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Abstract 
A dominating set D in a graph G is called an injective equitable dominating set 
(Inj-equitable dominating set) if for every v V D∈ − , there exists u D∈  such that 

u is adjacent to v and ( ) ( ) 1deg degin inu v− ≤ . The minimum cardinality of such a 

dominating set is denoted by ( )ine Gγ  and is called the Inj-equitable domination 
number of G. In this paper, we introduce the injective equitable domination of a 
graph and study its relation with other domination parameters. The minimal injec-
tive equitable dominating set, the injective equitable independence number ( )ine Gβ , 

and the injective equitable domatic number ( )ined G  are defined. 
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1. Introduction 

By a graph ( ),G V E= , we mean a finite undirected graph with neither loops nor 
multiple edges. The order and the size of G are denoted by n and m respectively, the 
open neighborhood ( ) { }:N v u V uv E= ∈ ∈  and the closed neighborhood  

[ ] ( ) { }N v N v v= ∪ . The degree of a vertex v in G is ( ) ( )d v N v= . Let G and H be any 
two graphs with vertex sets ( )V G , ( )V H  and edge sets ( )E G , ( )E H , respectively. 
Then, the union G H∪  is the graph whose vertex set is ( ) ( )V G V H∪  and edge set 
is ( ) ( )E G E H∪ . For graph theoretic terminology, we refer to [1] and [2]. 

A set D of vertices in a graph ( ),G V E=  is a dominating set if every vertex in 
V D−  is adjacent to some vertex in D. The domination number ( )Gγ  is the mini- 
mum cardinality of a dominating set. An excellent treatment of the fundamentals of 
domination is given by Hayens et al. [3]. A survey of several advanced topics in domi- 
nation is given in the book edited by Haynes et al. [4]. 
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The injective domination of graphs has been introduced by A.Alwardi et al. [5]. For a 
graph G, a subset D of ( )V G  is called an injective dominating set (Inj-dominating set) 
if for every vertex v V D∈ −  there exists a vertex u D∈  such that ( ), 1u vΓ ≥ , 
where ( ),u vΓ  is the number of common neighborhood between the vertices u and v. 
The minimum cardinality of such dominating set is denoted by ( )in Gγ  and is called 
the injective domination number(Inj-domination number) of G. The Inj-neighborhood 
of a vertex ( )u V G∈  denoted by ( )inN u  is defined as  

( ) ( ) ( ){ }: , 1inN u v V G u v= ∈ Γ ≥ . The cardinality of ( )inN u  is called the injective 
degree of the vertex u and is denoted by ( )deg in u  in G and [ ] ( ) { }in inN u N u u= ∪ . 

A subset D of V is called equitable dominating set of G if every vertex u V D∈ −  
adjacent to at least one vertex v D∈  and ( ) ( ) 1d u d v− ≤ . The minimum cardinality 
of such a dominating set is denoted by ( )e Gγ  and is called equitable domination 
number of G [6]. Equitable domination has interesting applications in the context of 
social networks. In a network, nodes with nearly equal capacity may interact with each 
other in a better way. 

The importance of injective and equitable domination of graphs motivated us to 
introduce the injective equitable domination of graphs which mixes the two concepts. 

As there are a lot of applications of domination, in particular the injective and 
equitable domination, we are expecting that our new concept has some applications. 

2. The Injective Equitable Dominating Set 

Definition 1 A subset D of ( )V G  is called injective equitable dominating set (Inj- 
equitable dominating set) if for every vertex v V D∈ −  there exists a vertex u D∈  
such that u is adjacent to v and ( ) ( ) 1deg degin inu v− ≤ . The minimum cardinality of 
such a dominating set is denoted by ineγ  and is called the Inj-equitable domination 
number of G. A ineγ -set of G is the minimum dominating set of G. 

It is easy to see that any Inj-equitable dominating set in a graph G is also a domi- 
nating set, and then ( ) ( )ineG Gγ γ≤  and ( ) 1ine Gγ =  if and only if ( ) 1Gγ = . 

In the following propostion the Inj-equitable domination number of some standard 
graphs are determined. 

Proposition 1 
1) For any complete graph nK , ( ) 1.ine nKγ =  

2) For any path nP , with n vertices, ( ) .
3ine n
nPγ  =   

 

3) For any cycle nC  on n vertices, ( )
3ine n
nCγ  =   

. 

4) For any complete bipartite graph ,r sK , where 4r s+ ≥ , 

( ),

2 if 1;
if 2.ine r s

r s
k

r s r s
γ

 − ≤=  + − ≥
 

5) For any wheel graph ( ) 1ine nWγ = . 
Definition 1 motivated us to define the inherent Inj-equitable graph of any graph G 
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as follows: 
Definition 2 Let ( ),G V E=  be a graph. The inherent Inj-equitable graph of G, 

denoted by ( )IIE G , is defined as the graph with vertex set ( )V G  and two vertices u 
and v are adjacent in the ( )IIE G  if and only if u and v are adjacent in G and  

( ) ( ) 1deg degin inu v− ≤ . 
Theorem 2: For any graph G , ( ) ( )( ).ine G IIE Gγ γ=  
Proof. Since any Inj-equitable dominating set of G  is a dominating set of ( )IIE G , 

then ( )( ) ( )ineIIE G Gγ γ≤ . Now, let D  be any γ -dominating set of ( )IIE G . Then 
for any ( )( )u V IIE G D∈ − , there exists v D∈  such that u and v are adjacent in 

( )IIE G . So, ( ) ( ) 1deg degin inu v− ≤ . Therefore, D is Inj-equitable dominating set of G. 
Then, ( ) ( )( )ine G IIE Gγ γ≤ . Hence, ( ) ( )( )ine G IIE Gγ γ= . 

Definition 3 The Inj-equitable neighborhood of u V∈ , ( )ineN u , is defined as  

( ) ( ) ( ) ( ){ }: and 1 .deg degine in inN u v V v N u u v= ∈ ∈ − ≤  

The cardinality of ( )ineN u  is called the Inj-equitable degree of u and is denoted by 
( )deg ine u . The maximum and minimum Inj-equitable degree of a vertex in G are 

denoted respectively by ( )ine G∆  and ( )ine Gδ . That is,  

( )
( )

( )maxine ineu V G
G N u

∈
∆ =  

( )
( )

( )min .ine ineu V G
G N uδ

∈
=  

Definition 4 For any graph G, an edge e uv=  is called Inj-equitable edge if  
( ) ( ) 1deg degin inu v− ≤  and we say u is Inj-equitable adjacent to v or u is Inj-equitable 

dominate v. 
Proposition 3 For any graph ( ),G V E= , 

( )
( ) 2deg ineine

u V G
u q

∈

=∑ , where ineq  is the 

number of Inj-equitable edges in G.  
Proof. Let G be a graph and let H be the Inj-equitable graph of G. Then  

( )
( )deg 2

u V H
u q

∈

=∑ , where q is the number of edges in H. Since the number of edges in  

H is the number of Inj-equitable edges in G, then q equals ineq . Also, ( )deg ine u  in G  
is equal to ( )deg u  in H. Hence, 

( )
( ) 2deg ineine

u V G
u q

∈

=∑ . 

Definition 5 Let ( ),G V E=  be a graph. A vertex v V∈  is called Inj-equitable 
isolated vertex if ( )ineN v φ= . The set of all Inj-equitable isolated vertices is denoted by 

ineI . Hence ineI I D⊂ ⊂  for every Inj-equitable dominating set D, where I is the set of 
isolated vertices. 

Definition 6 A graph G is called Inj-equitable totally disconnected graph if it has no 
Inj-equitable edge. 

Theorem 4 For any graph G with n vertices, ( )1 ine G nγ≤ ≤ . Further, ( ) 1ine Gγ =  
if and only if there exists at least one vertex v in G such that ( ) 1deg ine v n= − . 

( )ine G nγ =  if and only if G is Inj-equitable totally disconnected graph. 
Proof. It is obviously that ( )1 ine Gγ≤ . Also, for any graph ( ),G V E= , ( )V G  is 
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an injective equitable dominating set. Therefore, ( )ine G nγ ≤ . Hence, ( )1 ine G nγ≤ ≤ . 
Now, we want to prove that ( ) 1ine Gγ =  if and only if there exists at least one vertex 

v in G such that ( ) 1deg ine v n= − . Suppose that ( ) 1ine Gγ =  and { }D v=  is a ineγ - 
set. So, for all u V D∈ − , ( )uv E G∈  and ( ) ( ) 1deg degin inu v− ≤ . Hence, 

( ) 1deg ine v n= − . 
conversely, suppose that there exists at least one vertex v in G such that ( )deg ine v  

1n= − . Then, { }D v=  is an Inj-equitable dominating set. Hence, ( ) 1ine Gγ = . 
To prove that ( )ine G nγ =  if and only if G is Inj-equitable totally disconnected 

graph, suppose that G is Inj-equitable totally disconnected graph. So, all the vertices are 
Inj-equitable isolated. Hence, ( )ine G nγ = . 

Conversely, suppose that G has at least one Inj-equitable edge, say e uv= . So, 
( ) ( ) 1deg degin inu v− ≤ . Therefore, { }V u−  is an Inj-equitable dominating set, and so, 

( ) 1ine G nγ ≤ −  contradicts that ( )ine G nγ = . Hence, G is Inj-equitable totally dis- 
connected graph. 

Proposition 5 If a graph G has no Inj-equitable isolated vertices, then 

( ) .
2ine
nGγ ≤  

In the following theorem, we present the graph for which ( )ine Gγ  and ( )Gγ  are 
equal. 

Theorem 6 Let G be a graph such that any two adjacent vertices contained in a 
triangle or G is regular triangle-free graph. Then, ( ) ( )ine G Gγ γ= . 

Proof. Suppose that G is a regular triangle-free graph and D is a γ -set of G. Then 
( )G Dγ = . Let u and v be any two adjacent vertices in G. Then ( ) ( )inN u N u φ∩ = . 

Therefore, ( ) ( )degdeg in u v= . Since G is regular, ( ) ( )deg degv u= . So,  
( ) ( ) ( ) ( )deg deg 0 1deg degin inu v u v− = − = ≤ . Therefore, D is an Inj-equitable domi- 

nating set. So that, ( ) ( )ine G D Gγ γ≤ = . But ( ) ( )ineG Gγ γ≤ . Hence,  
( ) ( )ine G Gγ γ= . 

Let G be a graph such that any two adjacent vertices contains in a triangle. It is clear 
that for any ( )u V G∈ , ( ) ( )degdeg in u u= . So,  

( ) ( ) ( ) ( )deg deg 0 1deg degin inu v u v− = − = ≤ . By the same way of the proof of regular 
triangle-free graph we can prove that ( ) ( )ine G Gγ γ= . 

Lemma 1 For any two graphs 1G  and 2G , ( ) ( ) ( )1 2 1 2ine ine ineG G G Gγ γ γ∪ = + .   
Proof. Let 1 2G G G≅ ∪  and let 1S  and 2S  be the minimum Inj-equitable domi- 

nating set of 1G  and 2G , respectively, such that ( )1 1ineS Gγ=  and ( )2 2ineS Gγ= . 
Now, it is obviously that 1 2S S∪  is an Inj-equitable dominating set of 1 2G G G≅ ∪ . 
Therefore, 

( ) ( ) ( )1 2 1 2 .ine ine ineG S S G Gγ γ γ≤ ∪ = +  

That is, 

( ) ( ) ( )1 2 .ine ine ineG G Gγ γ γ≤ +                           (1) 

To prove ( ) ( ) ( )1 2ine ine ineG G Gγ γ γ≥ +  by contradiction. Let S ′  be the minimum 
Inj-equitable dominating set of G such that ( )ineS Gγ′ = . Let  
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( ) ( ) ( )1 2ine ine ineG G Gγ γ γ< + . Then there exist 1S ′  and 2S ′ , where 1S ′  is the mini- 
mum Inj-equitable dominating set of 1G  and 2S ′  is the minimum Inj-equitable 
dominating set of 2G  and either 1 1S S′ <  or 2 2S S′ <  which is a contradiction. 
Hence 

( ) ( ) ( )1 2 .ine ine ineG G Gγ γ γ≥ +                       (2) 

From 1 and 2, we get  

( ) ( ) ( )1 2 .ine ine ineG G Gγ γ γ= +  

By mathematical induction, we can generalize Lemma 1 as follows: 

Proposition 7 Let 
1

m

j
j

G G
=

=


 be a graph. Then ( ) ( )
1

.
m

ine ine j
j

G Gγ γ
=

= ∑   

Theorem 8 Let G be a graph with 2n ≥  vertices. Then ( ) 1ine G nγ = −  if and only 
if 2G H K≅ ∪ , where H is Inj-equitable totally disconnected graph. 

Proof. Let G be a graph with 2n ≥  vertices and let ( ) 1ine G nγ = − . By Theorem 2, 
( )( ) 1IIE G nγ = −  which implies that ( )IIE G  will be of the form 2H K∪ . By the 

Definition 2, all the edges of G are not Inj-equitable edge except one edge. Therefore, 

2G H K∪ . 
Conversely, let 2G H K∪  where H is an Inj-equitable totally disconnected graph. 

By Lemma 1, ( ) ( ) ( )2 2 1 1ine ine ineG H K n nγ γ γ= + = − + = − . 
Definition 7 An Inj-equitable dominating set D is said to be a minimal Inj-equitable 

dominating set if no proper subset of D is an Inj-equitable dominating set. A minimal 
Inj-equitable dominating set D of maximum cardinality is called ineΓ -set and its 
cardinality, denoted by ( )ine GΓ , is called upper Inj-equitable domination number.  

The following theorem gives the characterization of the minimal Inj-equitable domi- 
nating set . 

Theorem 9 An Inj-equitable dominating set D is minimal if and only if for every 
vertex u D∈  one of the following holds: 

1) u is not Inj-equitable adjacent to any vertex in D. 
2) There exists a vertex v V D∈ −  such that ( ) { }ineN v D u∩ = . 
Proof. Suppose that D is minimal Inj-equitable dominating set and suppose that 

u D∈ . Then, { }D u−  is not Inj-equitable dominating set. Therefore, there exists a 
vertex ( ) { }v V D u∈ − ∪  which is not Inj-equitable adjacent to any vertex in { }D u− . 
Then, either v u=  or v u≠ . If v u= , then u is not Inj-equitable adjacent to any 
vertex in D. If v u≠ , then v V D∈ −  and not Inj-equitable adjacent to any vertex in 

{ }D u− . But V is Inj-equitable dominated by D. So, V is Inj-equitable adjacent only to 
vertex u in D. Hence, ( ) { }ineN v D u∩ = . 

Conversely, suppose that D is an Inj-equitable dominating set and for every vertex 
u D∈  one of the two conditions holds. We want to prove that D is minimal. Suppose 
D is not minimal. Then there exists a vertex u D∈  such that { }D u−  is an Inj- 
equitable dominating set. Therefore, there exists { }v D u∈ −  such that v Inj-equitable 
adjacent to u. Therefore, u does not satisfy (i). Also, if { }D u−  is Inj-equitable domi- 
nating set, then every vertex v V D∈ −  is Inj-equitable adjacent to at least one vertex 
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in { }D u− . So, condition (ii) does not hold which is a contradiction. Hence, D is a 
minimal Inj-equitable dominating set. 

Theorem 10 A graph G has a unique minimal Inj-equitable dominating set if and 
only if the set of all Inj-equitable isolated vertices forms an Inj-equitable dominating 
set. 

Proof. Let G has a unique minimal Inj-equitable dominating set D and let 

inev D I∈ − . Since v is not an Inj-equitable isolated, { }V v−  is an Inj-equitable domi- 
nating set. Therefore, there exists a minimal Inj-equitable dominating set { }1D V v⊆ −  
and 1D D≠ , which contradicts that G has a unique minimal Inj-equitable dominating 
set. Hence, ineD I= . 

Conversely, let ineI  forms an Inj-equitable dominating set. Then it is clear that G 
has a unique minimal Inj-equitable dominating set. 

Theorem 11 If G is a graph has no Inj-equitable isolated vertices, then the com- 
plement V S−  of any minimal Inj-equitable dominating set S is also an Inj-equitable 
dominating set. 

Proof. Let S be any minimal Inj-equitable dominating set of G and V S−  is not Inj- 
equitable dominating set. So, there exist at least one vertex u S∈  which is not Inj- 
equitable dominated by any vertex in V S− . Since G has no Inj-equitable isolated 
vertices, the vertex u must be Inj-equitable dominated by at least one vertex in { }S u− . 
Thus, { }S u−  is an Inj-equitable dominating set of G, which contradicts the mini- 
mality of S. Hence, V S−  is an Inj-equitable dominating set. 

Theorem 12 For any graph with n vertices 

( ).
1 ine

ine

n Gγ≤
+ ∆

 

Proof. Let S be a cneγ -set of G. Then for all u S∈ ,  

( ) ( )ine ineN u G≤ ∆  

Thus, 
( ) ( ) ( ).ine ine ineN S G Gγ≤ ∆  

Now, 
[ ] ( )ine inen N S S N S= = ∪  

Therefore, 
( ) ( ) ( ).ine ine inen G G Gγ γ≤ + ∆  

Hence, 

( ).
1 ine

ine

n Gγ≤
+ ∆

 

Definition 8 Let ( ),G V E= . A subset S of ( )V G  is called an Inj-equitable in- 
dependent set if for any u S∈ , ( )inev N u∉  for all { }v S u∈ − . The maximum car- 
dinality of an Inj-equitable independent set is denoted by ineβ . 

Definition 9 An Inj-equitable independent set S is called maximal if any vertex set 
properly containing S is not Inj-equitable independent set. The lower Inj-equitable 
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independent number inei  is the minimum cardinality of the maximal Inj-equitable 
independent set. 

Theorem 13 Let S be a maximal Inj-equitable independent set. Then S is a minimal 
Inj-equitable dominating set. 

Proof. Let S be a maximal Inj-equitable independent set. Let v V S∈ − . If 
( )inev N u∉  for every u S∈ , then { }S v∪  is an Inj-equitable independent set, a 

contradiction to the maximality of S. So, ( )inev N u∈  for some u S∈ . Hence, S is ann 
Inj-equitable dominating set. Since for any v S∈ , ( )inev N u∉  for every { }u S v∈ − , 
either ( )N u S φ∩ =  or ( ) ( ) 2deg degin inu v− ≥  for all ( )v N u S∈ ∩ . Therefore, S 
is minimal Inj-equitable dominating set. 

Theorem 14 For any graph G, 

.ine ine ine ineiγ β≤ ≤ ≤ Γ  

3. Injective Equitable Domatic Number 

The maximum order of a partition of a vertex set V of a graph G into dominating sets is 
called the domatic number of G and is denoted by ( )d G  [7]. In this section we pre- 
sent a few basic results on the Inj-equitable domatic number of a graph. 

Definition 10 An Inj-equitable domatic partition of a graph G is a partition 
{ }1 2, , , kV V V  of ( )V G  in which each iV  is Inj-equitable dominating set of G. The 
Inj-equitable domatic number is the maximum order of an Inj-equitable domatic parti- 
tion and is denoted by ( )ined G . 

Example 1 For the graph G given in Figure 1, { } { }{ }1 2 3 4, , ,v v v v  is an Inj-equitable 
domatic partition of maximum order. Therefore, the Inj-equitable domatic number of 
G is ( ) 2ined G = . 

Proposition 15  
1) For any path nP  with 2n ≥ , ( ) 2ine nd P = . 

2) For any cycle nC  with 3n ≥ , ( ) ( )3 if 0 mod 3 ;
2 otherwise.ine n

n
d C

≡
= 


 

3) For any complete graph nK , ( )ine nd K n= . 
4) For any complete bipartite graph ,r sK , where 4r s+ ≥ , 

( ) { }
,

min , if 1;
1 if 2.ine ine r s

r s r s
d d K

r s
 − ≤≤ =  − ≥

 

 

 
Figure 1. Circle with 4 vertices C₄. 
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Proposition 16 For any graph G, ( )ined d G≤ , where ( )d G  is the domatic number 
of G. 

Proof. Since any partition of V into Inj-equitable dominating set is also partition of 
V into dominating set, ( )ined d G≤ . 

4. Conclusions 

In this paper, we introduced the Inj-equitable domination of graphs and some other 
related parameters like Inj-equitable independent number, uper Inj-equitable domi- 
nation number and domatic Inj-equitable domination number. 

There are many other related parameters for future studies like connected Inj- 
equitable domination, total Inj-equitable domination, independent Inj-equitable domi- 
nation, split Inj-equitable domination and clique Inj-equitable domination. 
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