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Abstract

In this paper, the existence and uniqueness of local solutions to the initial and boun-
dary value problem of a class of parabolic system related to the p-Laplacian are stu-
died. The regularization method is used to construct a sequence of approximation
solutions, with the help of monotone iteration technique, then we get the existence of
solution of a regularized system. By the use of a standard limiting process, the exis-
tence of the local solutions of the system is obtained. Finally, the uniqueness of the
solution is also proven.
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1. Introduction

The objective of this paper is to study the existence and uniqueness of local solutions to

the initial and boundary value problem of the parabolic system

U, —div(|Vui|p"2 Vui)z f (X t,u,U,,U5),(X,t) € Qr, (1.1)
U (x,0)=u,(x),xeQ, (1.2)
u (xt)=0,(x,t)e0Qx(0,T), (1.3)

where p, >2,i=123 O, =0x(0,T),QcR" is a bounded domain with smooth
boundary 0Q. The conditions of f; and u, will be given later.

System (1.1) is popular applied in non-Newtonian fluids [1] [2] and nonlinear
filtration [3], etc. In the non-Newtonian fluids theory, p; (i =1, 2,3) are all characte-
ristic quantity of the medium. Media with p, > 2(i =1, 2,3) are called dilatant fluids
and those with p, <2(i=1,2,3) are called pseudoplastics. If p, =2(i=12,3), they
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are Newtonian fluids.

Some authors have studied the global finiteness of the solutions (see [4] [5]) and
blow-up properties of the solutions (see [6]) with various boundary conditions to the
systems of evolutionary Laplacian equations. Zhao [7] and Wei-Gao [8] studied the ex-
istence and blow-up property of the solutions to a single equation and the systems of
two equations. We found that the method of [8] can be extended to the general systems
of n equations. For the sake of simplicity, this paper only makes a detailed discussion
on n = 3. Since the system is coupled with nonlinear terms, it is in general difficult to
study the system. In this paper, we consider some special cases by stating some methods
of regularization to construct a sequence of approximation solutions with the help of
monotone iteration technique and obtain the existence of solutions to a regularized
system of equations. Then we obtain the existence of solutions to the system (1.1)-(1.3)
by a standard limiting process. Systems (1.1) degenerates when U, =0 or Vu,=0.In
general, there would be no classical solutions and hence we have to study the genera-
lized solutions to the problem (1.1)-(1.3).

The definition of generalized solutions in this work is the following.

Definition 1.1. Function u=(u,,U,,U,) Is called a generalized solution of the sys-
tem (1.1)-(13) if U e " (Q; )N L" (0,T:Wy " (Q)), U, e P (Q),i=123, and sa-

tisfies

”QT (—Ui¢’ir +|vu " VUV e )dth ~ [ Uio®: (x,0)dx

(1.4)
= ”QT fi (x.t,uy,u,,u, ) gdxdt,
forany ¢, eC' (Q_T),q)i (x,T)=0,¢,(x,t)=0, for (x,t)eoQx(0,T),i=12,3.
Equations (4) implies that
I;IQ<_ui(pit +vu " * vuve, )dxdt + jﬂui (x,t) g, (x.t)dx— jguio% (x,0)dx
(1.5)
:_[;J.in(Xitvupuz,ug)(pidxdt, a.e. tE(O,T)
The followings are the constrains to the nonlinear functions f;,i=1,2,3, involved

in this paper.

Definition 1.2. A function f = f(u,,u,,u;) is said to be quasimonotone nonde-
creasing (resp., nonincreasing) if for fixed u,(j#i), f isnondecreasing (resp., non-
increasing) in u;,(i=1,2,3).

Our main existence result is following:

Theorem 1.3. If there exist nonnegative functions f;(X,t,u;,u,u,)eC (S_) x[0,T]x R3)
which are quasimonotonically nondecreasing for U, U,, U,(i=1,2,3), and a non-
negative function §(s)eC*(R) such that

[, (Xt Uy, Uy, u)| < min{g (u,), (U, ), 9 (us)} and U, € L7 (Q) AW, (Q).  (1.6)

Then there exists a constant T' e [O,T] such that the system (1.1)-(1.3) has a solution
u= (ul, u,, u3) in the sence of Definition 1.1 with T replaced by T'.
In Theorem 1.3, we just obtain the existence of local solution. As known to all, when

the system degenerates into an equation, as long as some order of growth conditions is
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added on f , we can find the global solution, which is the main result of [7]. The
existence of the global solution of (1.1)-(1.3) remains to be further studied.

On the other hand, similar to [8], we made the assumption of monotonicity to f;.
From the current point of view, the condition is relatively strong. It is well worth

studying how to reduce f, monotonicity requirements of the system (1.1)-(1.3).

2. Proof of Theorem 1.3

To prove the theorem, we consider the following regularized problem

Pi-2
U, —div((|Vui|2 +g) 2 VUiJ: f (X,t,U,U,,Uq), (X 1) ey, (2.1)
U (%,0) =Uy, (x),xeQ, (2.2)
u (x,t)=0,(xt)e0Qx(0,T), (2.3)

where figecl(ﬁx[O,T]st), f;

le

are quasimonotone nondecreasing and f;, — f

uniformly on bounded subsets of Qx[0,T]xR®, also

fio (X, t,Uy, Uy, u)| < min{g (u,), 9 (u, ), 9 (us)} (2.4)

U, € Cé (Q)’|ui05 LPi Lhi

Lemma 2.1. The regularized problem (2.1)-(2.3) has a generalized solution.

< |Uio|Lpi !|Vui0g

< C|VUig|m + Ui, = Uy strongly in W™ ().

Proof. Starting from a suitable initial iteration (uff),ugz),ugz)) , we construct a se-

quence {(ul(:),ug;),ugi) )} from the iteration process
pi—2

u®) — div UVui(f)r + SJT vul | = f, (x,t, ul(f’l),ug‘;’l),ugi’l)),(x,t) €Q,, (2.5)

it

ui(:) (x,0)=uy, (x),xeQ, (2.6)
u (x,t)=0,(x,t) € 22x(0,T), (2.7)
where i=12,3.Itis clear that for each k =1,2,---, the above system consists of three

nondegenerated and uncoupled initial boundary-value problems.

By classical results (see [9]) for fixed ¢ and k the problem (2.5)-(2.7) has a clas-
sical solution {(ul(f,),ugt),ugt_) )} if {(ufffl),ugtfl),ugtfl) )} is smooth.

To ensure that this sequence converges to a solution of (2.1)-(2.3), it is necessary to
choose a suitable initial iteration. The choice of this function depends on the type of
quasimonotone property of (f;, f,, f;). In the following, we establish the monotone
property of the sequence.

Set T% (x,t)= SUPg, {Ui, (X)},1=12,3. Let T be a classical solution of the fol-
lowing problem.

pi—-2

2
o —div UVUS)‘ +€j 2 vg?

ict &

(ot o, o) o)) (k) e, 28

T (x,0)=u,, <0, xeQ, (2.9)

- g !
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T (x,t)=0,(x,t)e 6Qx(0,T), (2.10)
By f, (x t,ul,uf®, u ) <f, (x, t,a%,a?, Ugf)) and the comparison theorem (see
[10]), we have that
o <9, o) <ul? and @) <T?. (2.11)
Hence by the quasimonotone nondecreasing property of f,_, we have

f (000,000 < 1, (n0f 0008
(2.12)
< 1, (60 30,09,5) < 1, (x4, 59,02,59)
for i=12,3.

Using the same argument as above, we can obtain a classical solution (Ul(f ), Ueff))

of the problem

Pi—2

0 - div (‘Vu ‘+g) Cva? =6 (et T T ) (k) e, (213)

0 (%,0)=uy, X Q, (2.14)
07 (x,t)=0,(x,t)e 82x(0,T), (2.15)
for 1=12,3.

By the comparison theorem, we have
u? <u® o? <ul and u? <) (2.16)
By induction method, we obtain a nonincreasing sequence of smooth functions

T >V >g?>..>al > (2.17)

In a similar way, by setting u” (x.t)=infy {ug, (X)},i=12,3, we can get a solu-

tion ( ﬁ),u(zlg,u()) of
pi—2
ul —div (‘Vu +g) vyl =fig(x,t,gﬁ),g@,gg?),(x,t)eQT, (2.18)
ug (%,0)=ug, 2uf xeQ, (2.19)
u (x,t)=0,(x,t)e82x(0,T), (2.20)

with

u > y® g >

& — Zle 122

and u ug) (2.21)

In the same way as above, we obtain a nondecreasing sequence of smooth functions

uy <up) <u? <-su <o (2.22)

le

It is obvious that U.g) < go) . By induction method, we may assume that gff b <,

le

Since f, is quasimonotone nondecreasing, we have
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f (o tuld ul) ud)) < f (xthf),ugi, )

(2.23)
<f, ( t,a, ), ul) ) f (xt al) ol ,u(f))

for i=12,3.

pi—2

+8j 2 ovul | =1, (xtugé), (zké),ugkg)),(xt) €Q;, (2.24)

k+1 _div (‘Vu (k+2)

Iét

Ist &

k+1 —div O I(k+l) +¢9j 2 VUi(kJrl) — fig(X:tyﬁl(;)vﬁz(:)a'j?fk)):(th)EQTy (225)

yle (x 0)=u gk (x,0),xeQ, (2.26)
gﬂf“) (xt)=0= Ui(gk”) (xt),(x,t)e0Qx(0,T), (2.27)

By the comparison principle, we have ul*™ <T** Therefore
ul? <ul? <o <ul® < <l <l <o <g <gl, (2.28)

Taking ufgk )= g?:) (i =12, 3) , we get a nondecreasing bounded sequence
{u.(")};O . (i =12, 3) . Hence there exist functions u,, (i =1,2,3) such that

le

Ilmu) U, ae. in Q. (2.29)

ie?
By the continuity of f, (i=1,2,3), we have
lim £, (x t,u® ul), ul) ) f, (X.t,uy,, Uy, Uy, ) ae.in Q. (2.30)

We now prove that there exist T'e (O,T] and a constant M (independent of k and
¢ ) such that for all &, we have

e

ic

<M,i=123. (2.31)

(o)

Let v (t)(i=1,2,3) be the solutions of the ordinary differential equations

=+g(v;),v; (0) +|u,0| =1,2,3). (2.32)

By standard results in [11], there exist T, €(0,T),i=12,3, such that v exists on
[0,T;] with T, depends only on |Ui0|Lw(Q) . By the comparison theorem

Ju (x, )] < max {v; (), ~v; (1)} (i =1.2.3). (233)

Setting T':%min{Tl,Tz,E},M :max{vi+ (T),—v; (T')} , we obtain (2.31).

We now claim that ui(é_k) —Uu,, as k—oo,in L" (O,T';Wolvpi (Q))(I =1 2,3) , where
— stands for weak convergence, i=1,2,3.

Multiplying (2.5) by ui(:) and integrating over (., we obtain that

K2
872 0:52: Scientific Research Publishing



Q. T.0u, H.S. Zhan

-2
1 |t - @w o o
(2.34)

_”Q flg(xt ulkY ety ) Jdxdt.

Furthermore
pi—2

u +ng ‘Vui(f) i

ToJy a0t e ([

= [f i (et ul i ul Judxa, e

i1, (fvat’f

—“ f (xtukl Yyl >) Jdxdt (2.36)

_EJ‘Q[(U” (xT) ) —(uff)(x,o)) }dx.

By (2.12) and the property of f,

P
e =00 [

where Cis a constant independent of & and &

(2.35)

+ gj ‘Vu

‘Vu(k)

ie

pi—2
2 Ty 2
vu| +g) * vul axde<c, (2.37)

Multiplying (2.5) by ui(:_(t) and integrating over (.., we have

Il {( ) —d'VmV” I +6)”;2 vui J '“}dth (2.38)

([, o (Rl
By Cauchy inequality and integrating by parts, we obtain
B2
1 b o=, ()t it
+” f (x t,ulf Y ufd gk ) ")t
<[ dt(‘w )dtdx+ [Jo, (v ,m) dxdt 039
+§”QT,fis(X,t,u1(k-1) k= Ugg
:—.[ (‘Vu_(k) ‘ ‘VU.Og jdx+ ” ( m) dxdt

+= ”Q fm(xtu1£ usg )dxdt

)dxdt

Hence

” ( m) dxdt<C( (‘Vu,og

)dx+” f,é(xtulg Ul ules )dxdt)<C(240)
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By (2.37) and (2.40), we obtain that there exists a subsequence of ui(f) converging

weakly in the following sense as j — 0.

vul —~vu,,in L7 (Q) (2.41)
b2 Pi

‘Vui(f‘) u ~w,,,in L"?(Q,.), for some w,, (2.42)

ul — ., in L2(Q) (2.43)

where — stands for weak convergence, i=12,3.
From (2.29), (2.30), (2.37), (2.40) and the uniqueness of the weak limits, we have that,

as k> o,
vul —~vu,, inLl"(Q) (2.44)

W su, f (xt U}E),ugi),uéi))a f (X, tU,, Uy Uy ) aeinQ.  (2.45)

ig? ie

u.(k) —u

ict iet?

in L® (QT,) (2.46)

We now claim that W, = =123

Multiplying (2.5) by ( u )¢| and integrating over Q. with ¢eCy(Qy ). ¢ >0,

we get

”QT( is .L)qﬁlumt dxdt + [[ ( — VU, ) 'Ovu&kj)z

=)
I (9 o) va ([ o)

+gj * vudxdt (2.47)
= [, (0~ )t (o tut ™ U ul ot

|gx| '

pi—2
+g) * vudxdt

Hence

I, (7 v, )a oo

= [Jo, (0l =) (x 6w, ul™,ud™ e [ (Wl —u, ol 2.48)

-2
[l (- o)

+ej ? vudxdt.
Since the three terms on the right hand side of the above equality converge to 0 as

pi—2

+5) ? vudxdt

j — . This yields that

() ()| P2 7 09) it =
!T;IQ” (Vu K Vuig)qﬁi‘Vuig vudxdt = 0. (2.49)

On the other hand, since Vu,, € L" (Q;.), we have that

fm [, (Ve =V )

P~ v, dxdt = 0. (2.50)

Note that

0
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Jo ‘V Su(kJ )i, " s ‘V ugy) —Uis)z
_ (2.51)
< (‘Vuig‘ ‘ vul —|vu, " v, j(Vui(gk‘) —Vuig).
Following (2.50) and (2.51), we have
pi—2 : 2
(k) -
!I_I)EIJ'QT¢ U ‘V su +(1-s)y, ) dsj‘v(uig‘ -u, )‘ dxdt = 0. (2.52)
Since
IV (su + (1= s)u, )‘p'fz dsdxdt < C (2.53)
"
and
‘VU ‘ : |st |VU |gx|
1d -
=[.— ” {‘sVu 91 (1-s)Vu, ( sul) +(1-s)u,, )}ds
<|I; lsvul + (1- S)Vuig‘prz (ufjﬂ Uy )ds (2.54)
+ :( pi - 2)‘SVUI(:J) + (1_ S)Vuis " ( |(g><l) (1 S) iex| )( |(;>J<I) |gx| )dS
<C ‘V(u(k‘) ~u ) : svul +(1-s)vu, " ds,
by Holder inequality, we have
Pi-
J.J.QT’ ( Vul(:]) |gxl |VU wxl j¢dth
1
. -2 . 2
< C( . V(sui(:,“) +(1- s)uie) " ds ‘V (ui(:') ~u, )‘ dxdt]2 (2.55)
x( ALV (sul +(1-s)u,, ) " dsdxdt]z —0,jo .
Le,
[l ( o — VUL Ui )qi,dxdt, for any ¢. (2.56)
Qr
Hence
|£><| |s><| ! i= 1’ 2' 3. (2 57)
This proves that any weak convergence subsequence of ‘Vui(gk )‘ " u; gkx), =123 will

have w,, as its weak limit and hence by a standard argument, we have that as
k— o,

Pi
in LP(Q),i=1,2,3. (2.58)

|

|s><| |gx| '

Combining the above results, we have proved that u, =(u,,,U,,,Us,),(X,t)€ Q. isa
generalized solution of (2.1)-(2.3).
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Proof of theorem 1.3.

Since U, satisfy similar estimates as (2.31), (2.37) and (2.40), combining the prop-
we know that there are functions u, € L™ (O,T';Wol'pi (Q))(l =1,2,3) (as
& — 0) such that for some subsequence of (uj,,U,,,U,,), denoted againby u,,

erty of f,

ic?

vu, — Vu;, inL"(Q) (2.59)

u, > U, (X tu,,uy, U, ) = fi(Xtu,u,,u,) ae inQ (2.60)

Uy — Uy, N L2(Qp) (2.61)
Pi

[Vu, o — Wy, in LPH(Q) (2.62)

In a similar way as above, we prove that w,

ixl ixl 1

=|vu " " u,,i=12,3.

By a standard limiting process, we obtain that u =(u,,u,,U;) satisfies the initial and
boundary value conditions and the integrating expression. Thus u=(u,,u,,u;) is a
generalized solution of (1.1)-(1.3).

3. Uniqueness Result to the Solution of the System

We now prove the uniqueness result to the solution of the system.
Theorem 3.1. Assume f = ( f,, T, f3) is Lipschitz continuous in (ul,uz,u3) , then
the solution of(1.1)-(1.3) is unique.
Proof. Assume that u =(u1,u2,u3) and V=(V1,V2,V3) are two solutions of (1.1)-
(L.3).Let W, =u; —V;,i=1,2,3, then following (1.5),
LIJ' ( uw, +[Vu, [ vu v, )dxdt+j (X, )w, (xt)dx— [ ugw (x,0)dx )
= _[;IQ f.(xtu,u,,u;)wdxdt, ae. te(0,T).

T (~viw, + [V 2 vv,vw, ) dxdt + X, t)dx — [ v,ow, (x,0)dx
.[0.[ ( t | | ) I ( .[ 0 ) (3.2)
- J';fﬂ f,(X,t,V,,V,,V; ) Widxdt, ae. te (O,T).
By (3.1) subtracting (3.2), we get
%jg(ui —v,) dx = —ftj (|Vui " vy, — Vv " vy, )V(ui v, ) dxdt
+_H (Xt U, Uy, U ) = (X080, V5, v ) ) (U — v ) dxdt. (3.3)
<.[_|' xtul,uz,ug) £ (X8, v5,v5)) (U, — v ) dxalt.
By the inequality (3.3) and the Lipschitz condition, a simple calculation shows that
j (|u1 [ +u, v, [ +]u, —v3|2)dx
Q
< 2K.[;L2(|u1 | [uy =V, |us vy ) dxalt (3.4)
< GKJ';J.Q(|U1 A A e T —v3|2)dxdt

Setting F(t)= I;LZ (|u1 —V1|2 +[u, —v, |2 +|u, —v3|2)dxdt , then (3.4) can be written as
F'(t)<6KF(t). Since F(0)=0, by a standard argument, we have F(t)=0, and

K2
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hence u; =v;(i=12,3).
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