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Abstract 
Our purpose in this study was to present three methods for estimating specific loss 
power (SLP) in magnetic hyperthermia with use of an alternating magnetic field 
(AMF) and magnetic nanoparticles (MNPs) and to compare the SLP values esti-
mated by the three methods using simulation studies under various diameters of 
MNPs (D), amplitudes (H0) and frequencies of AMF (f). In the first method, the SLP 
was calculated by solving the magnetization relaxation equation of Shliomis numeri-
cally (SLP1). In the second method, the SLP was obtained by solving Shliomis’ relaxa-
tion equation using the complex susceptibility (SLP2). The third method was based 
on Rosensweig’s model (SLP3). The SLP3 value changed largely depending on the 
magnetic field strength (H) in the Langevin parameter (ξ) and it became maximum 
( SLP max

3 ) and minimum ( SLP min
3 ) when H was 0 and ±H0, respectively. The relative 

difference between SLP1 and SLP2 was the largest and increased with increasing D 
and H0, whereas that between SLP1 and SLP min

3  was the smallest and was almost 
constant regardless of D and H0, suggesting that H in ξ should be taken as H0 in es-
timating the SLP using Rosensweig’s model. In conclusion, this study will be useful 
for optimizing the parameters of AMF in magnetic hyperthermia and for the optimal 
design of MNPs for magnetic hyperthermia.  
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1. Introduction 

Hyperthermia is one of the promising approaches to cancer therapy. The most com-
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monly used heating method in the clinical setting is capacitive heating that uses a radi-
ofrequency (RF) electric field [1]. However, a major technical problem with hyper-
thermia is the difficulty of heating the targeted tumor to the desired temperature with-
out damaging the surrounding tissues, as the electromagnetic energy must be directed 
from an external source and penetrate normal tissue. Other hyperthermia modalities, 
including ultrasound hyperthermia, have been reported [2], but the efficacy of these 
modalities depends on the size and depth of the tumor, and disadvantages include the 
ability to target the tumor and control the exposure. 

Hyperthermia with use of magnetic nanoparticles (MNPs) (magnetic hyperthermia) 
was developed in the 1950s [3] and is still under development in the effort to overcome 
the above disadvantages [4] [5]. MNPs generate heat in an alternating magnetic field 
(AMF) as a result of hysteresis and relaxational losses, which results in heating of the 
tissue in which MNPs accumulate [6]. For small MNPs, the relaxational losses caused 
by a delay in magnetization relaxation are dominant for heat dissipation [6]. With the 
development of precise methods for synthesizing functionalized MNPs [7], MNPs with 
functionalized surfaces, which have high specificity for tumor tissue, have been devel-
oped as heating elements for magnetic hyperthermia [8]. Recently, MNPs with a higher 
heating efficiency, i.e., specific loss power (SLP), have also been actively developed [9]. 
Furthermore, there is renewed interest in magnetic hyperthermia as a treatment mod-
ality for cancer, especially when it is combined with other, more traditional therapeutic 
approaches such as the co-delivery of anticancer drugs [10] or radiation therapy [11]. From 
these aspects, magnetic hyperthermia has received much recent attention. 

The estimation of SLP is important for evaluating the heating efficiency of MNPs, for 
optimizing the parameters of AMF, and for the optimal design of MNPs in an attempt 
to establish the effectiveness of magnetic hyperthermia. Rosensweig’s model [6] has of-
ten been used for the estimation of SLP. His model, however, is based on the so-called 
linear magnetization assumption [12], and thus it is said that his model is strictly valid 
only in the limit of small amplitude and frequency of AMF. In this study, we presented 
three methods for estimating SLP and compared the SLP values estimated by the three 
methods under various conditions of MNPs and AMF. Especially, we investigated the 
validity of Rosensweig’s model in comparison with the numerical solution of the mag-
netization relaxation equation of Shliomis [13]. 

2. Materials and Methods 

2.1. Theory 

The magnetization relaxation equation of Shliomis [12] [13] is given by 

( )0d
d 6t τ ηφ

× ×−
= × − −

M M HM MM MΩ ,                  (1) 

where M is the magnetization of MNPs under the magnetic field H, Ω is the flow veloc-
ity, φ is the volume fraction, and η is the viscosity of the suspending fluid. When there 
is no bulk flow and M and H are collinear, Equation (1) is reduced to the following eq-
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uation [6]: 

( ) ( ) ( )0d
d

M t M t M t
t τ

−
= − .                         (2) 

In Equation (2), τ is the effective relaxation time given by 
1 1 1

N Bτ τ τ
= + ,                              (3) 

where τN and τB are the Néel relaxation and Brownian relaxation time, respectively [6]. 
τN and τB are given by the following relationships [6]: 

0 2N
eπτ τ
Γ

=
Γ

 and 3 H
B

B

V
k T
ητ = ,                      (4) 

where τ0 is the average relaxation time in response to a thermal fluctuation, kB is the 
Boltzmann constant, T is the temperature, and ( )Γ M BKV k T= , with K being the ani-
sotropy constant of MNP. VH is taken as the hydrodynamic volume of MNP that is 
larger than the magnetic volume 3π 6MV D=  for MNP of diameter D. As a model for 
VH, it is assumed that ( )31 2H MV D Vδ= + , where δ is the thickness of a sorbed surfac-
tant layer [6]. ( )0M t  in Equation (2) denotes the equilibrium magnetization and is 
given by 

( ) ( )0 0M t H tχ= ,                            (5) 

where χ0 is the equilibrium susceptibility. In this study, ( )H t  was assumed to be 

( ) ( )0 cos 2H t H ftπ= ,                          (6) 

where H0 and f denote the amplitude and frequency of AMF, respectively. Because the 
actual equilibrium susceptibility (χ0) is dependent on the magnetic field, χ0 was as-
sumed to be the chord susceptibility corresponding to the Langevin equation, given by 
[6] 

0
3 1cothiχ χ ξ
ξ ξ
 

= − 
 

,                         (7) 

where χi is the initial susceptibility given by ( )2
0 3i d M BM V k Tχ µ φ= , ξ is the Langevin 

parameter given by ( )0 d M BM HV k Tξ µ= , Md is the domain magnetization of a sus-
pended particle, and μ0 is the permeability of free space. It should be noted that ξ is 
magnetic field (H) dependent and thus time dependent. 

Solving Equation (2) and using Equation (5) and Equation (6) yield 

( ) ( ) ( ) ( ) ( )0 0 0e 0 e e cos 2 0 e1 1t t t t

M t M t M H ft Mτ τ τ τχ π
τ τ

− − − −
= ⊗ + = ⊗ + ,      (8) 

where ⊗  denotes the convolution integral and ( )0M  is ( )M t  at t = 0. In this 
study, ( )0M  was assumed to be ( ) ( )0 0 00 0M M Hχ= = . When t = ∞ , however, the 
second term of the right-hand side of Equation (8) can be neglected. It should be noted 
that if we calculate ( )M t  as a function of ( )H t , we can obtain the hysteresis loop, 
i.e., M-H curve. 

According to Rosensweig [6], solving Equation (2) using the complex susceptibility 
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given by ( )1j jχ χ χ′ ′′= − = −  and Equation (5) and Equation (6) with an assump-
tion that χ0 is constant, yields 

( ) ( ) ( )0 cos 2 sin 2M t H ft ftχ π χ π′ ′′= +   ,                  (9) 

where χ' (in-phase component) and χ'' (out-of-phase component) are, respectively, 
given by [6] 

( )
0

21 2 f
χχ
π τ

′ =
+

 and 
( )

0
2

2
1 2

f
f

π τχχ
π τ

′′ =
+

.                 (10) 

The average rate of energy dissipation per cycle of the period, i.e., ( )1 f P  is given 
by [6] 

( ) ( )
0 0

1 d
d

d
f H t

f M t t
t

P µ= − ∫ .                      (11) 

Substituting Equation (6) into Equation (11) yields 

( ) ( )0
1

0 0
22 sin 2 d

f
H f M t ft tP πµ π= ∫ .                  (12) 

The rate of energy dissipation per unit mass of MNPs, i.e., specific loss power (SLP) can 
be obtained from P  as [12] 

SLP
P
φρ

= ,                              (13) 

where ρ is the density of suspending fluid. 
In this study, we considered the following three methods for estimating SLP. In the 

first method, Equation (8) was used for ( )M t  in Equation (12). In this case, because 
( )M t  must be time-periodic in the steady state, the SLP value for the i-th cycle of the 

M-H curve (denoted by iSLP1 ) can be given by 

( )( ) ( ) ( )
( )

122

1 1
0 0

0 2

2 02
e sin 2 d1 e e 1

1 2

i fi
f

it
f f

i

f M
SLP

H f
M t ft t

f
τ ττ

π τπµ
π

φρ τ π τ

−

−

−    = + −     +   
⊗


∫

(14) 

It should be noted that when i is sufficiently large, the second term of the right-hand 
side of Equation (14) can be neglected and iSLP1  approaches the steady state. We de-
note the iSLP1  value in the quasi steady state by SLP1. Actually, SLP1 was taken as the 

iSLP1  value in the case when ε− −− <i i iSLP SLP SLP1 1
1 1 1 , with ε being taken as 10−6, 

where ∗  denotes the absolute value. The integration in Equation (14) was performed 
by use of the trapezoidal rule [14] (“trapz” in MATLAB®; The MathWorks, Inc., Natick, 
MA, USA) and the convolution integral was calculated using the MATLAB® function 
(“conv”). 

In the second method, Equation (9) was used for ( )M t  in Equation (12). In this 
case, the SLP value (denoted by SLP2) can be given by 

( ) ( ) ( )0
0

12 2
0

2
2 cos 2 sin 2 sin 2 d

fH fSLP ft ft ft tπµ χ π χ π π
φρ

′ ′′= +  ∫ .       (15) 

As in Equation (14), the integration in Equation (15) was also performed by use of the 
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trapezoidal rule [14] (“trapz” in MATLAB®; The MathWorks, Inc., Natick, MA, USA). 
In the third method, χ' and χ'' (basically χ0) were assumed to be constant in Equation 

(15), though they are actually magnetic field (H) dependent. In this case, the SLP value 
(denoted by SLP3) can be obtained from Equation (10) and Equation (15) as 

( )
( )

2 2 1 2
20 0 0 0 0

3 20

2 2sin 2 d
1 2

fH f H f fSLP ft t
f

πµ πµ χ π τχ π
φρ φρ π τ

′′= =
+∫ .       (16) 

It should be noted that 3SLP φρ×  is equal to the equation for the energy dissipation 
derived by Rosensweig [6]. As shown afterwards, SLP3 changes depending on the mag-
netic field strength. Thus, we denote the maximum, minimum, and mean SLP3 val-
ues in a cycle of the period, i.e., 1 f  by SLP max

3 , SLP min
3 , and SLP mean

3 , respectively. 
SLP mean

3  was calculated from  

mean
3 0

1
3d

f
SLP f SLP t= ∫ .                         (17) 

For comparison of SLP1, SLP2, SLP max
3 , SLP min

3 , and SLP mean
3 , we calculated the 

relative differences (RD2, RDmax
3 , RDmin

3 , and RDmean
3 ) defined by 

2 1
2

1

SLP SLPRD
SLP
−

= ,                          (18) 

max
max 3 1
3

1

SLP SLPRD
SLP

−
= ,                        (19) 

min
min 3 1
3

1

SLP SLPRD
SLP

−
= ,                        (20) 

and  
mean

mean 3 1
3

1

SLP SLPRD
SLP

−
= .                       (21) 

2.2. Simulation Studies 

In this study, we assumed that MNPs consisted of maghemite (γ-Fe2O3) and fixed τ0, δ, 
Md, K, η, ρ, φ, and T to be 10−9 s, 2 nm, 414 kA/m, 4.7 kJ/m3, 0.00235 kg/m/s, 4600 
kg/m3, 0.003, and 37˚C, respectively [15]. When H0, f, and D were fixed, they were tak-
en as 20 mT, 300 kHz, and 20 nm, respectively. It should be noted that the unit of mT 
can be converted to kA/m by use of the relationship 1 mT = 0.796 kA/m. 

3. Results 

As shown in Equation (14), the iSLP1  value depends on the cycle number of the M-H 
curve. Thus, we calculated the iSLP1  value in the quasi steady state, i.e., the SLP1 value 
under the condition of ε− −− <i i iSLP SLP SLP1 1

1 1 1  with ε being taken as 10−6, as pre-
viously described. When we neglected the second term in the right-hand side of Equa-
tion (14), the iSLP1  value reached the steady state after a few cycles in all the cases stu-
died. Figure 1(a) shows the M-H curves in the quasi steady state calculated from Equa-
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tion (8) for various frequencies of AMF. For comparison, Figure 1(b) shows the M-H 
curves calculated from Equation (9). It should be noted that ( )M t  was normalized by 
the saturation magnetization (Ms) given by s dM Mφ= . In these simulations, H0 was 
fixed at 20 mT and D was assumed to be 20 nm. Figure 2 shows the case when D was 
varied from 10 nm to 30 nm with steps of 5 nm. As shown in Figure 1 and Figure 2, a 
large difference between the M-H curves obtained by Equation (8) and Equation (9) 
was observed and it increased with increasing f and D. 

Figure 3(a) shows the SLP3 values calculated from Equation (16) as a function of H 
with f being varied from 200 kHz to 1000 kHz with steps of 200 kHz, whereas Figure 
3(b) shows the case when D was varied from 10 nm to 30 nm with steps of 5 nm. In  
 

      
(a)                                              (b) 

Figure 1. (a) M-H curves (hysteresis loops) in the quasi steady state calculated from Equation (8) 
for various frequencies of an alternating magnetic field (AMF) (f); (b) M-H curves calculated 
from Equation (9) for various f. In these simulations, the amplitude of AMF (H0) and diameter of 
magnetic nanoparticles (D) were assumed to be 20 mT and 20 nm, respectively. Note that the 
unit of mT can be converted to kA/m by use of the relationship 1 mT = 0.796 kA/m. 

 

      
(a)                                              (b) 

Figure 2. (a) M-H curves in the quasi steady state calculated from Equation (8) for various D; (b) 
M-H curves calculated from Equation (9) for various D. In these simulations, H0 and f were as-
sumed to be 20 mT and 300 kHz, respectively. 
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these simulations, H0 was fixed at 20 mT. As shown in Figure 3, the SLP3 value became 
maximum, i.e., SLP max

3  when H was zero. When |H| was the maximum, i.e., H0, the 
SLP3 value became minimum, i.e., SLP min

3 .  
Figure 4(a) shows the comparison of SLP1, SLP2, SLP max

3 , SLP min
3 , and SLP mean

3  as 
a function of D, whereas Figure 4(b) shows the RD2, RDmax

3 , RDmin
3 , and RDmean

3  
values as a function of D. As shown in Figure 4(b), RDmax

3  was the largest and  
 

   
(a)                                              (b) 

Figure 3. (a) Specific loss power (SLP) values calculated from Equation (16) (SLP3) as a function 
of the magnetic field (H) for various f. In these simulations, H0 and D were assumed to be 20 mT 
and 20 nm, respectively; (b) SLP3 values calculated from Equation (16) as a function of H for 
various D. In these simulations, H0 and f were assumed to be 20 mT and 300 kHz, respectively. 
Note that the SLP3 values for D of 10 nm and 15 nm are too small to be seen in the figure. 

 

      
(a)                                              (b) 

Figure 4. (a) SLP1, SLP2, 
maxSLP3 , minSLP3 , and SLP mean

3  values as a function of D. Note that 

SLP1 and SLP2 were calculated from Equation (14) and Equation (15), respectively. maxSLP3  and 
minSLP3  denote the maximum and minimum values of SLP3 calculated from Equation (16), re-

spectively. SLP mean
3  was calculated from Equation (17); (b) RD2, 

maxRD3 , RDmin
3 , and RDmean

3  

values as a function of D. Note that RD2, 
maxRD3 , minRD3 , and RDmean

3  represent the relative 
differences calculated from Equation (18), Equation (19), Equation (20), and Equation (21), re-
spectively. In these simulations, H0 and f were assumed to 20 mT and 300 kHz, respectively. 
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increased with increasing D, whereas RDmin
3  was the smallest and was almost constant 

regardless of D. 
Figure 5(a) shows the comparison of SLP1, SLP2, SLP max

3 , SLP min
3 , and SLP mean

3  as 
a function of H0, whereas Figure 5(b) shows the RD2, RDmax

3 , RDmin
3 , and RDmean

3  
values as a function of H0. As shown in Figure 5(b), RDmax

3  was the largest and in-
creased with increasing H0, whereas RDmin

3  was the smallest and was almost constant 
regardless of H0. 

Figure 6(a) shows the comparison of SLP1, SLP2, SLP max
3 , SLP min

3 , and SLP mean
3  as 

a function of f, whereas Figure 6(b) shows the RD2, RDmax
3 , RDmin

3 , and RDmean
3  

values as a function of f. In this case, the RD2, RDmax
3 , RDmin

3 , and RDmean
3  values 

were almost constant regardless of f (Figure 6(b)). 
 

      
(a)                                              (b) 

Figure 5. (a) SLP1, SLP2, SLP max
3 , SLP min

3 , and SLP mean
3  values as a function of H0; (b) RD2, 

RDmax
3 , RDmin

3 , and RDmean
3  values as a function of H0. In these simulations, D and f were as-

sumed to be 20 nm and 300 kHz, respectively. 

 

      
(a)                                              (b) 

Figure 6. (a) SLP1, SLP2, SLP max
3 , SLP min

3 , and SLP mean
3  values as a function of f; (b) RD2, 

RDmax
3 , RDmin

3 , and RDmean
3  values as a function of f. In these simulations, H0 and D were as-

sumed to be 20 mT and 20 nm, respectively. 
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4. Discussion 

In this study, we presented three methods for the estimation of SLP in magnetic hyper-
thermia and compared the SLP values estimated by the three methods (SLP1, SLP2, and 
SLP3). SLP1 was derived by solving the magnetization relaxation equation of Shliomis 
[13] numerically. SLP2 was derived by solving Shliomis’ relaxation equation [13] using 
the complex susceptibility. SLP3 was derived based on Rosensweig’s model, in which the 
complex susceptibility with χ' and χ'' (basically χ0) being assumed to be constant has 
been used. 

As previously described, Rosensweig’s model [6] has often been used for the estima-
tion of SLP. To the best of our knowledge, however, few studies have been performed to 
validate the SLP estimation based on Rosensweig’s method [6] in comparison with that 
based on the numerical solution of the magnetization relaxation equation of Shliomis 
[13]. 

As shown in Figure 1 and Figure 2, a large difference was observed between the 
M-H curves calculated from Equation (8) and Equation (9), especially when H is zero, 
and the difference increased with increasing f and D. When using Equation (9), ( )M t  
becomes equal to 0Hχ′  at 0t = , i.e., 0H H=  and it becomes equal to 0Hχ′−  at 

( )1 2t f= , i.e., 0H H= − . On the other hand, ( )M t  becomes equal to 0Hχ′′  at 
( )1 4t f= , i.e., 0H =  and it becomes equal to 0Hχ′′−  at ( )3 4t f= , i.e., 0H = . 

Thus, the above difference in the M-H curves shown in Figure 1 and Figure 2 may 
suggest that χ′′  given by Equation (10) is overestimated compared to the case when 
using Equation (8). Furthermore, the area of the M-H curve calculated from Equation 
(9) (Figure 1(b) and Figure 2(b)) was larger than that calculated from Equation (8) 
(Figure 1(a) and Figure 2(a)). The area of the M-H curve directly represents the power 
loss during one cycle of the hysteresis loop. Thus, the above finding corresponds to the 
fact that SLP2 is larger than SLP1 (Figure 4(a), Figure 5(a), and Figure 6(a)). 

The SLP3 given by Equation (16) has often been used for characterizing the heating 
property of MNPs [16]. As previously described, SLP3 has been derived with an as-
sumption that χ0 is constant. However, χ0 is actually magnetic field (H) dependent, be-
cause χ0 is the function of the Langevin parameter (ξ) as shown in Equation (7) and ξ is 
the function of H. To investigate to what extent SLP3 depends on H, we showed the 
SLP3 values as a function of H in Figure 3. As shown in Figure 3, the SLP3 value 
changed largely depending on H. χ0 in Equation (16) is the monotonically decreasing 
function of |ξ| or |H| (data not shown). Thus, the SLP3 value becomes maximum when 
H is zero (Figure 3). In this case, χ0 becomes equal to χi, because −ξ ξcoth 1  in Equa-
tion (7) approaches ξ/3 when ξ approaches zero. On the other hand, when |H| is maxi-
mum, i.e., H is equal to ±H0, the SLP3 value becomes minimum.  

To compare the SLP values estimated by Equation (15) and Equation (16) with that 
estimated using the numerical solution of the magnetization relaxation equation of 
Shliomis [13], we calculated the relative differences given by Equation (18) to Equation 
(21). As shown in Figure 4 and Figure 5, the RDmax

3  value was the largest and in-
creased with increasing D and H0, whereas the RDmin

3  value was the smallest and was 
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almost constant regardless of D and H0. These results suggest that when estimating SLP 
using Rosensweig’s model [6], H in ξ should be taken as H0. 

In this study, we solved the magnetization relaxation equation of Shliomis [13] (Eq-
uation (1)) with an assumption that there is no bulk flow and the magnetization of 
MNPs and magnetic field are collinear. In this case, Equation (1) is reduced to Equation 
(2), which can be easily solved using convolution integral as shown in Equation (8). 
Although Equation (2) appears to be valid in considering the magnetic hyperthermia 
with use of small MNPs in the superparamagnetic state and we believe that this study 
will provide the basis for establishing the effectiveness of such magnetic hyperthermia, 
it will be necessary to solve Equation (1) without any assumptions or another magneti-
zation equation derived microscopically from the Fokker-Planck equation [12] [17] for 
more detailed analysis. These studies are currently in progress. As previously described, 
we targeted the MNPs consisting of maghemite with the magnetic and physical proper-
ties described in the “Simulation Studies” section, because maghemite is the core iron 
oxide of Resovist®, which is a commercially-available organ-specific contrast agent for 
magnetic resonance imaging and has been approved for clinical use in Japan [15]. We 
will also perform further studies for other MNPs. 

5. Conclusion 

We presented three methods for estimating SLP in magnetic hyperthermia and com-
pared the SLP values estimated by the three methods under various conditions of MNPs 
and AMF. This study will be useful for optimizing the parameters of AMF in magnetic 
hyperthermia and for developing the MNPs suitable for magnetic hyperthermia. We 
also investigated the validity of Rosensweig’s model in comparison with the numerical 
solution of the magnetization relaxation equation of Shliomis, suggesting that when es-
timating SLP using Rosensweig’s model, the magnetic field strength in the Langevin 
parameter should be taken as the amplitude of AMF. 
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