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Abstract

We consider a model of self-oscillator with distributed amplifying structure realized
on a segment of lossy transmission line. The distributed structure of tunnel diode
type generates nonlinearity of polynomial type in the hyperbolic transmission line
system. The transmission line is terminated by nonlinear reactive elements at both
ends. This means that using Kirchhoff’s law we obtain nonlinear boundary condi-
tions. Then a mixed problem for lossy transmission line system is formulated. We
give a new approach to present the mixed problem in a suitable operator form and
using fixed point method we prove existence-uniqueness of a solution. To apply the
theorem proved one has to check just several inequalities. We demonstrate condi-
tions obtained on a numerical example.
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1. Introduction

The present paper is devoted to investigation of self-oscillators with distributed ampli-
fying structure of tunnel diode type realized on a segment of lossy transmission line.
The transmission line is terminated by nonlinear reactive elements. Such problems and
their applications (for instance to RF-circuits, PCB-s problems and so on) are usually
considered by means of various methods (slowly varying in time and space amplitudes
and phases, numerical methods and so on, cf. [1]-[14]). We have developed (cf. [15]) a

general approach for investigation of lossy transmission lines terminated by nonlinear
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loads without Heaviside condition R/L =G/C. From mathematical point of view in
[15], we consider just linear hyperbolic systems. In [16] and [17], we have considered a
Josephson superconductive transmission line system with sine type nonlinearities. Our
main purpose here is to consider lossy transmission line with polynomial nonlinear
distributed structure that leads to a nonlinear hyperbolic system. We extend Abolinya-
Myshkis method (cf. reference of [16]) to attack the nonlinear boundary value problem
and propose a new general approach to reduce the mixed problem for such nonlinear
systems to an operator form in suitable function spaces. The arising nonlinearity is of
polynomial type in view of distributed tunnel diode element. The nonlinear characte-
ristics of the reactive elements generate nonlinear boundary conditions. We prove the
existence of an approximated solution of the mixed problem and show a way to reach
this solution by successive approximations.

We proceed from the circuit shown on Figure 1, where Z; and Z, are nonlinear
reactive elements. We consider that a particular case Z; is a nonlinear capacitance,
while Z, is a nonlinear inductance. In a similar way, it can be treated more compli-
cated circuits (cf. [15]).

A lossy transmission line with distributed nonlinear resistive element can be pre-
scribed by the following first order nonlinear hyperbolic system of partial differential
equations (cf. [1]-[14]):

C

au (a>t<t) . ai(>)<(,t) +Gu(xt)=7(u(x1)

Lai tht) + 6u((3:,t) +Ri(x,t)=0

(1

(X,t) ell= {(X,t) eR?: (X,t) IS [O,A]X[O,T]}
where U (X,t) and i(X,t) are the unknown voltage and current, while Z, G, Rand G
are inductance, capacitance, resistance and conductance per unit length; A >0 is its
m
length; and y(u)=) g,u" isa prescribed polynomial of arbitrary order with interval

n=1
of negative resistance (in the applications most often of third order). For the above

i(x, 1)

Z, [] u(x, t) ] i=y(u) [ z,

t 2
x=0 x=A

Figure 1. Lossy transmission line with distributed nonlinear resistive element with an interval of
negative differential resistance in the characteristic.
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system (1), one can formulate the following initial-boundary (or briefly mixed) prob-
lem: to find the unknown functions U(X,t) and i(X,t) in IT such that the follow-

ing initial and boundary conditions are satisfied

U(x,0)=uy(x), i(x,0)=iy(x), xe[0,A] ()
(SO 00 (AN oy

where iy(X) and U,(X) are prescribed initial functions the current and voltage at the
initial instant; i =Cy(u),u=L, (i) are characteristics of the reactive elements Z,Z,.

Rewrite the system (1) in the form

au(X't)+£al(x't)+Eu(x,t)=lignu"(x,t)
ot C ox c ca )
6I(X’t)+lau(x’t)+5|(x,t):0
ot L ox L
2. Transformation of the Partial Differential System
First we present the system (4) in matrix form:
ou/ét . 0 1/C|[ou/ox . G/C 0 J[ulfu]_ %zm:gnu”(x,t)
difet | YL 0 || éifox o R/ 0 '
Introducing denotations
0 1C G/C 0 u
= il = IU: - 1
sl oA ool
U _[aufet] au _[ou/ox re (1/C) X gu" (xt)
ot |aijet |" ox |aifox | "~ 0
we have
ouU ou
ZiAT— =T.
it +A o + AU (5)

0 1C

L o0
-4 yc =0. Its roots are 4 =]/\/E A =—(]/\/E) The eigen-
yL -1 ’ ' s

vectors are (§fl),§§l)):(x/6,«/t), (ffz),ﬁz(z)):(—\/g,\/t). We form the matrix by
Jc ﬁ] " 1{]&& —ﬂzﬁ}
.Then H™ = and

To transform the matrix A 2{ } in diagonal form we solve the character-

istic equation

eigen-vectors H ={

—~Jc L /240 1/24L
can __ —1_]/VLC 0
AT S AR _{ 0 —J/«/El'
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Introduce new variables Z=HU,U =H'Z , where Z = { (( '))} Therefore
F/(x,t):x/éu(x,t)Jr\/Ei(x,t) " (]/2() t)-(1/2 )
I (x,t)=—/Cu(xt)+Li(x1) (1/2f) (ﬂZf)

Substituting U = H™'Z in Equation (5) we obtain
o(H'z) o(H'Z) _1az

+A +A2(H‘1Z)=F:H (AH‘l) +(AH)Z =
ot OX
or
0z 0z 4
4 (HAH ™)== +(HAH ) Z = HT. 7
~ F(HAHT)—+(HAH™) 7)
But
1(9+5j 1(—9+5] 13y (MJ
ca 2Jc
HAH = 2lc L) 2lc L)) o 1 Jc n
LS.R) ye.R) Cla (V)1 (x)
20 c’L) 2lcL X% e
Then introducing denotations azl(ﬁ—gj ﬂ=1(5+gj we obtain from
2\L C 2\L C
Equation (7)
N1 v no(vopY
= — al —_— —_—
T a s a walie) o
a1 a V-l

e XA v
Introduce again new variables
V(xt)=eW(xt), 1(xt)=e"J(xt) )
and then the system (8) reduces to

At m _ n
aw 1w _ . (e_ﬂtw Jj

=-al+ "
\/Lc X \Eég 2JC
a1 emZg( AW - JJ”
ot JJLC ox 2JC

The new transformation formulas are

1 1
u(xt)=——=e"W(x,t)-—=e"J(xt)

2C 2\C (10)
i(x.t) :ﬁe’ﬁ‘w (x,t)+ﬁe’ﬁ‘\] (x.t).

The new initial conditions we obtain from Equations (2), (6) and (9) for X e [0, A] :
W (,0) =/Cu(x,0)+/Li(x,0) = v/Cuy (x) +~/Li, () =W, (X)
J(x,0)= —Jcu (x,0)+ JLi (x,0)= —\/Euo (x)+ \/Eio (x)=J5(x).
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The new boundary conditions we obtain from Equations (3):

—Le’ﬂtw(o,t)—ﬁe’ﬂﬂ] (0.1)

2VL
“4c ( M(W(O't)—J(Oyt))J 1 d(e”w(0,t)-e3(0,t))
S 2Jc 2\c dt

a4 (PN HIA)) 1 dEW A+ (1)
d 2JL 2L dt

_e” (W (A,t)—J(A,t))' tefoT].

2\Jc

In order to solve the last equations with respect to the derivatives we consider the

,te[O,T]
(11)

properties of nonlinear capacitive and inductive elements. For the capacitive element

(cf. [15]) we have C, (u):co/.hll—(u/cbo) , where ¢, >0,®,>0,h 6[2,3] are con-
stants and |u| <S¢y <Dy If Ue[—g), ¢, ], then dC, (u)/ du has strictly positive lower
bound.

Indeed (cf. [15]), dC, (u)/du = c 4@, [@,~((h-1)/h)u]/(@,~u)*"".

To obtain dC, (u) /du:Cé>O we make

Assumption (C) |u| <S¢y <D,.

If we choose ¢, < ®, min{h/(2h+1),h/(h—1)} = ®,h/(2h+1) it follows
u)/du>0 and d°C,(u)/du*>0 for Ue[—¢) ¢] and therefore

u)/du > dC, (4, )/du = ¢, /@, | @, +((h—1)/h)¢o]/(c1>0 +¢0)%*1 =CL>0.

Besides

dC, (u)/du| < (2c0Q/qTO)/(cDO g [@+((2h+1)/h)g, | /h=C;.

The inductive element has /-L characteristic of polynomial type.

To solve the second equation (11) with respect to di/dt we make

Assumptions (L) dL, (i)/di > L' > 0,fi[<iy, [dL, (i)(t)/di|< L}, |01, (i) (1) /| < 7.
Inviewof Z;= \/L/_C we obtain

WO B0 00 LML

dI(At)  dW(AL) ZW(A,t)—J(A,t)
a a0 dL(i)/di

+B(W (A1) +I(AL)).

We present the above relations in an integral form under
Assumptions (CC) W (0,0)=1J(0,0),-W (A,0)=J(A,0),

W (0,t)=J(0,t) +ﬂj )= J(A, s))ds—%i%ds,

AS) (A, d+,BJ' (A,5)+J(A,3))ds.

dL, (i)/di

J(At)=-W(At)+Z j
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3. Operator Formulation of the Mixed Problem for the
Transmission Line System

Now we are able to formulate the mixed problem with respect to the unknown func-
tions (W,J): to find (W,J) satisfying the system and initial and boundary condi-

tions

W 1 ow m aW-JY

L RO XA vy

3 1 & e (L aW-l

a Joax Zg[ f)

W (x,0) =W, (x), J(x,0)=Jy(x), xe[0,A]
w(o,t)=J(o,t)+ﬂj(w(o,s)— s——jfs)ds,te[o,T]

J(At)=-W (A,t)+Zoj(W(A’S)_J (A,s))

RO

ds+ﬁj(w (A,s)+J(A,5))ds,te[0,T].

(12)
In what follows we give an operator representation of the above mixed problem (12).

Recall that 0<t<T and v =]/\/ LC and T =A/v=A+JLC . The ordinary diffe-

rential equations (Cauchy problem) for the characteristics of the hyperbolic system are

dé/dr=v,&(t)=X foreach (X,t)ell=gq, (T;X,t)=vr+x-vt  (13)
dé/dr=-v,£(t)=x foreach (x,t)ell= g, (r;X,t)=—Vvr+x+Vvt. (14)

The functions A, (X,t)=v>0 and A,(X,t)=-v<0 are continuous ones. This im-
plies that for every (X,,t,)€(0,A)x(0,T) there is a unique (to the left from t,) solu-
tion X=@, (t;X%,t,) for dx/dt=v; X(t,)=X,, and respectively X=¢, (t;%,,t,)
for dx/dt=-v; X(t,)=2X,.Denoteby x, (X, t) the smallest value of 7 such that the
solution @, (7;X,t)=vr+x—vt of Equation (13) still belongs to IT and respective-
ly the solution ¢, (7;X,t)=—Vz +X+Vt of Equation (14) by z,(X,t).If x, (x,t)>0
then q, (;(W (x,t); x,t) =0 or @, (;(W (x.1); x,t) =A and respectively if y,(Xt)>0
then ¢, (;(J (X,t);x,t) =0 or ¢, (;(J (x,t);x,t) =A.In our case

; (x,t)={t_(x/v) for vt — x > 0; J (x,t):{ —(A=x)v forvt+x-A>0

0 forvt—x<0 0 forvt+x-A<0.

Remark 1. We notice that 0< y, (X,t)<t,0< 7, (x,t) <t.Itis easy to see that
@y (1 X, t) =vr+ XVt = @, (0;x,t) = x = vt;
oy (T xt)=—vr+ X+t = @, (0;X,t) = X+ t.

Introduce the sets:

M, ={(xt)eTl: 5, (x,t)=0} ={(x,t)eT:x-vt 20},

inW

I :{(x,t)el'l:;(J (x,t):O}z{(x,t)eH:x+vt—A£O},

in,J
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Moy ={(%t) € TT: 73 (%,1) > 0,03, (1 (X,1):%,t) =V(Vt=X)/V+ X =Vt =0},
Moy = {(xt) €12 7, (1) > 0,0, (7, (X,1);%,t) = —v(Vt+ X = A) v + X+ vt = 0} =,
My ={(xt) eIl 5 (1) >0, 4y (2 (X1)ix,t) =v(M=X) N+ XVt = A} = F,
My, ={(xt) el 7, (x,1)> 0,05 (7, (X, t); X, t) ==V (vt + X = A) v+ X+t = A}

Prior to present problem (12) in operator form we introduce

W, (@ (0:x1)), (x,t) eTT,
D, (W, J)(xt)= -

Do (W, 3) (20 (x:1)), (x,1) €

ell
AWWJ)(ZW( ))( )HAW

X Vt e
@, (W,J) x.t)) xt) ow
and
(O; xt ell;,
D, ( W J) xt) eI,
@, (V,1) Xt)eHAJ
x+vt
(DA X,t)el’lAJ
or
@, (W, )(x)
W, (x=vt), (x,t) eIl
;(W(x,t)
=130,z (xt))+8 [ (W(0.5)-J(0:5))d
0
(xt)
1 ] W (0,s)+J (0 S)ds,(x,t) m,,
Z, dC, (u)/du

@, (W, 3)(xt)
o (x+wt), (xt)ell,,
- —W(A,;m)+Zto Wre)-3(a9)

NN
So we assign to the above mixed problem the following system of operator equations
(ct. [16], [17]):

ds+ﬁj (A,s)+J(A,5))ds, (x,t)eT,,.

W (x,t) =@, (W,3)(xt)-a { 3 (xs)ds

OALIib Journal 7/13
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By (W, J)(

B, (W, J)(

X t)=

xt) = o dL, (i)/di

4., Existence Theorem

In order to obtain a contractive operator we consider the mixed problem (12) on the
subset II = [6, A- S] X [O,T] . We introduce the sets

My ={W e C(IT,): W (x,t) <Wpe'} and M, ={J eC(IT,):|3 (xt)]< Joe"},

where W,,J, and g are positive constants chosen below. It is easy to verify that

M,, xM; turns out into a complete metric space with respect to the metric
P, ((W,J),(VV,J_))z max{p(W,VV),p(J,J_)} ,

where
p(W,VV)=esssup{e’”‘[\N(x,t)—VV(x,t)|:XE[g,A—g],te[O,T]},
p(J,J_):esssup{e"‘t |J(x,t)—J_(x,t)|:XE[g,A—g],te[O,T]}.
Now we define an operator B=(B,,B;): M, xM; =M, xM; by the formulas

W, (x=vt), (x,t) el NI,

A (1) Hu (%9 s)+J(0,s
S0z (x0) 8 T (05)-3 s 1 O 05l

¢ 1 m ) W(x,s)—J(x,s)jrI
~-a J(x,8)ds +——= e’* gn-[e po 2l 2T L ds, (x,t) eIy, NIT,;
{m bl e zW{x,t) % e 1) <o
Jo(x+vt), (x,t)ell, , NII,

W (A.zJ)+Zolf (W (A,5)-J(A,s))

Zw

ds+ﬂJ' (A,s)+J(A,s))ds

‘ 1 m W (x,8)=3(xs)Y)
—a | W(xs)ds—— [ e*> gn-[e frf 2 ds, (xt)ell,; NIT,.
ZJ(IX,O Jc ZJ(IM) 2\C N

Remark 2. Assumption (C) and Assumptions (L) in view of Equations (10) imply
U (O (Wo + 35)/(29C ) < s [i(x,)] < (W +3,)/ (VL) <y

Theorem 1. Let the following conditions be fulfilled:
1) Assumption (C), Assumptions (L), Assumption (CC) and |W0 (X)| <Wyy» (3 (X)| <Jy
for xe [8 A—¢] as Wy, Jy, are sufficiently small while x>0 is sufficiently large;

2 e VJ e V[|ﬁ| ZCl]Wo;JoJaLJO Z;| |(W +Jj AT <y
rl

OALib Journal
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3) e Wyre " W;J ( Iﬂlj |a|;N o2l I(W "o ]e“‘””) <353

u n|gn| Wo + Jo) e n-D(u-A)T

4) K, =e v+ 2 —+
S ) i (e
5) K, :e€g+[%+2|ﬂ|+|a|]i z |, |(W +Jo ) (AT _q

Then there exists a unique solution of the problem (12).
Proof We establish that the operator Bmaps the set M,, xM; into itself.

<1;

First we notice that B, (X,t) and B,(X,t) are continuous functions. We show
B (X, 1) <Weet, [B, (x,t)[< Jpe*.
Indeed, for sufficiently small Wy, >0 and in view of
2w (X)) St=(x/V)<t=(g/v) and t— g, (%t)<x/V<(A-g)/v wehave
|y (x,1)|

I\NO (X_Vt)|

< 2y (Xi1)
[9(0. 2 (%)) +|8] ! W (0,5)—3(0,s)|ds+=—

1 I)I\N(O’S)”(O’S)'ds

Z, 1 |dC0(u)/du|

1 \W,+1J [‘ ) [ JW +J }
<e™ max{W,; J, +| |Bl+ —— ol<e J o+ 0 "0
{ 00* =0 [|ﬁ| ZOCé] Y7 } { |'B| C0 7

Then for the first component we have

O B (T v R

2y (1)

t
+i .[ eﬁsz|g |(W +‘] J nyse—nﬁsds
n=1
JWOJFJO}e”‘|a|J0

% JZ

m not
Z|gn [W +J ] J~ e )Se#sds

jWo +Jo + |“|‘]o
u u

e s

<e"W,.

In view of
2 (X ) St+(x=A) v<t+(A-—e-A)/v=t—(g/v)

and

OALIib Journal 9/13
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t— g, (xt)<t—t—(x-A)/N<(A-X)V<(A-¢))v
for sufficiently small J,, for the second component we obtain:

‘]00

B, (W, 3)(x.t)[< W (A2 )+ 2 I[\/v

|S+ ] s)+ s)|ds
|dL1 i /d|| do +[p] [ W (4,5)+3 (Ars)]d

+|a|j[\l\lxs|ds T ;[teﬁsm| (WJEJ . jds
75 (xt) n=1

;(J(X,t)

X
zZ, (WE; Jo) f e"sds-4-|,3|(W0 + JO) f e**ds

0 0

<W,e" +
t

+ || W, j e“sds + —i| |(W°+J°]n j e uAsgusgs
’ Je & 2Jc

2,y (xt

L, u, n N ()BT
sﬂﬁmHCWf@£M'M Tgmﬂfje; }
n=:

<e”],.

Now we show that Bis a contractive operator.

Indeed, for the first component we obtain:

B, (W,3)(x.t)~ B, (. 7) (1)

Ty (X1)
<|3(0, 0 (1)) = T (0, 2 (x.1))| +| ! (W (0,5)-W (0,5)[+]3(0,5)- T (0,5)])ds
1 2y (X1)

[ (W (0,5)-W(0,5)+]3(0,5)-T(0,5)|)ds +|| .tf 3 (x,5)= T (x,5)|ds

- (W (x,5)- T (x))'|ds

—_~
x
w

N—

|
(&

—_
x
w

N—

\—/

ZW(th)
<p(3,7)e" +(p(W,VV +p(J,J_))[|h|+LC] j e’ds +|a|p(J,7) .t[ eds

0 Iw (X,t)

g(ntus W (x,5)=J(x,5) =W (x,5)+J (x,5)|ds

OALib Journal 10/13
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Similarly for the second component we obtain

B, (W,3)(x,t)- B, (W,T)(x.1)

(W (A,5)-W (A,s)+[3(A,5)- J_(A,s)|)d
o, )

-4 j([vv A+ (A,8) - T(A,5))ds-+a] [ W (x,5)-W (x,5)|ds

Z

[ szWMT{mxggM9I

p(W.W)+p(3,7)
L11
4 (p(W,VV)er(J,J)) L W+ 3, )"
+p(W,VV)|a|J'e“5ds+ J' e’ nlg, |e"/”5( ;\E"j e"ds
0

e n(xy) 0
_ 2 M gt et 1@ W,o+d )
<p ((W,3),(W, 7)) &% +Z =128~ +|al~—+=S'n ( 0 0] e(MIu-Alsgusg
() TT)) e o 5o S (M

n=1

<[VVA;( A;(J|+ZJ s

ds

+—JZ|9 |t

Z n=1

< p(W T )& +

j e ds + h|( o (W, W) + p(a,j))lf ereds

seﬁftpﬂ<<w,J>,<vv,J‘>){ev [ Zvaielel |2+ L Sla (2] “Wﬂ
Ee”tKJp (( ( ))

J),
= p(B, (W,J),B,(W,J))<K,p,((W,J),(W,T)).
Therefore
P, ((By (W,3),B,(W,3)).(B, (W,T),B, (W, T))) < max{Ky K, } o, (W, 3),(W, 7))

and the operator B has a unique fixed point which is a solution of the mixed problem
above formulated in the set II, = [8, A - 8] X [O,T] .

Theorem 1 is thus proved.

Remark 3. We point out that for every &>0 there is a unique solution (W,,J,)
in II, =[¢,A—¢]x[0,T]. The sequence (W,,J,) is not necessary convergent when
¢ — 0. To find a convergent subsequence we proceed as in [17]. Extending the solu-
tion on II :[O,A]X[O,T] we can choose a convergent subsequence. The first ap-

proximation can be chosen, for instance, as a solution of the linearized system (12).

5. Conclusion Remarks

1) We note that the interval [0,T] is not sufficiently small.
2) We show a simple verification of all inequalities of the main theorem for soft non-
linearity m=3 (cf. [1]). Consider a lossy transmission line (cf. [1]-[15]) satisfying the

Heaviside condition with specific parameters:

A=(Y4)m; L=0.2uH/m; C =36 pF/m;R =0.10Q/m;G =18x10°Q/m;

OALIib Journal 11/13
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2

L C

l(R Gj 1[ 0.1 18x10°°

T 2002x10° 36x10°2

=5 J:o; B =R/L~5x10%;

JLC =v/0.2x10° x36x10™% = 2.7x10™;
Z, =/L/C =,/0.2x10°/36x10 2 ~ 75 Q;

T =AVLC =6.75x10 s,

Let us choose a polynomial y(u)=0.2u— 0.5u> +0.1u° with interval of negative diffe-
rential resistance, £ =10 and W, ~J, =107°, Then e’ =¢%*;

QAT ¢ hT o, 0875

~ 854 . The pn-junction capacity is

¢, =50 pF =5x10" F, while the pn-junction potential ®=0.4. For h=2 and
¢, =0.3 the minimal value of dC,(.)/du is dC,(u)/du>Cj~3x10™" >0.
We choose iy =1, =0.01<+/10 such that dL(i)/di=2-0.2i>2-02i, =L ~2.

Then the inequalities from Remark 3 and two of inequalities from Theorem 1 be-

come

(Wy +3)/(23C ) < s (W + 3,) /(241 ) <y = (207 ) f6 < 0.3 10°/:/0.2x10°° <0.01;

g i0c 4 g40¢ [5 x10° + ——

1 j 2 1 0.1 W, 0.1x W

[ T —— + +
75.2)10° 10| 18x107" 4.36%2 x (107 )3/2 2.362><(10’12)2

2
10° 107 | 18x10°2 4 26% o (10 2\ 9 ag? x (102
x 436" x(10™)"  2.36°x(10™)

40 1 2 1 0.1 W, 0.1xW?
Ky =% +| 5x10° + —— +— 0 0 <1
75.2)1
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