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Abstract 
Applications of a constitutive framework providing compound complexity analysis 
and indexing of coarse-grained self-similar time series representing behavioural data 
are presented. A notion of behavioural entropy and hysteresis is introduced as two 
different forms of compound measures. These measures provide clinically applicable 
complexity analysis of behavioural patterns yielding scalar characterisation of time- 
varying behaviours registered over an extended period of time. The behavioural data 
are obtained using body attached sensors providing non-invasive readings of heart 
rate, skin blood perfusion, blood oxygenation, skin temperature, movement and 
steps frequency. The results using compound measures of behavioural patterns of 
fifteen healthy individuals are presented. The application of the compound measures 
is shown to correlate with complexity analysis. The correlation is demonstrated using 
two healthy subjects compared against a control group. This indicates a possibility to 
use these measures in place of fractional dimensions to provide a finer characterisa-
tion of behavioural patterns observed using sensory data acquired over a long period 
of time. 
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1. Introduction 

Behaviours encompass both normal and pathological patterns characterised by short- 
time instances of transitional clinical presentations. Such types of transitions are usually 
accompanied by self-similar behavioural patterns re-organisation. Underlying com-
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plexity of observable data can be registered using external sensors attached to, say, an 
arm or torso with a posteriori computer assisted indexing. 

For the sake of terminological simplicity and the purpose of this paper we use the 
term “behavioural” in a very broad sense. We use this term to encapsulate both physio-
logical and behavioural variables. An example of physiological variable is, e.g., heart 
rate. An example of behavioural variable is, e.g., steps frequency. In other words, we 
view behavioural variables as pronunciations. Also, we consider the term variable to be 
interchangeable with the term measurable observable [1]. We assume that variables 
considered are independent of order at which they are consecutively sensed during a 
short time span on order of seconds. 

Complexity analysis of behavioural patterns allows for indexing of behavioural states. 
It may be a way of reducing complex data to a vector characterising both a given dis-
order, and/or a patient suffering from this disorder. This approach is neither available 
in clinical settings nor, to the best of our knowledge, in research in the area of mental 
disorders except for partial approaches in the field of psychotherapy [2]. 

If a time series possesses a self-similar structure the non-integer Hausdorff-Besico- 
vitch dimension can be assigned to it [3] [4] [5]. This dimension is an indicator of 
complexity. It is often computed using the Hurst exponent. The loss of self-similarity in 
some of the measurable variables or a change of the non-integer Hausdorff-Besicovitch 
dimension of these variables, might be an essential part of a definition of behaviours, 
including altered behaviours. 

We use the term surrogate data to denote variables that can be recorded in a non- 
invasive way using suitable external wearable sensors. The adjective surrogate is used to 
indicate that we are not dealing with EEG based scans but with macroscopic coarse- 
grained smoother data collected using skin attached sensors1. 

We collect simultaneously the following surrogate data time series: heart rate, blood 
oxygenation, skin blood perfusion, skin temperature, movement and step frequency. 

The aim of the presented communication is to introduce a constitutive notion of be-
havioural entropy and behavioural hysteresis and their application to compounded in-
dexing of fractional behavioural patterns. The approximate self-similarity of human 
behavioural data is verified by the presented variational principle providing a robust 
mechanism to establish approximate self-similarity of finite noisy patterns. 

The presented method and its applications can be implemented in clinical environ-
ments. Ultimately, health practitioners may be able to use this approach to gauge beha-
vioural states using just a small number of significant numerical indices, each referring 
to one set of sensory surrogate data. 

Thermodynamic temperature may serve as an example to illustrate our approach. 
Temperature is a scalar measure of kinetic energy of micro-scale fluctuations that have 

 

 

1The adjective surrogate is also used to refer to synthetics data in fractal dynamical systems literature. We de-
cided to use this term as is often used in the non-smooth optimisation where it refers to solving a smoother 
problem having the same extrema instead. We see the analogy in that we deal with smoother macroscopic 
data provided by behavioural pronunciations as opposed to microscopic EEG-like data. 



P. Kloucek et al. 
 

2214 

to be observed over a period of time. The analogy is that we are proposing a characteri-
sation of surrogate data fluctuations over longer periods of time followed up by a sub-
sequent complexity analysis yielding algebraic characterisations of a chosen behavioural 
variable. 

Fractional-like data and their analysis has been used in a variety of fields since its in-
troduction by B. Mandelbrot including applications in medicine, bioinformatics with 
its recent implementations in clinical controlled environments. There is a vast amount 
of literature related to fractional dimensionality and complexity of natural structures. 

Fundamentals of description and analysis of bounded topological objects with com-
plex boundaries or time series having non-integer dimensionality including general ap-
pications in medicine can be learned about in, e.g., [4] [6] [7] [8] [9]. The most of clin-
ically applications of complexity indexing pertain to Heart Rate Variability based on the 
EEG scans, c.f., [10] [11] [12] [13] [14]. A more complex overview of the bioinformatics 
and biomedical fields can be found in books such as [8] [15] [16] [17]. Certain aspects 
of a fractional analysis of time series are patented [18]. There is only a limited literature 
on other behavioural variables we use, e.g., perfusion, skin temperature and poster and 
gaits, some of them using wavelets analysis [19] [20] [21]. 

The notion of entropy has been used in physics, materials science as well as biology 
and bioinformatics [22] [23] [24] [25]. We introduce an alternative notion and defini-
tion of this important quantity. Our approach is similar in its core to the approach re-
ported in [26] and [27]. 

We note that the presented concept of constitutive behavioural indexing stems and 
follows upon concepts of geometrically nonlinear materials science that is based on 
phase transitions, notion of criticality and evidence of multiple equilibrium atomic 
structures. For this reason we include references to some basic introductory text as well 
as more recent publications such as [28] [29] [30] [31]. 

2. Structure of the Communication 

The presented communication introduces signed behavioural entropy and behavioural 
hysteresis based on the behavioural data segmentation and its subsequent complexity 
analysis using the Hurst exponent. The notion of behavioural entropy and hysteresis 
are, to the best of our knowledge, novel. In addition we present fractional analyses of 
compounded surrogate sensory data that are important for multi-dimensional indica-
tors applicable to diagnoses of altered states. The reported self-similarities of body at-
tached sensory behavioural data is also novel to the best of our knowledge. We note 
that just a single behavioural index is insufficient when constitutive diagnoses of altered 
states are needed for clinical practices. 

We present an example of indexing of two healthy subjects from the point of view of 
the entropy and hysteresis indices out of fifteen healthy subjects representing a sample 
of about twenty six days of data collection. 

In addition we present a variational principle2 to evaluate an approximate self-simil- 

 

 

2Section 8 can be initially skipped. 
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arity based on noisy finite data that we use prior to posterior estimates of the Hurst ex-
ponent using allometric power law, maximum likelihood fractional Brownian process 
parameters, and the distributional measure based on the introduced variational prin-
ciple. 

We describe the sensory surrogate data in Section 3. The constitutive measures in 
terms of behavioural entropy and hysteresis are introduced in Section 4. We present a 
sample of constitutive indexing of the two healthy subjects out of fifteen subjects in 
Section 5. The self-similarity verification procedure and the subsequent computations 
of the Hurst exponent are presented at Section 8. 

3. Macroscopic Behavioural Data 

We implement four hierarchically structured layers of sensing technologies. These lay-
ers encompass 1) micro-electronics-based wearable sensors, 2) communication with a 
data collection device, 3) mathematics-based data processing, 4) a projection of com-
plexity indexing onto multidimensional Euclidian product spaces. 

The first two layers refer to a wearable attach-and-forget Vital Signs Monitor (VSM) 
capable of motion-tolerant monitoring of human vital signs without interfering with 
the person’s activities. The third and the forth layers deal with the detection of self-  
similarity of surrogate measurables that can be uniquely characterized by their scaling 
properties. VSM provides measurements of heart rate (HR), blood oxygenation (SpO2), 
skin blood perfusion, skin temperature, movement indicator and steps frequency [32]. 
Monitoring results in the time series. VSM performs quasi-continuous measurements 
and sends data every thirty seconds to a smartphone via Bluetooth communication 
while attached on an upper arm. 

Multi-wavelength monitoring in combination with short source-detector distance 
through an optical sensor allows for more stable heart-rate detection. Combination of 
optical and acceleration signals using signal processing algorithms provides separation 
of arterial pulsation signal from motion artefacts. More information about the sensor 
design can be found in [33]. 

The approach is illustrated using the combination of step frequency and heart rate in 
two healthy subjects as an example in place of all available combinations. 

3.1. Sensory Variables 
3.1.1. Heart Rate 
Heart rate is estimated by means of a motion-compensating algorithm from pulse-in- 
duced variations of optical reflection from skin under the VSM. Intensity of light dif-
fusely reflected from the skin changes with blood flow and volume during the cardiac 
cycle. VSM is measuring heart rate by following these variations and by compensating 
for effects of motion. 

3.1.2. Skin Blood Perfusion 
Skin perfusion allows oxygen delivery to the skin and thermoregulation of the body in 
order to facilitate heat dissipation the amount of blood in the skin can be increased to 
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more than 5% of the total blood volume. Besides internal or environmental tempera-
ture, changes in perfusion can be triggered by a blood pressure, blood oxygenation, 
heart rate, posture, physical activity, external pressure, metabolic status, or psychologi-
cal stress to name a few [32]. 

3.1.3. Blood Oxygenation 
The device is using reflected red and infrared light supported by motion-compensating 
algorithms to estimate the ratio of haemoglobin molecules in arterial blood. The blood 
oxygenation as measured by SpO2 is expected to be above 95% for healthy subject. 

Blood oxygenation significantly contributes to both the acute control of local blood 
flow and its long-term control. The frequency of the acute time scale of the blood flow, 
and, consequently, of the blood oxygenation, ranges from seconds in the blood flow in-
crease mode to minutes in the decrease mode, [34]. The long-term control is on order 
of hours. The presence of two different time scales, the acute and the long-term, is a 
possible signature of self-similar scalability. 

3.1.4. Skin Temperature 
Skin temperature is lower than measurements taken at body cavities. It’s peak values lag 
behind by about three hours compared to the mouth or cavity based peak readings, [20]. 
Since skin temperature is taken at the surface that forms an interface between environ-
ment and body it is an acceptable measure of heat transfer. Skin temperature is meas-
ured by VSM on the surface in proximity of the optical sensor. 

3.1.5. Movement and Steps Frequency 
Movement indicator is a parameter characterising instantaneous activity of a human 
subject. The measurements are performed with 3-axis VSM accelerometer. The indica-
tor is given by an energy of variations of low-passed filtered differentials of accelero-
meter measurements. Steps frequency is inversely proportional to speed of motion. The 
movement indicator and the steps frequency are uncorrelated and represent different 
parameters. 

4. Compound Measures 

It is quite common to find biological structures and patterns such as sub-cellular mem-
branes for which the measurements of the length of their boundaries increase with ob-
servational resolution. Mathematically, it is possible to construct curves such that any 
two points will be infinitely distant using standard definition of length [15]. Commonly, 
such structures are referred to as fractals. 

The behavioural indices are given by the Hurst exponents corresponding to some 
approximately self-similar and normally distributed surrogate data given by discrete 
time series with fractional-like structures. 

The notion of the behavioural state implicitly requires invariance in the sense of sta-
tistically reproducible behavioural indices arising from repeated distinct realisations of 
data acquisitions under similar conditions. 
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The introduction of the Behavioural Entropy and Hysteresis addresses the need to 
obtain a clinically applicable a single number characterisation of the structural, beha-
vioural, complexity of time segmented surrogate data as the structural complexity 
changes with time. In particular, the entropy is designed to characterise a pathway to a 
behavioural equilibrium that is reflected by its sign. 

Both the entropy and hysteresis combine information that include complexity indic-
es, frequencies, projection of time varying complexity measures as well as variances of 
surrogate data, etc., we decide to call them collectively compound measures of beha-
vioural states. 

4.1. Behavioural Entropy 

Entropy in classical thermodynamics as well as in its Boltzman’s statistical version is a 
measure of the number of possible configurations. Another interpretation of entropy is 
given by Shannon’s version of the classical Gibbs definition [29] to measure the aver-
aged number of bits needed specify an arbitrary word of certain length [35]. An appli-
cation of the entropy in psychiatric setting is reported in [25]. 

We define the behavioural entropy by 

 
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has a finite jump. The behavioural entropy reflects the sign and the magnitude of the 
discontinuities of time evolution of the Hurst exponent. 

Behavioural entropy, S, is constructed to measure of the ability of a given living or-
ganism to react to internal and/or external constraints. 

The above definition of entropy implies that entropy is negative if more changes are 
in the direction of lesser complexity of behavioural surrogates and positive otherwise. 
In other words, the positivity of the entropy indicates a tendency to achieve high reac-
tivity, and its negativity relates to a tendency to achieve a low reactivity. 

The higher complexity corresponds to the Hurst exponent closer to zero, and the 
lower complexity corresponds to the Hurst exponent smaller than one but close to it. If 
the behavioural entropy is zero at some time span then the complexity of the segmented 
surrogates is, at least locally, constant. Thus a living organism ceases to function if its 
entropy, computed with some 1m , is zero and the Hurst exponent is equal to one 
for an arbitrarily small period of time. Constant entropy and the Hurst exponent 
smaller than one for an arbiltrarilly small time span implies significant lack of respon-
siveness. Non-zero values, both negative and positive, are measures of responsiveness. 

Classical statement of the Second Law of Thermodynamics for isolated systems states 
that the time variation of thermodynamic entropy must increase yielding thus in-
creased levels of disorder or, more closer to our interpretation, increased level of in-
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formational complexity. 
The behavioural entropy increases and it is positive if some behavioural surrogates 

temporarily lower their Hurst exponents yielding thus higher complexity, i.e., higher 
behavioural disorder. The behavioural entropy as well as the classical entropy can attain 
negative values [36] [37] [38]. 

4.2. Behavioural Hysteresis 

It is argued that “one observes scale invariance near a critical point” [39]. Critical 
points can be viewed as states where the behavioural complexity indices abruptly 
change. Criticality is closely related to phase transitions [28] [31] [40]. 

Phase transitions are intimitaly connected with hysteresis [29]. We find that a typical 
example of a behavioural hysteresis pertaining to healthy subjects in Heart Rate Com-
plexity × Heart Rate Variance product space as time progresses from low activity to 
high activity and to low activity in the end of fifteen hours of sensing. 

Hysteresis is thus a pathway connecting different complexity indices in certain multi- 
dimensional Euclidian spaces during cycling of high-to-low activities as time progresses. 
In general, this should be nearly a closed curve with, consequently, well defined area. 

If it were possible to obtain identical time-reversed trajectories in this space the area 
enclosing the beging and the end of the cycled activities the hysteresis area would be 
zero. This is impossible though due to biological processes. Hence the area enclosed by 
the hysteresis loop should be always positive. 

Hypothetically, the behavioural hysteresis can be attributed to diminishing availabil-
ity of resources or to some bio-thermodynamical processes controlling energy distribu-
tion. We can consider as a possible example the amount of residual milk acid in mus-
cles during a high activity. Collectively, these processes yield long-range surrogate data 
dependence that is pronounced in lower complexity indices as long as the surrogate 
data can/could be considered self-similar and normally distributed. Hence, we can hy-
pothesise that during consequent time cycling among high and low behavioural states 
the complexity of self-similar surrogates data cannot increase. 

We observe a hysteresis given by some computed complexity indices versus the va-
riance of the surrogates over a suitable time span. This implies that the considered in-
dices must be generated by non-linear processes for otherwise they could not exhibit 
hysteresis. Since we observe the behavioural hysteresis in certain surrogate data it seems 
plausible to hypothesise that physiological networks operate in such a way that they can 
perform sudden change of functionality patters. 

5. Indexing of Healthy Subjects 
5.1. Surrogate Data Segmentation 

The complexity scaling properties of the surrogate data are changing in time. Self-si- 
milarity can be lost or its scaling properties can change. These discontinuities may in-
dicate changes in behavioural patterns pertaining to changes of feedback control of the 
central nervous system and its convergence in response to internal and/or to external 



P. Kloucek et al. 
 

2219 

stimuli. We use a clustering approach based on the discontinuities of the Hurst expo-
nent applying uniform, and finest possible, data segmentation to address the observa-
tion that the scaling properties can change during long-time data acquisition time 
spans. An example is given by Figure 1. 

5.2. Segmented Behavioural Patterns Complexities 

Table 1 and Table 2 display surrogate data complexity indexing of a highly trained 
subject and a healthy individual, respectively. The former subject is also younger. The 
baseline Hurst exponents are based on the mean of behavioural indexing of fifteen sub-
jects yielding twenty one data sets3. The behavioural complexity baselines are 0.78, 0.52, 
0.57, 0.48 (low pass filtered), 0.73 and 0.33 for heart rate, blood oxygenation, skin blood 
perfusion, skin temperature, relative movement and steps frequency, respectively, at 
high activity period of four hours at thirty seconds stroboscopic time resolution4. The 
repeated data acquisition exhibited a reasonable level of consistency with small stan-
dard deviation and the data spread of about 0.15 allowing to determine the Hurst ex-
ponent based on nineteen surrogate data sets5. The spread is computed as the difference 
between the clusters of maximum and minimum values of the control group. 

The first observation is that the surrogate data reported do exhibit self-similar struc-
tures most of the time. Exceptions are, e.g., the steps frequency during sleep or perfu-
sion during low activity periods. 

The second observation made is that a highly trained subject (Table 1) outperforms 
 

 
Figure 1. Heart rate data segmentation. The step function (blue piece-wise constant function) 
correlates only with the time axis. It represents values of the Hurst exponents computed from 
data points corresponding to about fifteen hours segmented to two hours time intervals. 

 

 

3Some of the subjects were indexed repeatedly. 
4The single number is obtained as the average of the clustered surrogates to eliminate outliers. 
5We exclude the data sets shown at Table 1 and Table 2. 
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Table 1. The table summarises about fifteen hours of surrogate data segmented and indexed in two hours time intervals. The presented 
indices correspond to a highly trained subject. The Hurst exponents are estimated using allometric power law, maximum likelihood and a 
distributional distance. Each method yields different estimates. This is the reason we report a range rather than single value of the Hurst 
exponent. All the reported values are on or below 0.1 using a distributional distance. N/A is reported if the distributional error estimate of 
the self-similarity exceeds 0.1. LPF stands for Low Pass Filter applied when the original data do not provide consistency with respect to 
self-similarity. The last column of this table indicates individual subjective evaluations of activities. 

Indices/Time Heart Rate Blood Oxy Perfusion Skin Temp Movement Steps Freq Physical  
Activity 

10:00 - 12:00 0.54 - 0.56 0.64 - 0.66 0.82 LPF 0.96 - 0.98 0.82 - 0.92 0.13 - 0.41 Low 

12:00 - 14:00 0.84 - 0.86 0.82 - 0.92 N/A 0.95 - 0.96 0.48 - 0.68 0.82 - 0.92 Low 

14:00 - 16:00 0.76 - 0.98 0.74 - 0.98 0.72 0.69 - 0.7 0.67 - 0.76 0.54 - 0.62 Low 

16:00 - 18:00 0.57 - 0.60 0.82 - 0.96 0.38 - 0.6 LPF N/A 0.17 - 0.32 0.36 - 0.41 High 

18:00 - 20:00 0.32 - 0.47 0.59 - 0.62 0.78 - 0.86 0.61 - 0.72 0.54 - 0.72 0.22 - 0.58 High 

20:00 - 22:00 0.64 - 0.82 0.36 - 0.48 0.92 LPF 0.58 - 0.78 0.56 - 0.59 0.54 - 0.70 Low 

22:00 - 24:00 0.66 - 0.70 0.54 - 0.56 0.96 LPF 0.96 - 0.98 N/A 0.17 - 0.40 Sleep 

00:00 - 03:00 0.86 - 0.92 0.78 - 0.80 0.86 LPF N/A N/A N/A Sleep 

 
Table 2. The table provides indexing of a healthy subject obtained using fifteen hours of data acquisition. Some surrogate data seems to be 
quite different from individual subjective evaluation. 

Indices/Time Heart Rate Blood Oxy Perfusion Skin Temp Movement Steps Freq Physical  
Activity 

9:00 - 11:00 0.46 - 0.65 0.51 - 0.73 0.29 - 0.57 LPF 0.63 - 0.76 0.30 - 0.34 0.36 - 0.68 Low 

11:00 - 13:00 0.33 - 0.66 0.50 - 0.78 N/A 0.62 - 0.84 0.64 - 0.84 0.38 - 0.74 Low 

13:00 - 15:00 0.27 - 0.39 0.48 - 0.53 0.68 - 0.92 LPF 0.30 - 0.54 0.20 - 0.36 0.76 - 0.80 Low 

15:00 - 17:00 0.35 - 0.39 0.49 - 0.52 0.74 - 0.94 LPF 0.34 - 0.61 0.25 - 0.46 0.39 - 0.56 High 

17:00 - 19:00 0.34 - 0.78 0.44 - 0.47 N/A 0.46 - 0.61 0.11 - 0.30 0.55 - 0.66 High 

19:00 - 21:00 0.78 - 0.91 0.66 - 0.70 N/A 0.59 - 0.90 0.52 - 0.77 0.10 - 0.35 Low 

21:00 - 23:00 0.66 - 0.74 0.54 - 0.70 N/A 0.31 - 0.66 0.94 - 0.98 0.54 - 0.90 Sleep 

23:00 - 24:00 0.64 - 0.68 0.44 - 0.49 N/A N/A N/A 0.54 - 65 Sleep 

 
the control group at perceived high activity periods considering the upper bounds of 
the heart rate. Running indices exhibits negative to neutral correlation and, conse-
quently, a short range dependence of heart rate and steps frequency. The skin blood 
oxygenation and movement behavioural indices shown are within the spread of the 
control group but with higher regularity of surrogate data. Perfusion and skin temper-
ature exhibit lower complexity, i.e., longer range correlation compared to the control 
group. 
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These analyses suggest that during high physical activity periods a well trained sub-
ject exhibits a complex heart rate index. The rest of the surrogate data are positively 
correlated with smaller complexity of the surrogates compared to the control group. 

The second healthy subject exhibits lower complexity with respect to the control 
group except for steps frequency (Table 2). This could indicate that this subject’s reac-
tion to change of either external or internal demands falls short in terms of adequate 
responsivenesses. 

5.3. Behavioural Entropy Based Results 

Comparing the two data sets presented by Table 1 and Table 2, c.f., Figure 2, we ob-
tain heart rate entropy of −0.34 for the first subject, and −0.10 for the second subject, 
respectively. Following the definition and the underlying interpretation of entropy we 
observe that both subjects overall move to a lower complexity state that is expressed by 
the negative signs during the consecutive fifteen hours of data acquisition. 

Moreover, the first subject, a highly trained individual, has three times the heart rate 
entropy compared to the second healthy subject considering absolute values. Higher 
positive behavioural entropy is likely to indicate higher capability to deal with stimuli 
and to reach a lower complexity of a behavioural equilibrium. 

5.4. Hysteresis Based Results 

The cycling between high-low activity periods may represent a recuperation process, 
e.g., from “fatigue”, when the loop evolves towards the starting point. We compute the 
recuperation from fatigue as the area enclosed by the hysteresis loop in the complexity- 
variance Euclidian space projection of surrogate data. 

Figure 3 visualizes the behavioural hystereses of the two subjects discussed in Section 
5.2. 
 

 
Figure 2. The plot represents complexity indexing of about fifteen hours of surrogate data for 
heart rate of a healthy subject summarised by Table 2. The green line indicates the overall index, 
the orange line depicts the difference between date and night complexity, while the blue line pro-
vides indexing in two hours intervals. Both night/day and the fine-grained complexity analysis 
shows that heart rate complexity decreases during low activity periods. The low activity time span 
is defined as six pm to midnight. 
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Figure 3. Behavioural hysteresis loops comparing highly trained and a healthy subjects. The areas 
enclosed by the loops are interpreted as behavioural fatigue. The red loop corresponds to a highly 
trained individual, the blue loop corresponds to a healthy individual. The complexity-variance 
Euclidian representation shows clear distinction between the two individuals. 
 

The hysteresis dimensionless area of the former is 668.36 while that of the other 
healthy individual is 1011.44. This might indicate that highly trained individuals have 
significantly quicker recuperation times during a typical day rutines than less trained 
individuals. 

Behavioural complexity indexing of the two healthy subjects shows an association 
between behavioural entropy and hysteresis. There are more upward changes of the 
behavioural entropy in both cases suggesting that both subjects tend to reach an overall 
equilibrium state corresponding to a lower complexity state. A smaller hysteresis area 
as observed in the more trained individual indicates a higher efficiency to reach a low 
complexity state. 

6. Clinically Relevant Summaries 
6.1. Surrogate Data Projections 

We represent surrogate data by constructing maps from the space of behaviours to the 
space of complexity indices. This representation allows to track time evolution of beha-
vioural patterns with respect to different vital signes in multi-dimension Euclidian 
spaces that can be partitioned into identifiable behaviour regions. 

We present such maps yielding a graphical representation of the data summarised by 
Table 1 and Table 2 at Figure 4. This graph shows the projection of the data onto the 
blood oxygenation and steps frequency versus the heart rate. The regions which we de-
note, somewhat tentatively, as “high activity” and “stress” regions are speculative. Nev-
ertheless they do conform to a general understanding of these characterisations. The 
high activity region is characterised in our interpretation by a low Hurst exponent.  
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Figure 4. The graphical Euclidian representation corresponds to data given by Table 1 and Table 2. The blue dots and their approximate 
convexifiction are drawn from Table 2. The red ones correspond to Table 1. The graphical representation shows a clear distinction be-
tween highly trained (red) and a healthy individual (blue) with respect to stress and work load. This visualised by the shift to higher Hurst 
exponent indicating lower complexity of behavioural readings for the highly trained individual. The data analysed were recorded during a 
typical day for both subjects. The numbers refer to sequential order of the two hours periods into which the fifteen hours of recordings are 
split correspondingly to segmentation such as shown at Figure 1. 
 

This means that the surrogate data, projected onto blood oxygenation/heart rate, ex-
hibit a high level of complexity. The stress region can be characterised by a low com-
plexity of motion and a higher complexity of heart rate. 

The introduction of the index spaces is necessary to dissect a proper or impaired 
contribution of various subsystems to the overall behaviour [41] [42]. 

6.2. Compound Indexing 

The compound indexing is provided by the behavioural entropy and hysteresis as a 
characterisation of human subjects capabalities to react to various stimuli and to recov-
er from fatigue, respectively. 

Table 3 provides compound measures of the data given by Table 1 and Table 2. The 
results presented by this table are compatible with the observations discussed in Section 
5.2. The important aspect of the presented approach is in its capability to provide a 
“single number” characterisation of behavioural states with time varying behavioural 
patterns. 

7. Conclusions 

The data collected using human healthy subjects show that some of the externally col-
lected data using body attached sensors possess self-similarity at some periods of time. 

This property allows complexity analysis using non-integer Hausdorff-Besicovich 
dimension and related mathematical tools. The compound measures in terms of beha-
vioural entropy and hysteresis yield indexing of surrogate data providing a single digit 
characterisations of behavioural states in a way that thermometer based measurements 
are used. We think this approach may prove useful in clinical settings for diagnostic 
and follow-up purposes. 
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The introduction of behavioural entropy and hysteresis provides characterisations of 
time-extended and time-varying analyses of surrogate data. The behavioural indexing 
or, equivalently, the complexity analysis of the acquired surrogate data, shows that 
phenotypic change can be dynamically monitored. 

Contributions 

PK provided the mathematical framework based on the use of fractional dimension to 
characterise behavioural complexity, Cassiopee computational ecosystem as well as all 
the computational results. He also introduced the notion of constitutive definitions of 
behavioural entropy and hysteresis. 

PZ delivered time series based on the human raw data acquired during the experi-
mental part of the project using the VSM biosensor. 

 
Table 3. The table summarises the results based on the data presented at Table 1 and Table 2. The table exemplifies differences between 
the two subjects from the point of view their efficiency to achieve low complexity behavioural equilibria. The lower the signed entropy as 
well as the size of area of the hysteresis loop are better from the behavioural point of view. The behavioural entropy and hysteresis were 
computed using fifteen hours of surrogate data acquisitions. The negative sign of the entropy indicate a path to a low complexity equili-
brium. The area of the hysteresis indicates the efficiency to recover from behavioural fatigue to achieve the equilibria structures indicated 
by the behavioural entropy. 

 

Compounded  
Observation 

Heart Rate 

Complexity Index Interpretation Reactivity 
Fatigue  

Recuperation 
Possible Interpretation Conclusion 

Trained 
Healthy  
Subject 

Only the heart rate exhibits 
higher complexity compared to 

the control group. The rest of the 
acquired surrogate data are 

within the control group spread 
with pronounce low complexity 

of the data. 

−0.34 668.36 

The fatigue recovery index indicates that 
trained subjects can recover from daily 

cycles of high/low activities significantly 
faster compared to the control group or 

healthy subjects. The reactivity index  
indicates superior capability to react to 

both internal and external demands  
compared to the control group. The stress 
index suggests a balance between demands 

and regulatory capabilities. 

There is no need to 
change current  

practices to keep the 
current high level of 
neurophysiological 

abilities. 

Healthy  
Subject 

Subject's reaction to change of 
either external or internal  

demands lacks in terms of time 
and/or adequate response  

compared to trained subject. 

−0.10 1011.44 

The indicated fatigue recovery index  
suggests that a healthy subject requires 

significantly more time to recuperate from 
daily activity. Also the reactivity to deal 
with demands is low compared to the 

trained subject considered. It is within the 
spread of the control group. The stress 

level is considered low. 

Increase of the periodic 
physical activities is 

recommended. 

Control  
Group 

 −0.13 878.50 

The high level of the mean stress index of 
the control group seems to be due to  

exposer to significant clinical requirements 
impose on the practitioners who formed 

majority of the control group. 
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Appendix 
Estimates of an Approximate Self-Similarity and the Hurst Exponent 

The presented estimates of the behavioural indices are tested to verify their self-simi- 
larity using a distributional distance. The Hurst exponent estimates are obtained using 
allometric power law, maximum likelihood fractional Brownian process parameters 
identification, and a distributional measure. 

The verification of the self-similarity is a crucial step for otherwise the subsequent 
computing of the scaling parameters, such as the Hurst exponent, would be questiona-
ble, [43]. 

Following [44], we could consider a discrete-time stochastic process  
{ }| 1, ,iX i n= =   to be self-similar with the Hurst exponent H if 

( )

( )

{ }
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1
1

1
1

i
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i

dk m d

j kH ij k m i

X X
m

+

=
= =
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∑                    (1) 

holds for an unique ( )0,1H ∈  for all d-tuples { } 1

d
i i

k
=

, where d and m obey  
( )1 1ik m n< + ≤ , and 1m ≥ , 1d ≥ , and ( )dimn = < +∞ . 

Instead, we compare the probability density of surrogate data directly to the density 
of a fractional Brownian function. The reason is that dealing with a limited amount of 
somewhat noisy data with varying frequencies does not produce reliable estimates of 
the self-similarity using (1). 

Let ( ){ }| 1, ,iX t i n= =   be a time equidistant discrete set of surrogate data. Let 
( )def t=X X , 0t > , be the piece-wise continuous interpolation of  . Consider the fol-

lowing criterion for a given n and p 
( ) ( ) ( ) ( ){ }min ; ; , , , | 0,1 , , , ,nf x p g x H t H tµ σ µ σ + +− ∈ ∈ ∈ ∈∫          (2) 

applied to X  to verify its convergence to a fractional Brownian function in the sense 
of distributions. We refer to the integral appearing in (2) as L2-Distributional Distance. 
The function ( ) ( ) ( );n nf f x p=  is the probability density of a given surrogate data 
given by 

( ) ( ) ( ) ( ){ } ( )def
1 1

1 1

1 1; card , | 1, , , .
p

n
i j j x j j

j j j

f x p t b b i n b b
n b b

δ− −
= −

= ∈ =
−∑ X      (3) 

Here, p denotes the number of bins applied to histogram of the approximate proba-
bility density. The points { } 1

p
p j j

b b
=

= , 1p > , form a non-trivial partition of the range 
of  . The fractional Brownian density g is given by  

( ) def 1 1 1; , , , exp .
2π 2H H

x tg x H t
t t

µµ σ
σ

 −  = −  
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