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Abstract 
This paper addresses a digital controller for a real time magnetic levitation system 
using series expansion of pulse transfer function, which achieves desired closed loop 
response. The proposed digital controller designed, based on series expansion of 
pulse transfer function by solving a linear equation using the method of least squares, 
which improves the transient performance and step tracking capability of the com-
pensated system. The designed algorithm used for the control input is not iterative, 
so the calculation is very fast. The proposed control scheme has successfully applied 
on maglev system and also validated through the simulation and hardware experi-
mental results. 
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1. Introduction 

Magnetic Levitation technology has received tremendous innovation in various engi-
neering fields and is being utilized in various automation applications [1] [2]. The con-
cept behind all applications is to provide contactless levitation to reduce the effect of 
wear and tear, therefore, increasing the efficiency and reliability. These days, this tech-
nology has covered major applications in different areas like transportation field, mag-
lev trains [3] [4] [5] [6], personal rapid transit, defence area (gun, rocketry), nuclear 
engineering (the centrifuge of nuclear reactor), chemical engineering [7] (for analyzing 
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foods and beverages), architectural and interior design (lamp, chair, sofa, bed, washing 
machine), biomedical field (heart pump) [8] [9] [10], civil engineering [11]-[18] (mag-
netic bearing, elevator, lift, fan, compressor, chillers, pump and geothermal heat pumps) 
etc.  

The magnetic levitation system is nonlinear and unstable. There are various control 
strategies [19] [20] available for their stable operation. Some control schemes are ap-
plied on the linearized model of magnetic levitation system and some of controllers are 
implemented in nonlinear environment [21]. The most common controller used is PID 
due to its simple construction and easy implementation. Nowadays, some extended 
versions of PID controllers are reported in literature such as FOPID controller [22] [23] 
[24] in which five tunable parameters (only three tunable parameters available in con-
ventional PID controller) are considered and providing more flexibility for design. 
Fuzzy PID controller [25] [26] [27] [28] is designed with the help of expert knowledge 
considering the parameter uncertainties. In [28], an Interval Type-2 Fuzzy PID control 
scheme is suggested for controlling of maglev system and SMC based fuzzy controller is 
used to minimize the effect of parameter uncertainty and disturbance [29]. In [30], 
2-DOF PID controller has been designed for magnetic levitation system to achieve the 
desired speed of response and tuning of PID parameters is calculated by using pole 
placement technique for desired damping ratio and settling time with two adjustable 
gains. An integral variable structure grey control [31] has been applied on SMC to 
overcome the chattering present in the scheme for the expected limit of uncertainties 
and disturbances. An adaptive robust output feedback controller [32] is designed by 
using backstepping approach with robustifying modification of the K-filter scheme to 
avoid the noise present in the sensor at the output for proper tracking of position of 
magnetic levitation system. H-infinity based control scheme is discussed in [33] [34]. In 
[34], H∞ controller is designed to achieve the set-point regulation and disturbance at-
tenuation. Robust dynamic sliding mode control has been designed to control the posi-
tion of magnetically suspended metallic object in presence of uncertainties and nonli-
near term is estimated using RENN estimator [35] [36] [37]. Fuzzy compensation based 
adaptive PID controller is reported in [38] in which adaptive PID is main controller 
and their parameters are tuned by adaptive law and Fuzzy compensation controller is 
designed for obtaining the guaranteed stability.  

The major finding from the above existing control strategies is that, the transient re-
sponse (settling time and peak overshoots) of magnetic levitation system is not up to 
mark. Digital control provides flexibility and easy implementation of wide range of 
control algorithms over there analog counter parts and also achieves deadbeat response 
[39] [40] [41]. Motivated from this philosophy, single loop digital controller is designed 
using series expansion of pulse transfer function in [42] and a modified digital control-
ler is designed for double loop system in [43]. Gain scheduling method based digital 
control scheme is used to tune the parameters of power MOSFET or board impedance 
between each phase for optimization in current balance [44].  

Looking into the advantages of digital control, the present work proposes a control 
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scheme for magnetic levitation system, which is based on series expansion of pulse 
transfer function [42] [43] that provides better transient response, fast dynamic re-
sponse and also could be implemented in digital environment directly. To the best of 
authors’ knowledge, this digital control technique based on series expansion has not 
been applied so far on the maglev system. In this paper, initially non-linear maglev 
model is linearized, then for the linearized system, transfer function is obtained. The 
proposed control scheme is basically designed on the basis of number of series coeffi-
cient of plant and controller that are taken as m and n respectively. The proposed digi-
tal controller is tested for two sampling times (Ts = 0.0001 second & 0.001 second) and 
different combinations of series coefficients m and n for plant and controller.  

The rest of the article is organized as following. The mathematical modeling and 
control system of magnetic levitation system is given in Section 2. The brief back-
ground of series expansion method of controller design algorithm is given in Section 3 
and the designing steps of controller for magnetic levitation system are given in Section 
4. The simulation and experimental results are obtained in Section 5. The conclusion of 
the work is given in Section 6 and then after references. 

2. Mathematical Modeling of Magnetic Levitation System 

The systematic diagram of magnetic levitation system is shown in Figure 1 and its 
electrical equivalent circuit in Figure 2. This experimental setup is made by feedback 
instrument Ltd. [45]. 
 

 
Figure 1. Magnetic levitation system. 
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Figure 2. Electrical circuit of magnetic levitation system. 

 
The maglev system mainly consists of four major parts: suspended steel ball, position 

Infra Red (IR) sensors, controller and actuator (including electro magnet and power 
amplifier). The steel ball is mainly controlled through current i, as clearly indicated in 
Figure 2. The magnetic force acting on the steel ball depends on two parameters, first, 
the current i, flowing in the coil and the second one is the distance h between coil and 
the steel ball. 

The non-linear model of magnetic levitation system [30] [45], which relates to the 
current flowing in the coil i and the position h of the steel ball is expressed as: 

2

2
imh mg C
h

= −                            (1) 

where C is a constant value which depends on the parameters of coil, m  is mass of the 
steel ball, g is acceleration due to gravity.  

The magnetic levitation system expressed by (1) is nonlinear in nature. For easy 
analysis and design of controller, the system is linearized about the equilibrium point 
( 0 0.8 Ai =  and 0 0.009 mh = ). 

( ) 2 2,f i h Ci h=                           (2) 

The linearized model of magnetic levitation system is obtained as: 

( ) ( )
0 0 0 0, ,

, ,

i h i h

f i h f i h
h i h

i i

 ∂ ∂ ∆ = ∆ + ∆
 ∂ ∂ 

                   (3) 

By calculating the partial derivative and taking Laplace transform on both side of 
Equation (3) we get the transfer function as 

2
i

h

Ch
i s C

−∆
=

∆ −
                           (4) 

where iC  and hC  are the constant values for the maglev system and expressed as: 

0 0

2 2,i h
g gC C

i h
= =                          (5) 

In electrical equivalent circuit of magnetic levitation system in Figure 2, the current i 
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flowing in the coil is proportional to the control voltage v and expressed as: 

1i C v=                              (6) 

where 1C  is the proportionality constant. 
Now, the transfer function can be written as:  

1
2

i

h

C Ch
v s C

−∆
=

∆ −
                          (7) 

where v∆  is small incremental control voltage around its mean value. By considering 

2C  which is the gain of (IR) sensor for conversion of position of ball in meter to vol-
tage.  

The transfer function of magnetic levitation system with sensor system is obtained 
as: 

1 2
2

v i

h

h C C C
v s C

∆ −
=

∆ −
                         (8) 

where vh∆  is the (IR) sensor output voltage. 
Using given values in the Table 1, the transfer function of the magnetic levitation 

system is obtained as: 

( ) 2
3518.85

2180
P s

s
−

=
−

                        (9) 

The Maglev system (9) has two poles at ±46.69. It is seen that one pole lies in right 
half of complex s-plane so system is unstable. Hence, the aim is to design a controller, 
which leads to overall stable system. 

3. Proposed Controller Algorithm 

Let the pulse transfer function of the plant (Maglev System) and controller be P(z) and 
C(z) respectively [42] [43]. A unity feedback system having a digital controller is shown 
in Figure 3. The pulse transfer function P(z) and C(z) can be expanded in negative 
power of z as follows: 
 
Table 1. The parameters of physical Maglev system [30] [45]. 

Description of Parameters Value with Unit 

mass of the steel ball (m) 0.02 kg 

Acceleration due to gravity (g) 9.81 m/s2 

Equilibrium value of current (i0) 0.8 A 

Equilibrium value of position (h0) 0.009 m 

Control voltage to coil current gain (C1) 1.05 A/V 

IR sensor gain (C2), offset 143.48 V/m, −2.8 V 

Control input voltage level (v) ±5 V 

Sensor output voltage level (hv) +1.25 to −3.75 V 
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Figure 3. Proposed simulation diagram. 

 

( )
0

k
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P z p z

∞
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−

=
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The open loop pulse transfer function O(z) can be written as: 

( ) ( ) ( )
0

k
k

k
O z P z C z o z

∞
−

=

= = ∑                   (12) 

From (10), (11) and (12) the coefficient kO  can be calculated in term of coefficients 

jp and kc  as follows:  

1

0 0

k

k k j j
j

O c p

O

−
=

=

=

∑  1, 2,3,k =                    (13) 

The closed loop pulse transfer function for the above system can be expanded as: 

                              

( ) ( )
( ) 01

k
k

k

O z
W z w z

O z

∞
−

=

= =
+ ∑                    (14) 

Employing (13), the coefficients kw  are calculated using the iteration formula: 

0

1 1
1

1

0 , 0
, 1

, 2,3,
k

k k j k j
j

w k
w o k

w o o w k
−

−
=

=  =

=  =

= −  =∑ 

                  (15) 

Thus, the series expansion coefficient of closed loop pulse transfer function is ex-
pressed in terms of series expansion coefficient of open loop pulse transfer function and 
these series coefficients are arbitraterely chosen for obtaining the desired performance. 
The proposed control scheme is basically design on the basis of number of series coeffi-
cient of plant (10) and number of series coefficient of controller (11) on their expansion 
that are taken as m and n respectively during the design procedure that are discussed in 
next section. 
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4. Controller Designing Steps 

Let the pulse sequence { }; 0,1, 2,3, ,kw k m=   represents desired unit pulse response. 
Now, we have to design a controller so that the sequence of closed loop system is ap-
proximately matched with the desired one. For designing of the controller, we have to 
follow the steps given: 

Step 1: First specify the desired pulse response sequence { }; 0,1, 2,3, ,kw k m=   
and the number of series coefficient of the plant m and controller coefficients n 
( 1< −n m ) to be designed. 

Step 2: Using the (15) solve for kO  ( 2,3,4, ,k m=  ) with iteration formula:   

1 1
1

1

k

k k j k j
j

O w

O w o w
−

−
=

=

= + ∑
 2,3, ,k m=                  (16) 

Step 3: Now substitute kO  ( 1,2, ,k m=  ) into (13) and construct an equation for 

kc   

( ) ( ) ( )P z C z O z∗ =                        (17) 

where 

1

2 1

1 2 1
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0 0 0 . . . 0 0
0 0 . . . 0 0

. . . .

. . . .

. . . .
. . . . .

. . . .

. . . .

. . . .
. . . . .

n n
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p p

P
p p p p

p p p p

−

− − + −

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

           (18) 

[ ]T
0 1 nC c c c=                        (19) 

[ ]T
1 2 mO o o o=                        (20) 

Step 4: Now, solve Equation (17) by the method of least squares and the solution of 
the calculated controller coefficient *c  is obtained as:  

( ) 1* T Tc P P P O
−

= ∗ ∗ ∗                        (21) 

Step 5: The controller coefficients are expressed as: 

( ) * * 1 * 2 * 1 *
0 1 2 1

n n
n nC z c c z c z c z c z− − − + −

−= + + + + +              (22) 

The (22) is the designed controller for a specific value of series coefficients of plant 
and controller as m and n respectively.  

Note 1: If the response of closed loop system obtained from (22) along with (10) 
does not track the desired trajectory, then value of series coefficients of pant m and 
controller n are increased and all the above five steps are repeated.  
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The next section presents the simulation at different sampling times and various in-
puts as well as the hardware results for sinusoidal input when controller given by (22) is 
applied on maglev system (9). 

5. Simulation and Hardware Experimental Results 

The simulation diagram of proposed digital control algorithm for the controlling of 
maglev system is given in Figure 3. 

The simulations are carried out for two cases, one at sampling time Ts = 0.0001 
second and secondly at 0.001 second.  

Case 1: Plots at sampling time (Ts) = 0.0001 second  
Let the sampling time (Ts) is 0.0001 second and the desired pulse sequence is W = [0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1 ⋅⋅⋅]. Now for step input we have to design a 
controller so that it can track the step input. Once the controller is designed with the 
help of series expansion of pulse transfer function subjected to step input then it is also 
effective for all type of inputs. The performance of designed controller depends upon 
number of series coefficients m and n considered for plant and controller respectively 
and plots are given for following conditions that are given below. 

Simulation results for various inputs at sampling time Ts = 0.0001 second 
The simulation results for various combination of number of considered series coef-

ficient of plant and controller are discussed below 
1) For m = 25 & n = 2  

In this case the controller series coefficient is obtained as [ ]917.2 2015 2899.4 .C = − −  
After applying this controller on the magnetic levitation system (9), the closed loop 
discrete transfer function is obtained as:   

3 2

4 3 2
0.01614 0.05159 0.01556 0.05101

1.984 1.052 0.01556 0.05101
z z z

z z z z
+ − −

− + − −
              (23) 

The eigen values of (23) lie at 0.9911, 0.8391, 0.3362 and −0.1825 and all are within 
the unit circle. Hence, system is stable. The simulation results are plotted for different 
inputs such as step, square wave and sinusoidal in Figures 4(a)-(c). 
2) For m = 25 & n = 3 

In this case, the proposed controller coefficient is obtained as  
[ ]1323.4 390 780.1 906.6C = − −  and the closed loop discrete transfer function is 

written as: 
4 3 2

5 4 3 2
0.02328 0.03015 0.006864 0.02968 0.01595

1.977 1.03 0.006864 0.02968 0.01595     
z z z z

z z z z z
+ − − −

− + − − −
       (24) 

It is found that, all the eigen values of (24) lie within the unit circle. The simulation 
results are plotted for different inputs such as step, square wave and sinusoidal from 
Figures 5(a)-(c). 

The step performance of proposed controller is summarized in Table 2. 
Remark 1: Looking at the Table 2 for cases m = 25 & n = 2 and m = 25 & n = 3, it is 

seen that on increasing the number of controller coefficients n from 2 to 3, settling time  
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) Response for step input; (b) Response for square wave input; (c) Response for sinu-
soidal. 
 
Table 2. Performance of proposed controller for step input (Ts = 0.0001 second). 

m & n 
Rise Time  
(second) 

Settling Time  
(second) 

Overshoot Peak 
Peak Time 
(second) 

m = 25 & n = 2 0.001 0.0111 3.65% 1.05 0.0038 

m = 25 & n = 3 0.001 0.0057 2.19% 1.04 0.0039 

 
is reduced from 0.0111 second to 0 .0057 second and overshoot is also decreased from 
3.65% to 2.19%. The simulation results for various input clearly state that the proposed 
algorithms is gives the better tracking response whatever the input such as step, square 
and sinusoidal. 

Note 2: Experimental results cannot be verified for sampling time Ts = 0.0001 
second because the magnetic levitation provided by Feedback Instrument is manufac-
tured for sampling time Ts = 0.001 second.  
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) Response for step input; (b) Response for square wave input; (c) Response for sinu-
soidal input. 
 

Now, the performance of designed controller is tested at sampling time 0.001 second 
through simulation as well as on the system hardware (Magnetic Levitation System 33 - 
210, Feedback Instruments) which is presented through Case 2. 

Case 2: Plots at sampling time (Ts) = 0.001 second 
The similar steps are carried out as in Case 1 for designing of controller. The simula-

tion and hardware experimental results are plotted for following conditions as in Sec-
tion A and Section B respectively in below.  
A. Simulation results for various inputs at sampling time Ts = 0.001 second 
1) For m = 7 & n = 2 

In this case the controller coefficient is obtained as [ ]13.5754 2.4951 14.1198C = − −  
and with this controller the closed loop discrete transfer function for system (9) is ob-
tained as: 
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3 2

4 3 2
0.02389 0.02828 0.02046 0.02485
 1.978 1.028 0.02046 0.02485  

z z z
z z z z

+ − −
− + − −

              (25) 

and all the eigen values of (25) lie within the unit circle. The simulation results are 
plotted for various inputs as shown in Figures 6(a)-(c). 
2) For m = 12 & n = 3 

In this case the controller coefficients are obtained as  
[ ]10.8190 13.5268 27.1775 4.5759C = − − − . The closed loop discrete transfer for 

system (9) with this controller is obtained as: 
4 3 2

5 4 3 2
0.01904 0.04284 0.02402 0.03977 0.008052

1.983 1.043 0.02402 0.03977  0.008052 
z z z z

z z z z z
+ − − +

− + − − +
       (26) 

Here, also all the eigen values of (26) lie within unit circle. The results are plotted for 
various inputs as shown in Figures 7(a)-(c). 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Response for step input; (b) Response for square wave input; (c) Response for sinu-
soidal input. 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Response for step input; (b) Response for square wave input; (c) Response for sinu-
soidal input. 
 

Remark 2: The simulation results for Case 2 of m = 7 & n = 2 and m = 12 & n = 3 
are plotted in Figures 6(a)-(c) and Figures 7(a)-(c), from the above Figures it is clear 
that, tracking is almost achieved for desired trajectories such as step, square and sinu-
soidal. The step performances for this case are summarized in Table 3. 

It is seen from Table 3, the transient response (peak overshoot and settling time) has 
improved remarkably as the order of plant and controller coefficients are increased 
from m = 7 & n = 2 to m = 12 & n = 3. The experimental result has been carried in 
Section B.  
B. Hardware experimental results 

The effectiveness of proposed controller is verified on setup of maglev system 
(33-942S) provided by feedback instrument. The maglev setup has two PCI port as 
PCI1711 Lab I/O ADC port is configured for plant output and PCI1711 Lab I/O DAC 
port is dedicated for input to the maglev system. The maglev system is manufactured  
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Table 3. Performance of proposed controller for step input (Ts = 0.001 second). 

m & n 
Rise Time  
second) 

Settling Time 
(second) 

Overshoot Peak 
Peak Time 
(second) 

m = 7 & n = 2 0.01 0.07 13.43 1.66 0.04 

m = 12 & n = 3 0.01 0.07 7.39 1.66 0.04 

 
for sampling time Ts = 0.001 second. The proposed hardware experimental diagram is 
given in Figure 8. 

The hardware results are tested for all two cases as discussed in Section A for Case 2 
and hardware result is plotted for sinusoidal input at sampling tine 0.001 second. The 
position of ball to reference input is presented in voltage [V] as well as in meter (m) 
along with control effort in voltage [V]. 
1) For m = 7 & n = 2  

For this case, hardware experimental result is shown from Figure 9 for sinusoidal 
input. 
2) For m = 12 & n = 3 

For this case, the hardware experimental result is shown from Figure 10 for sinu-
soidal input. 

Remark 3: From the hardware experimental results as shown in Figure 9(a) and 
Figure 9(b) and Figure 10(a) and Figure 10(b), it is noticed that the peak overshoot is 
less in case of m = 12 & n = 3 as compared to the when m = 7 & n = 2. 

It could be remarked here that on increasing the series coefficients of plant and con-
troller, the transient and steady state behavior of system have been improved. 

Comparison 
The designed control strategy is quite useful for complex system and it can be easily 

implemented on any real time system via computer-programmed algorithm where as 
conventional continuous control scheme may suffer during real time implementation 
of linear or nonlinear control algorithms. To show the effectiveness of proposed control 
strategy, a comparative simulation result of designed control scheme (m = 25 & n = 3 
at sampling time 0.0001 second) with conventional PID ( 4, 0.5, 0.05C I Dk τ τ= − = = ) 
and FOPID ( 19, 18.5, 0.18, 0.5, 0.85p i dk k k λ µ= − = − = − = = ) control scheme for the 
considered maglev system (9) are shown in Figure 11. 

The comparative results analysis with conventional PID and FOPID controller are 
given in Table 4. 

From the Figure 11, it is clear that the designed controller is performed well and ball 
of maglev system tracks more accurately to the reference trajectory. The system per-
formances are improved, which are clearly listed in Table 4. The performance designed 
controller is also depend on sampling time of specified system that are also noticed via 
the Table 2 and Table 3 where system performances are subsequently improved by in-
creasing the sapling time and series coefficients of plant and controller. Due to hard-
ware limitation, the experimental results are carried out for sampling time Ts = 0.001 
second only and cannot be verified for sampling time Ts = 0.0001 second because the  
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Figure 8. Hardware experimental diagram. 

 

 
(a) 

 
(b) 

Figure 9. (a) Response for sinusoidal input (hardware); (b) Desired & ball position (m) and 
Control effort [V] for sinusoidal input (hardware). 
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(a) 

 
(b) 

Figure 10. (a) Response for sinusoidal input (hardware); (b) Desired & ball position (m) and 
Control effort [V] for sinusoidal input (hardware). 
 

 
Figure 11. Desired and ball position (comparative). 
 
magnetic levitation provided by Feedback Instrument is manufactured for sampling 
time Ts = 0.001 second.  

The designed controller lies in z-domain and it will bypass the requirement of higher 
sampling rate. Another beauty of this design algorithm is that it is applicable to any 
higher order system also.  
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Table 4. Comparative result of proposed control, PID and FOPID control strategy. 

Type of Control 
Rise Time 
(second) 

Settling Time 
(second) 

Overshoot Peak 
Peak Time 
(second) 

Proposed control scheme 
m = 25 & n = 3 

0.001 0.0057 2.19% 1.040 0.0039 

With Conventional PID control [45] 
4, 0.5, 0.05C I Dk τ τ= − = =  

0.0030 0.9211 15.07% 1.1507 0.1327 

With FOPID Control [45] 
19, 18.5,
0.18, 0.5, 0.85

p i

d

k k
k λ µ

= − = −

= − = =
 0.0034 0.9712 37.6215 1.3767 0.0086 

6. Conclusion 

An algorithm for digital controller design has been proposed and implemented for a 
magnetic levitation system. The proposed digital controller is designed based on series 
expansion of pulse transfer function by solving a linear equation using the method of 
least squares. The simulation and hardware experimental results are given to show the 
applicability of proposed controller. The designed controller provides better tracking 
and transient response (settling time and peak overshoots etc.) as number of series 
coefficient of plant and controller is increased. The designed algorithm used for the 
control input is not iterative so the calculation is very fast. The proposed control tech-
nique is also compared with convention PID and FOPID control scheme. In this me-
thod the reliability criterion for a controller should be satisfied when the desired pulse 
response sequence is known. This method can be used for stable plant as well as unsta-
ble plant. Furthermore, it is possible to extend the method for multi input multi output 
(MIMO) system also. 
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