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Abstract 
The quantum mechanical relationships between time-dependent oscillators, Hamilton- 
Jacobi theory and an invariant operator are clarified by making reference to a system 
with a generalized oscillator. We introduce a linear transformation in position and 
momentum, and show that the correspondence between classical and quantum 
transformations is exactly one-to-one. We found that classical canonical transforma-
tions are constructed from quantum unitary transformations as long as we are con-
cerned with linear transformations. We also show the relationship between the inva-
riant operator and a linear transformation. 
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1. Introduction 

Canonical transformations are a highlight in classical mechanics. They give not only 
solutions to classical mechanical systems, but also an insight into the quantization of 
them. However, the idea of canonical transformations has so far not been fully utilized 
in quantum systems. This issue was raised by Dirac [1] [2] [3] just after the birth of 
quantum mechanics. There, he only discussed the case of a time-independent canonical 
transformation. Recently, there has been renewed interest coming in this field in the 
context of Hamilton-Jacobi theory [4] [5] and action-angle variables [6]. While these 
articles were focused on time-independent transformations, time-dependent ones were 
also discussed [7]. Moreover, the introduction of an invariant operator to construct so-
lutions for time-dependent Hamiltonian systems has also been proposed [8] [9] [10]. 
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This invariant operator was constructed by means of a time-dependent quantum ca-
nonical transformation [11] [12].  

These various methods have been investigated for various purposes. However, there 
has been no unification of these various methods. The purpose of the present paper is 
to provide a unified description of these methods in terms of a linear transformation 
for position and momentum by referring to the system of a generalized oscillator. Since 
we are concerned with a linear canonical transformation, the classical and quantum 
correspondence is one-to-one. We also show that the invariant operator can be consi-
dered as part of a linear canonical transformation. 

The organization of the paper is as follows. In Section 2, we define a linear canonical 
transformation in position and momentum and apply this to a genelarized oscillator. 
Moreover, we show two special cases of linear canonical transformations. One is the 
transformation to a time-dependent oscillator, and the other is to construct a Hamilton- 
Jacobi theory. In Section 3, we introduce a unitary operator that generates a linear 
transformation in position and momentum in quantum mechanics. We apply this uni-
tary operator to a genelarized oscillator and obtain the same results as the classical cases 
mentioned in Section 2. In Section 4, we introduce an invariant operator. We show that 
this is also derived from a unitary operator that generates a linear transformation. We 
give two special cases for the coefficients of the linear transformation. The foregoing 
research is just one special case of a linear canonical transformation. Section 5 is de-
voted to a summary.  

2. Classical Linear Canonical Transformations 

A linear canonical transformation is defined by a transformation from old position and 
momentum variables ( ),q p  to new ones ( ),Q P  as  

( ) ( ) ( )Q t A t q B t p= + ,                       (1a) 

( ) ( ) ( )P t C t q D t p= + ,                      (1b) 

where A, B, C and D are real functions of time t. 1AD BC− =  is needed in order that 
( ),Q P  are canonical, that is, the Poisson bracket must satisfy  

{ }, 1Q P P QQ P
q p q p

∂ ∂ ∂ ∂
= − =
∂ ∂ ∂ ∂

. The condition 1AD BC− =  is kept throughout this pa-

per. This transformation is generated by the generating function  

( ) 2 2
2 , ,

2 2
qP C BW q P t q P
D D D

= − + ,                   (2) 

with  

2 2,
W Wp Q
q P

∂ ∂
= =

∂ ∂
,                         (3) 

which is known from classical mechanics[13].  
Now the Hamiltonian which we consider in this paper is  

( ) ( ) ( )2 2

2 2
X t Z t

H p Y t qp q= + + ,                   (4) 
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where ( )X t , ( )Y t  and ( )Z t  are real functions of time t. The equation of motion of 
this system is given by  

2 0BD
Xq q q
X

ω− + =


  ,                         (5) 

where  

2 2
BD

XY XYXZ Y
X

ω −
= − +

 

.                      (6) 

The dot above the variables denotes the time derivatives of the variables. For later 
use, we derive the equation of motion for p from the Hamiltonian (4),  

2 0AC
Zp p p
Z

ω− + =


  ,                         (7) 

where  

2 2
AC

YZ YZXZ Y
Z

ω −
= − +

 

.                      (8) 

We will see these equations in later sections.  
The transformed Hamiltonian K is derived from the classical mechanics [13]  

2WK H
t

∂
= +

∂
.                           (9) 

From the linear canonical transformation (1), we obtain  

{ }
( ){ }

{ }

2
2 2

2
2 2

2
2

2 ,
2

PH A X ABY B Z

QP ACX AD BC Y BDZ

Q C X CDY ZD

→ − +

+ − + + −

+ − +

               (10) 

and  

( )

( ) { }

2 2
2

2 2 2

2

2
2

.
2

W P BD B BD BDCD CD
t D D D

D B QQP CD CD CD CD
D D

 ∂ −
= − − + 

∂  
 

+ − + − − − 
 

  

 



  

           (11) 

Collecting these equations together, we obtain the transformed Hamiltonian K as 
follows  

( )

( )
( )

( ){ }

22
2 2

2

2
2 2

2
2

2 .
2

BD BD B CD CDPK A X ABY B Z
D

D B CD CD
QP ACX AD BC Y BDZ

D

Q C X CDY D Z CD CD

 + − − = − + + 
  
 − + − + − + + − + 
  

+ − + − −

  

 

 

      (12) 

Up till now, we have placed no constraint on the coefficients A, B, C and D, except 
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1AD BC− = . Here we see two cases which are of interest in both classical and quantum 
mechanics.  

2.1. Case 1: Time-Dependent Oscillator 

We assign the coefficients of (1) [7] [11] as 

1 0

1
2

XA B
C D XY X

XX

 
 

   =      −     



.                  (13) 

Substituting these coefficients and their time derivatives  
2

2

1 3
2 2 4
XY X XC Y

X X XX
 

= − + − + 
 

  

  ,                  (14) 

,
2

XD
X

=


                             (15) 

into (12), we obtain the transformed Hamiltonian  
2 2

2Ω ,
2 2

PK Q= +                           (16) 

where  
2

2 2
2

3Ω ,
2 4BD
X X
X X

ω= + −
 

                       (17) 

and BDω  is defined by (6). This is a time-dependent oscillator which has no cross term 
such as QP . This system is investigated in [7] [11]. As we have seen, this is a special 
case of a linear transformation (1) in position and momentum with the coefficients 
(13).  

2.2. Case 2: Hamilton-Jacobi Theory 

Next let us consider another constraint. We impose the additional condition on the 
coefficients.  

,
Y Z AA
X Y BB
−    

=    −   





                       (18a) 

.
Y Z CC
X Y DD
−    

=    −   





                      (18b) 

These constraints show that the coefficients are the solution to the equation of mo-
tion (5) and (7), that is,  

2 0,AC
ZA A A
Z

ω− + =


                         (19a) 

2 0,BD
XB B B
X

ω− + =


                         (19b) 
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where BDω  and ACω  are defined by (6) and (8). The same equations are also satisfied 
by C and D.  

We substitute (18) into the transformed Hamiltonian (12). For the time-derivative 
parts in (12), we obtain  

( )2
2 2

2 2 ,
BD BD B CD CD

A X ABY B Z
D

+ − −
= − + −

  

            (20) 

( )
( ) ,

D B CD CD
ACX AD BC Y BDZ

D

− + −
= − + +

 

            (21) 

2 22 ,CD CD C X CDY D Z− + = − + −                    (22) 

so that the transformed Hamiltonian becomes zero;  

0,K =                               (23) 

which means that the new variables ( ),Q P  are constant. This corresponds to the 
Hamilton-Jacobi theory for a generalized oscillator.  

3. Quantum Linear Canonical Transformations 

Since we are concerned with linear canonical transformations, the classical and quan-
tum correspondence is exactly one-to-one [14]. Let us consider the following unitary 
operator:  

( ) ( ) ( )
2 2ˆ ˆ ˆ ˆ ˆ ˆˆ exp ,

2 2 2
p qp pq qU i t t tα β γ

  +
= − + +  

   
            (24) 

where ∧  describes the q-number. q̂  and p̂  are quantum canonical variables which 
satisfy [ ]ˆ ˆ,q p i= . We set 1=  for simplicity. α , β  and γ  are all real functions of 
time t.  

Next we show a “normal-ordering” of the unitary operator (24). For this we intro-
duce the operators [15]  

2 2

0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,
2 2 4
q p qp pqL i L i L i+ −

+
= = =                   (25) 

which form the SU(1, 1) Lie algebra  

0 0
ˆ ˆ ˆ ˆ ˆ ˆ, , , 2 .L L L L L L± ± + −

   = ± = −                       (26) 

We rewrite the unitary operator (24) in the “normal-ordered” form as  

0

0

ˆ ˆ ˆ ˆexp 2

ˆ ˆ ˆexp exp 2 ln exp

U L L L

C BL L A L
A A

α β γ− +

+ −

 = − − − 
    = − −       

                     (27a) 

( )2 2ˆ ˆ ˆ ˆ ˆ ˆexp exp ln exp ,
2 2 2
i C i i Bq qp pq A p

A A
     = − + −          

          (27b) 

where  
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coshΔ sinhΔ sinhΔ
Δ Δ ,

sinhΔ coshΔ sinhΔ
Δ Δ

A B
C D

β α

γ β

 +  
=   
   − − 
 

            (28) 

and 2 2Δ β αγ= − . The details of the calculation are given in the Appendix.  
Corresponding to the classical linear transformation (1), the new quantum variables 

Q̂  and P̂  are generated by this unitary operator (27). By repeated usage of (A.17) 
and the formula [16],  

[ ] [ ]1e e , , , ,
2!

A AB B A B A A B−  = + + +                   (29) 

we obtain  

( ) ( ) ( )†ˆ ˆ ˆˆ ˆ ˆ ,Q t U qU A t q B t p= = +                    (30a) 

( ) ( ) ( )†ˆ ˆ ˆˆ ˆ ˆ ,P t U pU C t q D t p= = +                    (30b) 

where from (28), 2 2cosh sinh 1AD BC− = ∆ − ∆ =  is satisfied which implies that the 
new variables Q̂  and P̂  are canonical variables; ˆ ˆ,Q P i  =  . When we choose 
( ), ,α β γ  in order to satisfy (28), then we are able to replace all classical linear trans-
formations (1) with quantum ones (30).  

To recognize this statement, let us consider the generalized oscillator. The quantum 
counterpart of the Hamiltonian (4) is  

( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2

X t Y t Z t
H p qp pq q= + + + ,                (31) 

and the quantum counterpart of the transformed Hamiltonian K̂  is defined by  

† †
ˆˆ ˆ ˆ ˆ ˆ .UK i U UHU
t

∂
= +

∂
                        (32) 

Substituting (27b) and (31) into (32), we obtain  

( ) ( )

( )

2
†

22

2

ˆ ˆ ˆ ˆ ˆ ˆˆ
2 2

ˆ
,

2

A C AB ABU p qp pqi U AB AB
t A

AC AC C AB ABq
A

− −∂ +
= − +

∂
− − + −

+

 



  

           (33) 

and using (A.18),  

( )

( ){ }

( )

2
† 2 2

2
2 2

ˆˆ ˆ ˆ 2
2

ˆˆ ˆ ˆ
2

ˆ
2 .

2

pUHU A X ABY B Z

qp pq ACX AD BC Y BDZ

q C X CDY D Z

= − +

+
+ − + + −

+ − +

            (34) 

Collecting these equations together, we obtain the transformed Hamiltonian K̂  
which is given as  
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( ){ }

( )
( )

( )

2
2 2

22
2 2

2

ˆˆ 2
2

ˆˆ ˆ ˆ
2

ˆ
2 .

2

pK A X ABY B Z AB AB

A C AB ABqp pq ACX AD BC Y BDZ
A

AC AC C AB ABq C X CDY D Z
A

= − + + −

 − −+  + − + + − + 
  

 − − + − + − + + 
  



 

  

     (35) 

The time derivative of the condition 1AD BC− =  gives the following equations;  

( )2

2 ,
BD BD B CD CD

AB AB
D

+ − −
− =

  

                  (36) 

( )2

2 ,
AC AC C AB AB

CD CD
A

− − + −
− =

  

                 (37) 

( ) ( )
.

A C AB AB D B CD CD

A D

− − − + −
=

    

                (38) 

Then we recover the same form of the transformed Hamiltonian  

( )

( )
( )

( ){ }

22
2 2

2

2
2 2

ˆˆ 2
2

ˆˆ ˆ ˆ
2

ˆ
2 ,

2

BD BD B CD CDpK A X ABY B Z
D

D B CD CDqp pq ACX AD BC Y BDZ
D

q C X CDY D Z CD CD

 + − − = − + + 
  

 − + −+  + − + + − + 
  

+ − + − −

  

 

 

     (39) 

with (12) in the classical transformed Hamiltonian. It is realized that the linear trans-
formation in position and momentum gives the same transformed Hamiltonian (12) 
and (39). So, the same constraints (13) and (18) give the same results for the time- 
dependent oscillator and the Hamilton-Jacobi relations, as mentioned in section 2. As 
long as we are concerned with linear canonical transformations, the correspondence 
between the canonical transformation in classical mechanics and the unitary transfor-
mation in quantum mechanics is one-to-one. Referring to the generalized oscillator, the 
quantum unitary transformation is constructed in parallel with the classical canonical 
transformation.  

4. Invariant Operator 

An invariant operator Î  for a given Hamiltonian Ĥ  is a constant of motion that 
obeys the equation  

d 1ˆ ˆ ˆ 0, ˆ
d

H
t t i
I I I∂  = + = ∂

.                       (40) 

This was first investigated for the time-dependent harmonic oscillator [10]. For the 
generalized oscillator (31), we assume that the form of Î  is  
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( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ ˆ ,
2 2 2

ˆ x t y t z t
p qp pqI q= + + +                  (41) 

where x, y and z are real functions of time t. The time derivative of Î  is given by  

( ) ( )

( )

2

2

d 1ˆ ˆ ˆ ˆ
d

ˆ ˆ ˆ ˆ ˆ
2 2

2 2

.

,

ˆ
2 2

2

H
t t i

p qp pqx xY yX y xZ zX

q z yZ

I I I

zY

∂  = +  ∂
+

= − + + − +

+ − +

 



            (42) 

In order to satisfy (40), we demand for the coefficients x, y and z, that  
2 2 ,x xY yX= −                          (43a) 

,y xZ zX= −                           (43b) 

2 2 .z yZ zY= −                          (43c) 

On the other hand, the invariant operator Î  was derived from the time- indepen-
dent harmonic oscillator  

2 2

0
ˆ ˆˆ
2 2
p qH = + ,                          (44) 

whose eigenvalues and eigenfunctions are well known in elementary quantum mechan-
ics.  

We see that this unitary operator is also a linear canonical transformation [12]. Using 
(27b) and (44), we obtain from (A.18), 

 
2 2

† †
0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2
p qH U U UI U

 
= = + 

 
                    (45) 

( ) ( ) ( )
2 2

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ
 .

2 2 2
p qp pq qA B AC BD C D+

= + + − − + +           (46) 

To satisfy (41), we assign  

( ) 2 2 ,x t A B= +                          (47a) 

( ) ,y t AC BD= − −                         (47b) 

( ) 2 2 ,z t C D= +                          (47c) 

for x, y and z. In other words, the coefficients A, B, C and D in the unitary operator Û  
which gives rise to the linear transformation should satisfy (43) and (47). 

The Hamiltonian (44) can be written down in terms of annihilation and creation op-
erators ( ( )ˆ ˆ ˆ 2a q ip= +  and its Hermitian conjugate) as  

†
0

1ˆ ˆ ˆ
2

H a a= + ,                          (48) 

whose eigenvalues and eigenstates are given by [16] 

0
1ˆ ,
2

H n n n = + 
 

                        (49) 
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where n  is an eigenstate belonging to the eigenvalue 1
2

n + 
 

. 

This implies that we define the time-dependent operators by  

( ) ( ) ( ){ }† †ˆ ˆ 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ,
2 2

q ipa t UaU U U D iC q B iA p+
= = = − + − +         (50a) 

( ) ( ) ( ){ }† † † †ˆ ˆ 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ,
2 2

q ipa t Ua U U U D iC q B iA p−
= = = + + − −        (50b) 

and the invariant operator Î  is written in the form  

( ) ( )† †
0

1ˆ ˆ ˆ ˆˆ ˆ
2

UH U a tI a t= = + ,                     (51) 

and its eigenstates are  

1 ˆ, , , , .
2

ˆ n t n n n t U nI t = + = 
 

                  (52) 

These are the same eigenvalues as for the time-independent case 0Ĥ .  
When we choose the squeezing coefficients  

cosh cos sinh sin sinh
,

sin sinh cosh cos sinh
A B
C D

ξ θ ξ θ ξ
θ ξ ξ θ ξ
+   

=   −   
          (53) 

then we construct the same results as in [11] [17] [18]. 
The invariant operator is classified according to an auxiliary equation. We will see 

two cases below.  

4.1. Case 1 

There are some kinds of invariant function that are classified as auxiliary equations. 
One example is [7] 

0
,1Λ

XA B
C D X

X

σ

σ
σ

 
   =   −   

 

                    (54) 

where 

2Λ .
2

X Y
X XX

σ
σ

= − + −




                       (55) 

Equation (47a) means 
2 2 2x A B Xσ= + = , 

and from the derivative of 2x Xσ=  with respect to t and (43a), we obtain  

2 2
2

2 Λ
2 2

xY x X Yy X X AC
X X XX

σσ σ
σ

 −
= = − + − = = − 

 



 

, 

which fulfills the condition (47b). Equation (43b) gives  

( )2 2 2Ω Λ  xZ yz X
X X

σ σ σ σ−
= = + +



                   (56) 
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2 ,M C
X
σ

= +                             (57) 

where  
2M σ σ= + Ω , 

and Ω  is defined by (17). From (43c), this M satisfies the differential equation  
d d3 .
d d
M M
t t

σσ = −
 

With the initial condition ( 1M =  at 1σ = ), we obtain  

2
3

1 .M σ σ
σ

= + Ω =                         (58) 

This is the auxiliary equation [11] [12]. From (57) and (58), z becomes  

2 2 2
2

1z C C D
Xσ

= + = + , 

which is identical with (47c).  

4.2. Case 2 

Another kind of invariant function [19] is  
0
1

A B
YC D
X X

ξ

ξξ
ξ

 
   =   − +   

 

 .                    (59) 

From (43a) and (47a), we obtain  
22 2 2 2x AA Y yXξξ ξ= = = − 

 , 

then,  

2Yy AC
X X

ξξ ξ= − = −


, 

which fulfills the condition (47b). Eq.(43b) gives  
2

2
2 BD

xZ y X Yz
X X X XX

ξ ξξ ξ ω ξ ξ
  −

= = − + + −  
   





              (60) 

2 ,N Cξ= +                                           (61) 

where  

2
2

1
BD

XN
XX

ξ ξ ω ξ
 

= − + 
 



  , 

and BDω  is defined by (6). From (43c), this N satisfies the differential equation  

d d3 .
d d
N N
t t

ξξ = −  

With the initial condition ( 1N =  at 1ξ = ), we obtain  

2
2 3

1 1 .BD
XN
XX

ξ ξ ω ξ
ξ

 
= − + = 

 



                     (62) 
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This is the auxiliary equation [19] [20]  
2

2
3 .BD

X X
X

ξ ξ ω ξ
ξ

− + =


                         (63) 

This is an inhomogeneous differential equation of (5). From (61) and (62), z becomes  

2 2 2
2

1z C C D
ξ

= + = + , 

which is identical with (47c).  

5. Summary 

We investigated a linear transformation in position and momentum by referring to a 
generalized oscillator. We found that the correspondence between the classical canoni-
cal transformation and the quantum unitary transformation is one-to-one, that is, as 
long as we are concerned with linear transformations, all classical transformations can 
be constructed as quantum ones. As examples of this, the transformation to a time- 
dependent oscillator and the construction of Hamilton-Jacobi theory are derived both 
for the classical and quantum cases. The notion of linear transformations is also appli-
cable to the invariant operator. On choosing the coefficients for the linear transforma-
tion, we were able to repeat the results obtained in previous work.  
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Appendix 

In this Appendix, we derive the “normal-ordering” of (27a). To accomplish this pro-
gram, we apply the idea of Truax [21] straightforwardly. We define a operator  

( ) ( )0
ˆ ˆ ˆ ˆexp 2U L L Lλ λ α β γ− +

 = − − −  , ( ) ˆˆ 0 1U = ,           (A.1) 

where λ  is a real parameter and 1̂  is the identity operator. We can choose a second 
representation  

( ) ( ) ( ) ( )0 0
ˆ ˆ ˆexp expˆ expp L p L pV Lλ λ λ λ+ + − −

     =       ,         (A.2) 

subject to the constraint ( )ˆ ˆ0 1V = , that is, ( )0 0jp = , ,0,j = + − . ( )jp λ ’s are to be 
determined by ( ) ( )ˆ ˆU Vλ λ= . Differentiating both sides, we obtain  

( ) ( )
0 0 0 0

0 0

0 0

ˆ ˆˆ ˆ ˆ ˆ
00

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆe e e e e

ˆ

,

e
ˆe e e

p L p Lp L p L p L p L

p Lp L p L

L L L U L L L

p L p L

p

V

L

α β γ α β γ

+ + − − + + − −

+ + − −

− + − +

+

− −

+

− − − = − − −

′ ′= +

′+

     (A.3) 

where primes indicate differentiation with respect to λ . Multiplying from the right by  

( ) 0 0ˆˆ ˆ1 eˆ e e ,p Lp L p LV λ − − + +−− −− =                     (A.4) 

we obtain  

0 0 0 0

ˆ ˆ
0 0

ˆ
0

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ2 e e
ˆe e e e .

p L p L

p L p Lp L p L

L L L p L p L

p L

α β γ + + + +

+ + + +

−
− + +

− −
−

+

−

′ ′− − − = +

′+
           (A.5) 

From the theorem (29) and the commutation relations (26), we obtain  

( )
( )

0 0

0

0 0 0

2
0

ˆ ˆ ˆ ˆ ˆ2 e 2 e

ˆe .

p p

p

L L L p L p p p L

p p p p p L

α β γ − −
− + − − +

−
+ ++ +

−

−

′ ′ ′− − − = + −

′ ′ ′+ − +
          (A.6) 

We identify the coefficients of the respective basis elements of the Lie algebra and 
obtain a system of coupled nonlinear equations [15],  

0e ,pp α−
−′ = −                          (A.7a) 

0
0 2 e 2 ,pp p p β−

−
+′ ′− = −                      (A.7b) 

0
0

2e ,pp p p p p γ+ −
−

+ +′ ′ ′− + = −                    (A.7c) 

with initial conditions ( )0 0, ,0,jp j= = + − . Substituting (A.7a) into (A.7b), we obtain 

0 2 2p pα β+′ + = − .                        (A.8) 

Together, Equations ((A.7a), (A.7c), and (A.8)) imply  
22 ,p p pβ α γ++ +′ + + = −                       (A.9) 

a Riccati equation for ( )p λ+ . Substituting ( )p u uα+ ′= , ( )0 0u′ = , we transform 
(A.9) into the second order, ordinary differential equation,  

2 0,u u uβ αγ′′ ′+ + =                        (A.10) 

with constant coefficients. Subject to the initial conditions, this equation has the solution  
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( ) 0e cosh sinh ,u u λβ βλ λ λ−  = ∆ + ∆ 
∆ 

                (A.11) 

where 0u  is a constant of integration and 2 2β αγ∆ = − . Therefore, we get for 
( )p λ+  the expression  

( ) sinh

cosh sinh
p γ λλ

βλ λ
+

∆
= −

∆ ∆ + ∆
∆

.                 (A.12) 

Substituting (A.12) into (A.8) for 0p′  and integrating, we obtain the following ex-
pression:  

( )0 2 ln cosh sinhp βλ λ λ = − ∆ + ∆ ∆ 
.                (A.13) 

We can integrate the differential Equation (A.7a) to get the following  

( ) sinh

cosh sinh
p α λλ

βλ λ
−

∆
= −

∆ ∆ + ∆
∆

.                 (A.14) 

To obtain the final result, choose 1λ =  and we obtain  

0

0

ˆ ˆ ˆ ˆexp 2

ˆ ˆ ˆexp exp 2 ln exp ,

U L L L

C BL L A L
A A

α β γ− +

+ −

 = − − − 
    = − −       

             (A.15) 

where A, B, C and D are defined by (28). This is the desired expression for the “normal 
ordering” of the unitary operator. We decompose this unitary operator in three parts 
and assign  

2
1

ˆ ˆexp ,
2
i CU q

A
 =   

                      (A.16a) 

( )2
ˆ ˆ ˆ ˆ ˆexp ln ,

2
iU qp pq A = − +  

                  (A.16b) 

2
3

ˆ ˆexp .
2
i BU p

A
 = −  

                     (A.16c) 

The following equations  

† † †
1 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,BU qU q U qU Aq U qU q p
A

= = = +             (A.17a) 

† † †
1 1 2 2 3 3

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,CU pU p q U pU p U pU p
A A

= + = =            (A.17b) 

and  

† † †
1 1 2 2 3 3

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,BU qU q U qU q U qU q p
A A

= = = −            (A.18a) 

† † †
1 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,CU pU p q U pU Ap U pU p
A

= − = =            (A.18b) 

are helpful. 
 


	Classical and Quantum Behavior of Generalized Oscillators in Terms of Linear Canonical Transformations
	Abstract
	Keywords
	1. Introduction
	2. Classical Linear Canonical Transformations
	2.1. Case 1: Time-Dependent Oscillator
	2.2. Case 2: Hamilton-Jacobi Theory

	3. Quantum Linear Canonical Transformations
	4. Invariant Operator
	4.1. Case 1
	4.2. Case 2

	5. Summary
	References
	Appendix

