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Abstract 
This note derives the relationship between the Pearson product-moment coefficient 
of correlation and the Spearman rank-based coefficient of correlation for the biva-
riate normal distribution. This new derivation shows the relationship between the 
two correlation coefficients through an infinite cosine series. A computationally effi-
cient algorithm is also provided to estimate the relationship between the Pearson 
product-moment coefficient of correlation and the Spearman rank-based coefficient 
of correlation. The algorithm can be implemented with relative ease using current 
modern mathematical or statistical software programming languages e.g. R, SAS, 
Mathematica, Fortran, et al. The algorithm is also available from the author of this 
article. 
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1. Introduction 

The Pearson product-moment coefficient of correlation can be interpreted as the cosine 
of the angle between variable vectors in n dimensional space (e.g. [1] and [[2], p. 702]). 
Pearson [3] showed that the relationship of turning Spearman rank-based correlation 
coefficients ( Sρ ) for the bivariate normal distribution into Pearson product-moment 
correlations ( ρ ), which was contrived based on the so-called correlation of grades, for 
large samples to be: 

( ) ( )( )16 π sin 1 2 .Sρ ρ−=                         (1) 
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For finite (small) samples, Moran [4] derived the relationship between the Pearson 
and Spearman coefficients of correlation for the bivariate normal distribution, which 
also appears in Headrick [[5] p. 114], to be: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( ){ }1 16 π 2 1 sin 1 2 1 1 sinS n n nρ ρ ρ− −= − + + + .        (2) 

Taking the limit as n →∞  in Equation (2) will reduce Equation (2) to Equation (1). 
We would also note that Höffding [6] demonstrated that the Spearman rank correlation 
tends to normality for any given parent population. 

2. Mathematical Development 

In view of the above, this note derives the relationship between the Pearson prod-
uct-moment correlation coefficient and the Spearman rank-based correlation coeffi-
cient for the bivariate normal distribution, in a different manner from either the Pear-
son [3] or the Moran [4] derivations, through the following infinite cosine series: 

( )1cosn nx n∞

=∑ .                            (3) 

Specifically, if we let ( ) ( )cos sinz x i x= + , then  

( ){ }( ) ( )1
1 1 1mm n n

n y z z yz yz−
=

= − −∑                     (4) 

where it follows that for 1y < , that 

( ) ( )( )
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2

cos sin

cos sin 1 cos sin
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+

= + − −

= − + − +

∑
                (5) 

Thus, from Equation (5) we have: 

( ) ( )( ) ( )( )1 2
1 cos cos 1 2 cosn

n y nx x y y x y∞ −
=

= − − +∑ .             (6) 

The series associated with Equation (6) is uniformly convergent for all values of y 
and for 1y p≤ < . As such, integrating with respect to y, where 0 1y< <  yields: 

( )( ) ( )( ) ( )( )( )
( ) ( )( )( )

2
1 0

2

cos cos 1 2 cos d

1 2 ln 1 2 cos .

yn
n y nx n x t t x t t

y x y

∞

=
= − − +

= − − +

∑ ∫
          (7) 

Let x neither be zero nor a multiple of 2π . As such, it necessarily follows that the se-
ries in Equation (3) is convergent. Hence, for 0 1y≤ ≤ ; ny  is positive, monotonic, 
decreasing, and bounded. Whence, the series  

( )1 cosn
n y nx n∞

=∑                           (8) 

is, therefore, uniformly convergent for 0 1x≤ ≤ . Subsequently letting 1y → , noting 
again that x is neither zero nor a multiple of 2π , it follows that Equation (3) can be 
expressed as  

( ) ( ) ( )( ) ( )( )( )1cos 1 2 ln 2 2cos ln 2sin 1 2n nx n x x∞

=
= − − = −∑ .        (9) 
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3. Main Result and Conclusions 

Setting ( )π 3 Sx ρ=  in Equation (9), and through subsequent inverse exponentiation 
( )1 e  of Equation (9), yields the relationship (for large samples) between the Pearson 
product-moment correlation and the Spearman rank-based correlation coefficients as 

( )( )2sin π 6 Sρ ρ=                          (10) 

for the bivariate normal distribution. In conclusion, the algorithm provided below in 
Equation (11), which has an oscillating effect of the Gibbs phenomenon [7], to demon-
strate the analytical derivation above is given as: 

( ) ( )( )( )1
ˆ 1 1 cos π 3

kk
Snk n nρ ρ

=
= − ∑                  (11) 

where 0 1Sρ≤ ≤ , k is finite, and where Equation (11) converges to Equation (10) as 
k →∞ . Finally, in terms of the error associated with Equation (11), it is straight-for- 
ward to see through real analysis, that Sρ  and ρ  have a maximum absolute deviation 
when 0.566467Sρ =   and hence Equation (10) would result in 0.584543ρ =  . As 
such, at this maximum point of deviation, given that 10000k =  in Equation (11), that 
the absolute error is less than 55.42 10−×  when juxtaposed with Equation (10). 
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