figure 9. Data structure output of the causal model 
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The transition of the data structure to the interpreter caused some difficulty in ex-
ecution. Originally the structure was sent to a Python script that would start when the 
interpreter was launched. This scrip file was around 400 Mb and took around four mi-
nutes to load into memory. An alternative was found through Python’s Pickle functio-
nality. Pickle turns a unique data structure into a binary file that Pickle can then read  
and load much faster when called. The result was a binary file that was only a few kb 
larger than the original script file, but a 50% total reduction in load time with the inter-
preter. 

As previously mentioned, the mutual exclusivity of words in a given position reduces 
the storage requirements of the truth tables by a significant margin. This mutual exclu-
sivity comes from the fact that two different words cannot exist in the same position. 
The causal nature of the CBN is also a contributing factor in the reduction of truth ta-
ble sizes. Since our graph is causal, any word that never precedes a given term need not 
be included in our truth tables as they will never have any kind of influence on the 
probability of that term or word [2]. A comprehensive CBN structure is obtained while 
multi user search for a same item (Figure 10) and a user search difference aspect of an 
item (Figure 11). 

 

 

Figure 10. Example CBN for multi-user search behavior towards an item (“Alltheweb” data set). 
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Figure 11. A user search behavior related to economy car in terms of “cost” “(Altavista)”. 

 
This reduction is calculated in the worst-case-scenario in Equations (6) and (7). 

These are maximum models for a potential node though, and are highly unlikely to ever 
fully be reached. A more practical representation can be seen in Figure 7 that shows the 
drastic reduction in truth table size needed due to this mutual exclusivity and causation. 
Normally the truth tables in the third tier presented would need thirty-two separate 
entries to manage all possibilities. However, between the mutual exclusion and causali-
ty, these tables are reduced down to between two and four values as is determined by 
the directed graph. It is because of all of these contributing factors that the data storage and 
subsequently the traversal time of such a CBN are reduced so drastically and allow for this 
model to be implemented in a practical way without the need for supercomputing. 

The implementation of a super computer would be most strongly utilized in the 
farming and parsing of additional search logs. As the data is not dependant on any oth-
er part during this process, it can be set up in parallel to make extensive use of any su-
percomputer. The creation of the data structures could also be implemented to take 
advantage of such a machine, but would require more intensive modifications of the 
code likely involving the use of mutexs. We compared query prediction accuracy and 
sensitivity with some built-in Bayesian classifiers included in Weka machine learning 
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tools. Obtained results are summarized in Table 1 and Table 2. 
Results in Table 1 shows the superiority of CBN based algorithms in product and 

process performance in terms of percentage. Table 2 shows the low and high level of 
sensitivity in Bayesian modeling during intentional query search.  

5. Conclusions and Future Works 

Many additional features could be added to this program in order to make it more robust 
and helpful. The most basic is the inclusion of more search logs. While this project 
handled about six and a half million search terms, more data will always lead to more 
accurate results in terms of search prediction. 

A simple learning algorithm could also be implemented within the interpreter that 
updates the data with new search terms and reinforces existing terms as they occur. 
This could also potentially lead to customized terms for individual users, which would 
only need to create an additional mutually exclusive precondition of some forms of user 
ID or could, depending on the desired format, be stored locally for the user. For even 
further customization, a localization could also be established using a similar method so 
that users in a specific geographical region would be more likely to get similar results. 
This would be useful for things like searching for local restaurants or other geographi-
cally oriented concepts.  

Two significantly more robust additions could include a letter-by-letter live word 
prediction as the user begins to type. Google Auto-Complete implements this ability. 
This concept could potentially implement the same methods of prediction as the rest of 
the project, but we speculate that a simply ordered word frequency list would be ade-
quate for this implementation. The second would be the detection and correction of 

 
Table 1. Prediction accuracy comparison (10-fold cross-validation). 

Algorithm 
Product  

performance 
Process  

performance 
Parameters Remark 

CBN 77.14% 78.3%   

Weka_Naive Bayes 73.65% 70.19% Default  

Weka_Bayes Net 71.38 68.32% Simple estimator BAN 

Weka_Bayes Net 73.71% 69.55% Simple estimator TAN 

 
Table 2. Sensitivity analysis summary. 

 
Process (%) Product (%) 

Low High Low High 

CBN 67.2 55.3 59.8 44.5 

High = 100% of User 3, Req 5, and P & C 4 30.4 74.5 44.6 53.78 

High = 100% of Req 5, P & C1, P & C2, P & C4, 
and Term 5 

38.2 64.8 44.1 56.9 

High = 100% of User 5, Req 2, Req 3, P &C 1,  
P & C2, P & C3, P & C4, P% C5, Term 5 

24.7 77.5 29.5 76.7 
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misspelled words. This would be a substantial undertaking unless pulled from some 
form of API, but could potentially reduce the number of nodes, and thus drastically 
reduce the amount of branching and storage space needed.  

The final and most significant projection for this project would be following further 
down the Bayesian Network to obtain predictions that exceed just the next word. This 
would likely require a bit more search time, but not much additional coding. This 
would likely be implemented with a limited-depth search for ordered values. Intui-
tively, the more words desired for prediction, the longer the search is going to take by a 
significant factor. 

As discussed previously, this project could lay the groundwork for future text-based 
data mining for prediction usage with large data sets. Internet searching needs not be a 
limiting factor for the implementation of CBN with text [4]. The CBN intention recog-
nition model could potentially be applied to many more concepts given the appropriate 
data are available. A similar network could be established using only key words that 
could then be used to hunt through websites, blogs, or scholarly articles to determine 
the intent of the entire article. This could create an automated and objective method for 
categorization. Such a method could potentially allow for users to input their interests 
to have a feed created that will direct them to, or include information they are interest-
ed in. Applications of this method could also allow bloggers to more easily connect with 
others of similar interests. 

Any implementation, such as that just mentioned, would likely need to implement 
selected key words so as to reduce the total number of nodes. This is due to the fact that 
this method would drastically reduce the need for word ordering and remove the mu-
tual exclusivity that is important controlling input size of the current model. 
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Appendix 
Note 1: Parsing Search Data 
 
import string 
#print “What file would you like to open?” #comment this and the next line back in 
filename = “97_03_10.log” #raw_input(“?”) 
 
f = open (filename, “r”) 
filelines = f.readlines () 
filedata = [len (filelines)] 
parsedoc = [] 
 
del f 
for line in filelines: 
parsedoc.append (line.strip ().split (“\t”) [1:]) 
 
#delfilelines 
 
for i in range (len (parsedoc) −1): #this is where the magic happens 
if (not parsedoc [i]): 
# print True 
continue 
 
if (len (parsedoc[i]) = = 1): 
parsedoc [i] = [] 
continue 
 
parsedoc [i] [1] = parsedoc [i][1].replace(“\n”, “”) 
 
if ((parsedoc [i][1]== “”) or (“www” in parsedoc [i] [1])): #remove empty entries 
parsedoc [i] = [] 
continue 
 
#nextline is to prevent j from reaching into the land of the lost 
for j in range (i + 1, i + (20 if (20 + I < len(parsedoc)) else (len (parsedoc) −i −1))): 
 
if (parsedoc [i] = = parsedoc [j]): 
parsedoc [j] = [] 
 
parsedoc = filter (None, parsedoc) 
 
#DOC SHOULD BE CLEAN. IF YOU WANT TO SPLIT it, do it now 
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wantedchars = string.ascii_letters + “.” + string.digits 
unwanted = string.printable 
 
for i in wantedchars: 
unwanted = unwanted.replace (i, “”) 
 
 
for i in range (len (parsedoc)): 
#   try: parsedoc [i] [1] 
#   except: continue 
for j in unwanted: 
parsedoc [i] [1] = parsedoc [i] [1]. replace (j, “”) 
while(“  “ in parsedoc [i] [1]): 
parsedoc [i] [1] = parsedoc [i] [1].replace (“  ”, “ ”) 
 
parsedoc [i] [1] = parsedoc [i] [1].strip () 
 
filedata.append (len (parsedoc)) 
 
print “Originally”, 
printfiledata [0], 
print “lines.” 
print “Currently”, 
printfiledata [1], 
print “lines.” 
 
for line in parsedoc: 
   print line [0] + “,”, 
for word in line[1].split (“ ”): 
      print word + “,”, 
print “” 
 
Note 2: Data Structure Creation 
 
import pickle as pl 
 
defcreaterelations (): 
ourfile = “megalog” 
 
   f = open (ourfile, “r”) 

filelines = f.readlines () 
parsedoc = [] 
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for line in filelines:  
parsedoc.append (line.strip ().split (“,”) [1:]) 
#      for i in range(len (parsedoc [-1])): 
#         parsedoc [−1] [i] = “_” + parsedoc [−1] [i] 
 
   “” 
   Example relations- 
   relations = {“tree”: {1: {“branch”: 20, “stump”: 11, “”:5}{2: ...}}} 
   “” 
 

relations = {}  
 
for line in parsedoc: 
for i in range (len (line)-1): 
word = line [i]  
nextword = “ ”.join (line [: i + 2]) 
 
if not relations.has_key (word): 
relations.update ({word: {}}) 
posdict = relations [word] 
         j = i + 1 
if not posdict.has_key (j): 
posdict.update ({j: {}}) 
wordpos = posdict [j] 
if not wordpos.has_key (nextword): 
wordpos.update ({nextword: 0}) 
wordpos.update ({nextword: wordpos [nextword] + 1}) 
 
return relations 
#this section formats relations into a list that can be used with 
#lisp code 
defformatlisp (relations): 
for key in relations.keys (): 
print “(setq”, key, “(”.strip (), 
 
posdict = relations [key] 
forpos in posdict.keys (): 
print “(”.strip (), 
wordpos = posdict [pos] 
for word in wordpos. keys (): 
if not word: 
print “(”.strip (), “nil”, str (wordpos [word]). strip (),“)”, 
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else: 
print “(”.strip (),word, str (wordpos [word]).strip (),“)”, 
print “)”, 
print “))” 
 
#formatlisp (createrelations ()) 
relations = createrelations () 
 
pl.dump (relations,open (“megafile.p”, “wb”)) 
 
Note 3: Interpreter 
 
#from megafile import relations 
#from createlist import relations 
import pickle 
fromdatetime import datetime 
 
startTime = datetime.now () 
relations = pickle.load(open(“megafile.p”, “rb”)) 
 
defgetnext (node, numberofnext): 
global relations 
inputlist = node. strip (). split (“ ”) #list of input words 
 
ifrelations.has_key (inputlist [−1]): 
currnode = relations [inputlist [−1]] [len (inputlist)] #dictionary from current list 
else: 
updaterelations (inputlist) 
return [node, 0] 
nodelist = [] 
fordictkey in currnode.keys (): 
ourkey = “ ”.join (dictkey.split (“ ”)[: len (inputlist)]) 
inputkey = “ ”.join (inputlist) 
if (ourkey = = inputkey): 
nodelist.append ([dictkey, currnode.get (dictkey)]) 
   #now we have [[woods, 1], [woods books.2]...] 
 
nodelist = sorted (nodelist, key = lambda keypair: keypair [1], reverse = True) 
 
ourrange = numberofnext if numberofnext <len (nodelist) else len (nodelist) 
 
updaterelations (inputlist) 
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returnnodelist [: ourrange] 
 
 
defprintnodes (nodes): 
pass 
 
defupdaterelations (inputlist): 
pass 
 
print "Time to load:" 
printdatetime.now ()-startTime 
 
while (1): 
node = raw_input (“>>”) 
if node = = "/exit": 
exit (0) 
nextnodes = getnext (str (node),5) #return a list 
for i in nextnodes: 
print I [0] 
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