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Abstract 
In this work, we apply the Zhou’s method [1] or differential transformation method 
(DTM) for solving the Euler equidimensional equation. The Zhou’s method may be 
considered as alternative and efficient for finding the approximate solutions of initial 
values problems. We prove superiority of this method by applying them on the some 
Euler type equation, in this case of order 2 and 3 [2]. The power series solution of the 
reduced equation transforms into an approximate implicit solution of the original 
equations. The results agreed with the exact solution obtained via transformation to a 
constant coefficient equation. 
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1. Introduction 

We know that when the coefficients ( )p x  and ( )q x  are analytic functions on a 
given domain, then the equation ( ) ( ) 0y p x y q x y′′ ′+ + =  has analytic fundamental 
solution. We want to study equations with coefficients p and q having singularities, for 
this reason we study in this paper with one of the simplest cases, Euler’s equidimen- 
sional equation. This is an important problem because many differential equations in 
physical sciences have coefficients with singularities [3]. One of the special features of 
the equidimensional equation is that order of each derivative is equal to the power of 
the independent variable. This means that this type of equations can be reduced to 
linear equation with constant coefficient by using a change of the form etx = . 

Many numerical methods were developed for this type of equations, specifically on 
Euler’s equations such that Laplace transform method and Adomian method [4]. The 
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method proposed in this paper was first established by Zhou to solve problems in 
electric circuits analysis. In this work, the differential transformation method is applied 
to solver the Euler equidimensional equations and to illustrate this method, several 
equations of this type are solved [5] [6]. 

2. The Euler Equidimensional Equation 

A Euler equidimensional equation is a differential equation of the form 

( )
1 2

1 2
1 2 1 01 2

d d d d
dd d d

n n
n n

n nn n
y y y ya x a x a x a x a y g x

xx x x

−
−

− −+ + + + + =            (1) 

where 0, ,na a  are constants and d
d

n

n
y

x
 is an n-th derivative of the function ( )y x  

and ( )g x  is a continuous function. 
Now, we consider a second order differential equation (homogeneous Euler equidi- 

mensional) of the form 
2

2
2

d d 0, 0
dd

y yax bx cy x
xx

+ + = >                        (2) 

The solution can be obtained by using the change of variables 

etx =                                    (3) 

where d 1
d

t
x x
= . In fact, for 0x > , we introduce etx = , therefore ( )lnt x= . Then, the  

first and second derivatives of ( )y x  are related by the chain rule, 
2 2

2 2 2 2
d d d 1 d d d 1 d 1 d 1 dand
d d d d d d dd d
y y t y y y y y
x t x x t x x t tx x x t

 = = = = − + 
 

       (4) 

Now, substituting (4) in (2) yields a second order differential equation with constant 
coefficients, i.e., 

2
2

2 2
1 d d 1 d 0

d dd
y y yax bx cy

t x tx t
 

− + + = 
 

 

2

2
d d d 0

d dd
y y ya a b cy

t tt
− + + =  

( )
2

2
d d 0

dd
y ya b a cy

tt
+ − + =                            (5) 

Equation (5) can be solved using the characteristic polynomial 

( )2 0am b a m c+ − + =                               (6) 

where roots are 1m  and 2m  which give the general solution but depending on the 
type of roots it has, i.e., 

a) If 1 2m m≠ , real or complex, then the general solution of the Equation (2) is given 
by 

( ) 1 2
1 2 1 2, , , 0m my x x x xα α α α= + ∈ >  

b) If 1 2m m= , then the general solution of the Equation (2) is given by 
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( ) ( )1 1
1 2 1 2ln , , , 0m my x x x x xα α α α= + ∈ >  

3. The Zhou’s Method or DTM 

Differential transformation method (DTM) of the function ( )y x  is defined as 

( )
0

1 d
! d

k

k
x x

yY k
k x

=

 
=  

 
                            (7) 

In (7), we have that ( )y x  is the original function and ( )Y k  is the transformed 
function. The inverse differential transformation is defined as 

( ) ( )
0

,k

k
y x Y k x

∞

=

= ∑                              (8) 

but in real applications, function ( )y x  is expressed by a finite series and Equation (8) 
can be written as 

( ) ( )
0

,
n

k

k
y x Y k x

=

= ∑                              (9) 

which implies that 

( )
1

k

k n
Y k x

∞

= +
∑  

is negligibly small where n is decided by the convergence of natural frequency in this 
study. 

The following theorems that can be deduced from Equations (7) and (9) and the 
proofs are available in [4] [5] [6]. 

Theorem 1 If ( ) ( ) ( )y x f x g x= ± , then ( ) ( ) ( )Y k F k G x= ± . 
Theorem 2 If ( ) ( )1y x f xα= , then ( ) ( )1Y k F kα=  with 1α  constant. 

Theorem 3 If ( ) d
d

n

n
fy x

x
= , then ( ) ( ) ( )!

!
k n

Y k F k n
k
+

= + . 

Theorem 4 If ( ) ( ) ( )y x f x g x= , then ( ) ( ) ( )
1 1 10

k
kY k F k G k k
=

= −∑ . 

Theorem 5 If ( ) ny x x= , then ( ) ( )Y k k nδ= − , where 

( )
1,
0,

k n
k n

k n
δ

=
− =  ≠

 

Theorem 6 (Cárdenas, P). If ( ) ( )ny x x f x= , then 

( ) ( )
0,

,
k n

Y k
F k n k n

<
=  − ≥

 

with n∈ . 

4. Numerical Results 

To illustrate the ability of the Zhou’s method [2] [7] for the Euler equidimensional 
equation, the next problem is provided and the results reveal that this method is very 
effective. 
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Example 1 (Homogeneous case). To begin, we consider the initial value problem 

( ) ( )

2 4 4 0
1 2, 1 11

x y xy y
y y

 ′′ ′− + =
 ′= − = −

                            (10) 

Using the substitution (3) and (4), the IVP (10) is transformed to a second order 
differential equation with constant coefficients, i.e., 

( ) ( )( ) ( ) ( )2
2

1 14 4 0x y t y t x y t y t
xx

   ′′ ′ ′− − + =   
   

 

( ) ( ) ( ) ( )4 4 0y t y t y t y t′′ ′ ′− − + =  

( ) ( ) ( )5 4 0y t y t y t′′ ′− + =                                 (11) 

Now, of the initial conditions we have that as 1x = , then 0t =  and therefore 
( )0 2y = −  and ( )0 11y′ = − . So, the new IVP is given by 

( ) ( )
5 4 0

0 2, 0 11
y y y
y y
′′ ′− + =

 ′= − = −
                         (12) 

The exact solution of the problem (12) is ( ) 43y x x x= − . Taking the differential 
transformation of this problem we obtain 

( ) ( ) ( ) ( ) ( )2 ! 1 !
2 5 1 4 0

! !
k k

Y k Y k Y k
k k
+ +

+ − + + =  

or 

( ) ( ) ( ) ( ) ( ) ( )12 5 1 1 4
2 1

Y k k Y k Y k
k k

+ = + + −  + +
          (13) 

where ( )0 2Y = −  and ( )1 11Y = − . Therefore, the recurrence Equation (13) gives: 
• 0k = , 

( ) ( ) ( )( ) ( )1 1 472 5 1 4 0 55 8
2 2 2

Y Y Y= − = − + = −  

• 1k = , 

( ) ( ) ( )( ) ( )1 1 1913 10 2 4 1 235 44
6 6 6

Y Y Y= − = − + = −  

• 2k = , 

( ) ( ) ( )( )1 1 955 7674 15 3 4 2 94
12 12 2 24

Y Y Y  = − = − + = − 
 

 

Therefore, using (9), the closed form of the solution can be easily written as 

( ) ( ) ( ) ( ) ( ) ( )2 3

0

2 3 4

0 1 2 3

47 191 7672 11
2 6 24

n
k

k
y t Y k t Y Y t Y t Y t

t t t t

=

= = + + + +

= − − − − − −

∑ 



         (14) 

but since ( )lnt x= , then we obtain (see Figure 1) 

( ) ( ) ( )( ) ( )( ) ( )( )2 3 447 191 7672 11ln ln ln ln
2 6 24

y x x x x x≈ − − − − − −  
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Figure 1. The Zhou’s method vs. exact solution. 

 
Example 2 (Non-homogeneous case). We consider the following IVP 

( )
( ) ( )

2 4 2 ln

1 2, 1 0

x y xy y x

y y

 ′′ ′+ + =


′= =
                        (15) 

Then, problem (15) is transformed to a second order differential equation with con- 
stant coefficient by using (3) and (4), i.e., 

( ) ( )( ) ( ) ( )2
2

1 14 2x y t y t x y t y t t
xx

   ′′ ′ ′− + + =   
   

 

( ) ( ) ( )4 ( ) 2y t y t y t y t t′′ ′ ′− + + =  

( ) ( ) ( )3 2y t y t y t t′′ ′+ + =                                 (16) 

We know that of the initial conditions 1x =  and therefore 0t = , so we obtain 
( )0 2y =  and ( )0 0y′ = . Then, the IVP is given by 

( ) ( )
3 2

0 2, 0 0
y y y t
y y
′′ ′+ + =

 ′= =
                           (17) 

The exact solution of the problem (15) is ( ) ( )1 29 1 35 ln
4 2 4

y x x x x− −= − + − . Now, 

the DTM of (17) is 

( ) ( ) ( ) ( ) ( ) ( )2 ! 1 !
2 3 1 2 1

! !
k k

Y k Y k Y k k
k k

δ
+ +

+ + + + = −  

or 

( ) ( ) ( ) ( ) ( ) ( ) ( )12 3 1 1 2 1
2 1

Y k k Y k Y k k
k k

δ+ = − + + − + −  + +
     (18) 

with ( )0 2Y =  and ( )1 0Y = . So, the recurrence Equation (18) gives: 
• 0k = , 
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( ) ( ) ( ) ( )( ) ( )1 12 3 1 2 0 1 4 2
2 2

Y Y Y δ= − − + − = − = −  

• 1k = , 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 133 3 2 2 2 1 0 12 1
6 6 6

Y Y Y δ= − − + = + =  

• 2k = , 

( ) ( ) ( ) ( ) ( )( )1 1 39 314 3 3 3 2 2 1 4
12 12 2 24

Y Y Y δ  = − − + = − + = − 
 

 

• 3k = , 

( ) ( ) ( ) ( )( )1 1 31 13 675 12 4 2 3 2
20 20 2 3 120

Y Y Y δ  = − − + = − = 
 

 

Therefore, using (9), the closed form of the solution can be easily written as 

( ) ( ) ( ) ( ) ( ) ( )2 3

0

2 3 4 5

0 1 2 3

13 31 672 0 2
6 24 120

n
k

k
y t Y k t Y Y t Y t Y t

t t t t t

=

= = + + + +

= + − + − + +

∑ 



           (19) 

But since ( )lnt x= , then we obtain (see Figure 2) 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 513 35 672 2 ln ln ln ln
6 24 120

y x x x x x≈ − + − + +  

Example 3 (Third order Euler’s equation). Consider the following IVP 

( ) ( ) ( )

3 210 20 20 0
1 0, 1 1, 1 1

x y x y xy y
y y y

 ′′′ ′′ ′+ − + =
 ′ ′′= = − =

                  (20) 

Now, to find ( )y x′′′  we use the chain rule. In fact we obtain 
 

 
Figure 2. The Zhou’s method vs. exact solution. 
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3 2 2 3 2

3 2 2 3 2 2 3 2

3 2

3 3 3 2 3

d d 1 d d 2 d d 1 1 d d
d d dd d d d d

1 d 3 d 2 d
dd d

y y y y y y y
x t t xx x t x t x t t

y y y
tx t x t x

        
= − = − − + −       

        

= − +

     (21) 

Therefore, using (3), (4) and (21) we have 

( ) ( )3 2
3 2

1 1 13 2 10 20 20 0x y y y x y y x y y
xx x

     ′′′ ′′ ′ ′′ ′ ′− + + − − + =          
 

3 2 10 10 20 20 0y y y y y y y′′′ ′′ ′ ′′ ′ ′− + + − − + =  

7 28 20 0y y y y′′′ ′′ ′+ − + =                                        (22) 

Now, as in the previous example 1x =  and then 0t = . So, the new initial con- 
ditions are given by ( ) ( )0 0, 0 1y y′= = −  and ( )0 1y′′ = . Using (7) we find that  

( ) ( )0 0, 1 1Y Y= = −  and ( ) 12
2!

Y = . Therefore, we obtain the IVP 

( ) ( ) ( )
7 28 20 0

0 0, 0 1, 0 1
y y y y
y y y
′′′ ′′ ′+ − + =

 ′ ′′= = − =
                   (23) 

Applying DTM to (23) we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 ! 2 ! 1 !
3 7 2 28 1 20 0

! ! !
k k k

Y k Y k Y k Y k
k k k
+ + +

+ + + − + + =  

or 

( )

( )( )( ) ( )( ) ( ) ( ) ( ) ( )

3
1 7 2 1 2 28 1 1 20

3 2 1

Y k

k k Y k k Y k Y k
k k k

+

= − + + + + + + −  + + +
  (24) 

So, the recurrence equation (24) gives: 
• 0k = , 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 353 7 2 2 28 1 20 0 7 28
6 6 6

Y Y Y Y= − + − = − − = −  

• 1k = , 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

14 7 3 2 3 28 2 2 20 1
24
1 35 1 29342 56 20 1
24 6 2 24

Y Y Y Y= − + −

 −    = − + − − =    
    

 

• 2k = , 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )15 7 4 3 4 28 3 3 20 2
60
1 293 35 1 101784 84 20
60 24 6 2 40

Y Y Y Y= − + −

 −  −     = − + − =      
      

 

Therefore, using (9), the closed form of the solution can be easily written as 
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Figure 3. The Zhou’s method vs. exact solution. 

 

( ) ( ) ( ) ( ) ( ) ( )

( )

2 3

0

2 3 4 5

2 3 4 5

0 1 2 3

1 35 293 10170 1
2 6 24 40

1 35 293 1017
2 6 24 40

n
k

k
y t Y k t Y Y t Y t Y t

t t t t t

t t t t t

=

= = + + + +

= + − + − + − +

= − + − + − +

∑ 





             (25) 

But since ( )lnt x= , then we obtain (see Figure 3) 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 51 35 293 1017ln ln ln ln ln
2 6 24 40

y x x x x x x≈ − + − + − +  

5. Conclusion 

In this paper, we presented the definition and handling of one-dimensional differential 
transformation method or Zhou’s method. Using the substitutions (3) and (4), Euler’s 
equidimensional equations were transformed to a second and third order differential 
equations with constant coefficients, next using DTM these equations were transformed 
into algebraic equations (iterative equations). The new scheme obtained by using the 
Zhou’s method yields an analytical solution in the form of a rapidly convergent series. 
This method makes the solution procedure much more attractive. The figures [4] [5] 
and [6] clearly show the high efficiency of DTM with the three examples proposed. 
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