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Abstract

A dominating set D in a graph G is called an injective equitable dominating set
(Inj-equitable dominating set) if for every veV —D, there exists Ue D such that

u is adjacent to v and |de9in(u)_deQin(v)| <1. The minimum cardinality of such a

dominating set is denoted by ,.(G) and is called the Inj-equitable domination

number of G. In this paper, we introduce the injective equitable domination of a
graph and study its relation with other domination parameters. The minimal injec-

(©)

tive equitable dominating set, the injective equitable independence number 4.

and the injective equitable domatic number d,,(G) are defined.

ine
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1. Introduction

By a graph G =(V,E), we mean a finite undirected graph with neither loops nor
multiple edges. The order and the size of G are denoted by 1 and m respectively, the
open neighborhood N (v)={ueV :uveE} and the closed neighborhood

N[v]=N(v)U{v}. The degree of a vertex vin Gis d(v)= |N (V)| . Let Gand Hbe any
two graphs with vertex sets V(G), V(H) and edgesets E(G), E(H), respectively.
Then, the union GUH is the graph whose vertex setis V (G)uV (H) and edge set
is E(G)UE(H). For graph theoretic terminology, we refer to [1] and [2].

A set D of vertices in a graph G =(V,E) is a dominating set if every vertex in
V —D is adjacent to some vertex in D. The domination number y(G) is the mini-
mum cardinality of a dominating set. An excellent treatment of the fundamentals of
domination is given by Hayens et al [3]. A survey of several advanced topics in domi-

nation is given in the book edited by Haynes et al [4].
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The injective domination of graphs has been introduced by A.Alwardi et al [5]. For a
graph G, a subset Dof V (G) is called an injective dominating set (Inj-dominating set)
if for every vertex veV —D there exists a vertex Ue D such that |F(U,V)| >1,
where |F(u, V)| is the number of common neighborhood between the vertices uzand v.
The minimum cardinality of such dominating set is denoted by , (G) and is called
the injective domination number(Inj-domination number) of G. The Inj-neighborhood
ofavertex ueV (G) denoted by N; (u) is defined as

N;, (u) = {V eV(G): |F(u,v)| 2 l} . The cardinality of N; (u) is called the injective
degree of the vertex zand is denoted by deg,,(u) in Gand N, [u]=N, (u)u{u}.

A subset D of Vis called equitable dominating set of G if every vertex ueV —-D
adjacent to at least one vertex Ve D and |d (u)-d (V)| <1. The minimum cardinality
of such a dominating set is denoted by y,(G) and is called equitable domination
number of G [6]. Equitable domination has interesting applications in the context of
social networks. In a network, nodes with nearly equal capacity may interact with each
other in a better way.

The importance of injective and equitable domination of graphs motivated us to
introduce the injective equitable domination of graphs which mixes the two concepts.

As there are a lot of applications of domination, in particular the injective and

equitable domination, we are expecting that our new concept has some applications.

2. The Injective Equitable Dominating Set

Definition 1 A subset D of V (G) is called injective equitable dominating set (Inj-
equitable dominating set) if for every vertex VeV —D there exists a vertex Ue D
such that u is adjacent to v and |degin (u)-—deg,, (V)| <1. The minimum cardinality of
such a dominating set is denoted by y,, and is called the Inj-equitable domination
number of G. Ay, -set of G is the minimum dominating set of G.

It is easy to see that any Inj-equitable dominating set in a graph G is also a domi-
nating set, and then y(G)<y,.(G) and y,.(G)=1 ifand onlyif »(G)=1.

In the following propostion the Inj-equitable domination number of some standard
graphs are determined.

Proposition 1

1) For any complete graph K, .. (K,)=1

2) For any path P, , with nvertices, 7, (P,)= ’V%-‘

n
3) Forany cycle C, on nvertices, 7, (C,)= (5—‘ .

4) For any complete bipartite graph K, ., where r+s>4,

7ine(kr,s):{2 ¥ |r_S|S1;

r+s if|r—s/>2.

5) For any wheel graph . (W,)=1.
Definition 1 motivated us to define the inherent Inj-equitable graph of any graph G
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as follows:

Definition 2 Zet G=(V,E) be a graph. The inherent Inj-equitable graph of G,
denoted by |E(G), is defined as the graph with vertex set V (G) and two vertices u
and v are adjacent in the \IE(G) ifand only if u and v are adjacent in G and
|deg;, (u) - deg,, (v)| <1

Theorem 2: For any graph G, 7,,(G)=7r(lE(G)).

Proof. Since any Inj-equitable dominating set of G is a dominating set of 1E(G),
then ;/( IIE(G)) < e (G). Now, let D be any y-dominating set of IIE(G). Then
for any ueV (IIE(G))-D, there exists ve D such that u and v are adjacent in
IIE(G). So, |degin (u)-deg,, (V)| <1. Therefore, D is Inj-equitable dominating set of G.
Then, 7,,(G)<y(lE(G)). Hence, 7, (G)=7(lIE(G)).

Definition 3 The Inj-equitable neighborhood of ueV , N, (u), is defined as

Ny (u)={veV :veN(u)and|deg, (u)-deg, (V) <1}.

The cardinality of N, (u) is called the Inj-equitable degree of zand is denoted by
deg;,.(u). The maximum and minimum Inj-equitable degree of a vertex in G are

denoted respectively by A, (G) and &, (G). Thatis,

ine

Aine (G) = ur;r\]/?();()|Nine (U)|

e (G) = min |N

in |
uev(G e

Definition 4 For any graph G, an edge e =uv is called Inj-equitable edge if
|degin (u) —deg,, (V)| <1 and we say u is Inj-equitable adjacent to v or u is Inj-equitable
dominate v.

Proposition 3 For any graph G=(V,E), ). deg,,(u)=2q,,, where q,, Is the

uev(G)
number of Inj-equitable edges in G.

Proof. Let Gbe a graph and let A be the Inj-equitable graph of G. Then
z deg( )=2q , where g is the number of edges in H. Since the number of edges in

ueV(H

H is the number of Inj-equitable edges in G, then g equals q,. Also, deg,,.(u) in G
isequalto deg(u) in H. Hence, )’ degme( ) =20, -

uev(G

Definition 5 Zet G=(V,E) be a grapb. A vertex VeV is called Inj-equitable

isolated vertex if N, (V)= ¢. The set of all Inj-equitable isolated vertices is denoted by

lie . Hence | c |, c D for every Inj-equitable dominating set D, where I is the set of
Isolated vertices.

Definition 6 A graph G is called Inj-equitable totally disconnected graph if it has no
Inj-equitable edge.

Theorem 4 For any graph G with n vertices, 1<y, (G)<n. Further, y, (G)=
if and only if there exists at least one vertex v in G such that deg,,(v)=n-1.
Ve (G) =n ifand only if G is Inj-equitable totally disconnected graph.

Proof. It is obviously that 1<y, (G). Also, for any graph G =(V,E), V(G) is
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an injective equitable dominating set. Therefore, y,,(G)<n.Hence, 1<y,.(G)<n.

Now, we want to prove that y,.(G)=1 if and only if there exists at least one vertex
vin G such that deg,,(v)=n-1. Suppose that », (G)=1 and D={v} isa y,-
set. So, for all ueV-D, weE(G) and degin(u)—degin(v)| <1 . Hence,
deg;.(v)=n-1.

conversely, suppose that there exists at least one vertex vin G such that deg,, (V)
=n-1.Then, D={v} isan Inj-equitable dominating set. Hence, ,,(G)=1.

To prove that y,.(G)=n if and only if G is Inj-equitable totally disconnected
graph, suppose that G is Inj-equitable totally disconnected graph. So, all the vertices are
Inj-equitable isolated. Hence, y,,.(G)=n.

Conversely, suppose that G has at least one Inj-equitable edge, say e=uv. So,
|degin(u) - deQin(V)| <1. Therefore, V —{u} is an Inj-equitable dominating set, and so,
7ine (G)<n—1 contradicts that y,.(G)=n. Hence, G is Inj-equitable totally dis-
connected graph.

Proposition 5 Ifa graph G has no Inj-equitable isolated vertices, then

n
—(G)<,
Vine (G) >

In the following theorem, we present the graph for which 3, (G) and y(G) are
equal.

Theorem 6 Let G be a graph such that any two adjacent vertices contained in a
triangle or G is regular triangle-free graph. Then, y,.(G)=y(G).

Proof. Suppose that G is a regular triangle-free graph and Dis a y -set of G. Then
7(G)=|D|. Let zand vbe any two adjacent vertices in G. Then N(u)n N, (u)=4.
Therefore, deg;,(u)=deg(v). Since Gis regular, deg(v)=deg(u). So,
|degin (u)—deg;, (V)| = |deg (u)—deg (V)| =0<1. Therefore, D is an Inj-equitable domi-
nating set. So that, y,.(G)<|D|=y(G).But y(G)<7,.(G). Hence,
yme(G)::y(G).

Let G'be a graph such that any two adjacent vertices contains in a triangle. It is clear
that forany ueV(G), deg,,(u)=deg(u). So,
|degin(u) —deg,, (v)| = |deg (u)—deg (v)| =0<1. By the same way of the proof of regular
triangle-free graph we can prove that », . (G)=y(G).

Lemma 1 For any two graphs G, and G,, y,.(G,UG,)=7,.(G,)+ % (G;)-

Proof. Let G=G, UG, andlet S, and S, be the minimum Inj-equitable domi-
nating set of G, and G,, respectively, such that |S,|=y,.(G,) and |S,|=7,.(G,).
Now, it is obviously that S, US, is an Inj-equitable dominating set of G =G, UG,.
Therefore,

7ine (G) < |Sl o SZ| = yine (Gl)+7ine (GZ)
That is,
7ine(G)S7ine(Gl)+7/ine (GZ) (1)

To prove . (G)= 7 (Gy)+7ine (G;) by contradiction. Let S’ be the minimum
Inj-equitable dominating set of G'such that |S'|=y,,(G). Let
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Yine (G) < 7ine (G1) + 7ine (G, ) - Then there exist S/ and S, where S/ is the mini-
mum Inj-equitable dominating set of G, and S, is the minimum Inj-equitable
dominating set of G, and either |S]|<|[S,| or |S;|<|S,| which is a contradiction.
Hence
7ine (G)Zj/ine (G1)+7/ine(GZ)' (2)
From 1 and 2, we get
yine (G) = yine (Gl) + yine (GZ)
By mathematical induction, we can generalize Lemma 1 as follows:
Proposition 7 Let G =| G, beagraph. Then y,,(G)=3 Vi (Gj )
j=1 j=1

Theorem 8 Let G be a graph with n>2 vertices. Then y, (G)=n-1 ifand only
if G=HuUK,, where H is Inj-equitable totally disconnected graph.

Proof. Let Gbe a graph with n>2 vertices and let ,.(G)=n—-1. By Theorem 2,
}/(IIE(G)) =n-1 which implies that IIE(G) will be of the form H UK, . By the
Definition 2, all the edges of G are not Inj-equitable edge except one edge. Therefore,
G=HuUK,.

Conversely, let G=H UK, where His an Inj-equitable totally disconnected graph.
By Lemma 1, 7,.(G) =% (H)+ 7 (K;)=n—-2+1=n-1.

Definition 7 An Inj-equitable dominating set D is said to be a minimal Inj-equitable
dominating set if no proper subset of D is an Inj-equitable dominating set. A minimal

Inj-equitable dominating set D of maximum cardinality is called T, -set and its

ine
cardinality, denoted by T, (G), is called upper Inj-equitable domination number.

The following theorem gives the characterization of the minimal Inj-equitable domi-
nating set .

Theorem 9 An Inj-equitable dominating set D is minimal if and only if for every
vertex Ue€ D one of the following holds:.

1) uis not Inj-equitable adjacent to any vertex in D.

2) There exists a vertex VeV —D suchthat N, (v)nD={u}.

Proof. Suppose that D is minimal Inj-equitable dominating set and suppose that
ueD. Then, D—{u} is not Inj-equitable dominating set. Therefore, there exists a
vertex ve(V —D)u{u} which is not Inj-equitable adjacent to any vertex in D —{u}.
Then, either v=u or V#uU. If v=u, then u is not Inj-equitable adjacent to any
vertex in D. If v#U, then veV —D and not Inj-equitable adjacent to any vertex in
D —{u}. But Vis Inj-equitable dominated by D. So, V'is Inj-equitable adjacent only to
vertex uin D. Hence, N, (v)nD={u}.

Conversely, suppose that D is an Inj-equitable dominating set and for every vertex
Ue D one of the two conditions holds. We want to prove that D is minimal. Suppose
D is not minimal. Then there exists a vertex Ue D such that D—{u} is an Inj-
equitable dominating set. Therefore, there exists ve D—{u} such that vInj-equitable
adjacent to u. Therefore, u does not satisfy (i). Also, if D—{u} is Inj-equitable domi-
nating set, then every vertex VeV —D is Inj-equitable adjacent to at least one vertex
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in D —{u}. So, condition (ii) does not hold which is a contradiction. Hence, D is a
minimal Inj-equitable dominating set.

Theorem 10 A graph G has a unique minimal Inj-equitable dominating set if and
only if the set of all Inj-equitable isolated vertices forms an Inj-equitable dominating
set.

Proof. Let G has a unique minimal Inj-equitable dominating set D and let
veD-1,,. Since vis not an Inj-equitable isolated, V —{v} is an Inj-equitable domi-
nating set. Therefore, there exists a minimal Inj-equitable dominating set D, <V —{v}
and D, # D, which contradicts that G has a unique minimal Inj-equitable dominating
set. Hence, D=1,,.

Conversely, let 1,, forms an Inj-equitable dominating set. Then it is clear that G
has a unique minimal Inj-equitable dominating set.

Theorem 11 If G is a graph has no Inj-equitable isolated vertices, then the com-
plement V —S of any minimal Inj-equitable dominating set S is also an Inj-equitable
dominating set.

Proof. Let Sbe any minimal Inj-equitable dominating set of Gand V —S is not Inj-
equitable dominating set. So, there exist at least one vertex Ue€S which is not Inj-
equitable dominated by any vertex in V —S. Since G has no Inj-equitable isolated
vertices, the vertex u must be Inj-equitable dominated by at least one vertexin S —{u}.
Thus, S—{u} is an Inj-equitable dominating set of G, which contradicts the mini-
mality of S. Hence, V —S is an Inj-equitable dominating set.

Theorem 12 For any graph with n vertices

< Yine (G)

1+ A,

Proof. Let Sbea y,,-setof G. Thenforall ueS,

|Nine (U)| = Aine (G)
Thus,
|Nine (S)| < 7/ine (G)Aine (G)
Now,
n=|N, [S] =[S UN,(S)
Therefore,
ns< Vine (G)+7/ine (G)Aine (G)
Hence,
1+ Aine < yine (G)

Definition 8 Let G=(V,E). A subset S of V(G) 1is called an Inj-equitable in-
dependent set if for any ueS, ve N, (u) forall veS—{u}. The maximum car-
dinality of an Inj-equitable independent set is denoted by p,,. .

Definition 9 An Inj-equitable independent set S is called maximal if any vertex set

properly containing S is not Inj-equitable independent set. The lower Inj-equitable
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independent number i, Is the minimum cardinality of the maximal Inj-equitable
independent set.

Theorem 13 Let S be a maximal Inj-equitable independent set. Then S is a minimal
Inj-equitable dominating set.

Proof. Let $ be a maximal Inj-equitable independent set. Let veV —-S . If
ve N,

ine

(u) for every ueS, then Su{v} is an Inj-equitable independent set, a
contradiction to the maximality of S. So, ve N, (u) forsome UeS.Hence, Sisann
Inj-equitable dominating set. Since for any veS, ve N, (u) forevery ueS—{v},
either N(u)nS=¢ or |degin(u)—degin(v)| >2 for all veN(u)nS. Therefore, S
is minimal Inj-equitable dominating set.

Theorem 14 For any graph G,

7ine < Iine < ﬂine < l—‘ine'

3. Injective Equitable Domatic Number

The maximum order of a partition of a vertex set V of a graph Ginto dominating sets is
called the domatic number of G and is denoted by d(G) [7]. In this section we pre-
sent a few basic results on the Inj-equitable domatic number of a graph.

Definition 10 An Inj-equitable domatic partition of a graph G is a partition
MV, V) of V(G) in which each V; is Inj-equitable dominating set of G. The
Inj-equitable domatic number is the maximum order of an Inj-equitable domatic parti-
tion and is denoted by d,, (G).

Example 1 For the graph G given in Figure 1, {{Vl, v, ), {V3,V4}} is an Inj-equitable
domatic partition of maximum order. Therefore, the Inj-equitable domatic number of
Gis di,.(G)=2.

Proposition 15

1) For any path P, with n>2, d, (P,)=2.

3 if n=0(mod3);

2) Forany cycle C, with n>3, d,, (Cn) = {2 e
otherwise.

3) For any complete graph K, d, (K )=n.
4) For any complete bipartite graph K, , where r+s>4,

Ay < e (K, ) :{m'“{r,s} if |r—s| <1

ne 1 if [r—s|>2.
Vi V2
V4 V3

Figure 1. Circle with 4 vertices C,.
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<d(G), where d(G) Is the domatic number

ine =

Proposition 16 For any graph G, d
of G.
Proof. Since any partition of Vinto Inj-equitable dominating set is also partition of

Vinto dominating set, d,, <d(G).

ine

4. Conclusions

In this paper, we introduced the Inj-equitable domination of graphs and some other
related parameters like Inj-equitable independent number, uper Inj-equitable domi-
nation number and domatic Inj-equitable domination number.

There are many other related parameters for future studies like connected Inj-
equitable domination, total Inj-equitable domination, independent Inj-equitable domi-

nation, split Inj-equitable domination and clique Inj-equitable domination.
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