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Abstract 
This paper presents area efficient architecture of modulo 2n − 3 adder. Modulo adder 
is one of the main components for the implementation of residue number system 
(RNS) based applications. The proposed modulo 2n − 3 adder is implemented effec-
tively, which utilizes parallel prefix and sparse concepts. The carries of some bits are 
calculated with the help of sparse approach in log2n prefix levels. This scheme is im-
plemented with the help of idempotency property of the parallel prefix carry opera-
tor and its consistency. Parallel prefix structure contributes to fast carry computa-
tion. This will reduce area as well as routing complexity efficiently. The presented 
adder has double representation of residues in {0, 1, and 2}. The proposed adder of-
fers significant reduction in area as the number of bits increases. 
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1. Introduction 

Residue number system (RNS) is a classical and a non weighted number system [1]. RNS 
divides the given number into collection of small numbers, which significantly improves 
the speed of operation; the result is obtained by reverse conversion [2]. RNS has plenty 
of applications in different fields, e.g., digital signal processing (DSP) for filters, convolu-
tion, FFT transforms [3]-[7], cryptography [8], image processing for wavelet transforms 
[9]-[11], error detection and error correction [12], fault tolerance signal processing 
properties [13] and communication [14]. 

An RNS is specified by set of moduli { }1 2 3, , , , km m m m , which are relatively prime 
to each other. An Integer A is converted into RNS as RNS

1 2 3, , , , kA a a a a→ 
 here 

( )modk ka A m=  i.e. the least non negative remainder of the division of A by mk. The 
dynamic range is denoted by M, which is defined as a product of moduli set [1]. The re-
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sidue number system also has a lot of applications in the field of arithmetic operations 
like addition, subtraction, multiplication [15]. The most widely used moduli set is 

{ }2 1, 2 , 2 1n n n− +  [16]. To increase the dynamic range of RNS, the moduli set is in-
creased further to { }2 1, 2 3n n± ±  [17]. L. Kalampoukas in [18] has proposed a new de-
sign in the view of modularizing to generate and propagate a factor in place of conven-
tional end around carry scheme (EAC). This adder has parallel prefix carry computation 
structure which reduces the number of stages, leading to optimize in the speed and area 
for 2n − 1 modulo addition. H. T. Vergos et al. [19] proposed a new architecture which 
eliminates double parallel-prefix computation problem and customizes modulo 2n + 1 
addition. The design offers reduction in cell area, wiring complexity and power con-
sumption in conjunction with high speed of operation with the concept of sparse mod-
ulo 2n + 1 adder which is based on the extension of eminent idempotency property of 
prefix operator. Latency compatible parallel prefix modulo 2n − 3 adder is presented in 
[20] to include extra modulus term. In this, design technique of [18] is extended and 
modified for the difficulties occurred in derivation of generate and propagates signals 
formula with variable-weight end around carries. 

Main Contribution 

Double representation for modulo (2n − 3) i.e. (0, 1, and 2) is explained in [21] where 
ripple carry addition strategy is used. In this paper we propose a modulo 2n − 3 adder 
which uses the concept of parallel prefix sparse adder. Parallel prefix approach has better 
compatibility with modulo (2n − 1). Sparse parallel prefix adder is endorsed for large 
word-lengths addition, curtails the wiring and area design without affecting the delay. 
The proposed adder has lesser area as compared to existing modulo 2n − 3 adder [20]. 

This paper is organized as follows: Section 2 describes basics of parallel prefix addi-
tion. In Section 3, modulo 2n − 3 adder is discussed. Section 4 explains about sparse 
concept for modulo 2n − 3 adder. Finally, unit gate area and unit gate delay are calcu-
lated in Section 5. 

2. Basics of Parallel Prefix Adder  

Parallel-Prefix adder (PPA) performs parallel addition which plays a key role in 
microprocessors, DSP, mobile devices and other high speed applications. Paral-
lel-Prefix structure reduces logic complexity and delay thereby enhancing the per-
formance in term of area and power dissipation. Let the two inputs are A, B described 
as 1 2 0n nA A A A− −=   and 1 2 3 0n n nB B B B B− − −=  , addition of these two numbers are 
represented as 1 2 3 0n n n nS S S S S S− − −=  . The addition performed in PPA is computed in 
three steps. The first stage computes the carry generation (Gi), propagation (Pi) and half 
sum (Hi) bits given as. 

i i i

i i i

i i i

G A B
P A B
H A B

=
 = +

=

⋅


 ⊕

                              (1) 
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where ⋅ , + and ⊕ symbols are used to represent the logical AND, OR, XOR operations. 
Second stage of network defines carry computation unit, where we use two different 
types of operators that are    and   . The operation performed by these operators is as 
follows [22]. 

( ) ( )2 2, ,out outG P G P=    ( ) ( )1 1 2 2 1 2 1, ,G P G P G P P= +               (2) 

( ) ( )2 2, ,out outG P G P=    ( ) ( )1 2 2 1G G P G= +                  (3) 

The equations that are useful for generation of carry network [23] are:  

: :

: : : 1:

: : 1:

,i i i i i i

i j i k i k k j

i j i k k j

G G P P
G G P G

P P P
−

−

 = =


= +
 = ⋅

⋅                            (4) 

Or 

( ) ( ): :, ,i j i j i iG P G P=    ( )1 1,i iG P− −    ( ) ( )2 2, ,i i j jG P G P− −            (5) 

In the above expression 1 :i i jC G+ =  
The third stage is an “xor” operation of half sum bits and previous carry to get the 

final sum. 

i i iS H C= ⊕                                (6) 

Figure 1(a) and Figure 1(b) represent 8 bit Ladner Fischer and Kogge Stone structure 
of PPA respectively. Figure 1(c) represents the basic cells that are used in the construc-
tion of PPA. 

For the design of large word length adders the concept of sparse is used [24]. In 
sparse PPA, instead of generating carry for every bit, it generates the carry for every kth 
bit therefore it is called sparse-k parallel prefix adder. Figure 2(a) represents a simple 
16-bit sparse-4 PPA as shown below.  

Figure 2(b) shows carry select adder block which is used in sparse-4 PPA. This 
computes two sets of sum assuming carry equal to one and zero, select the resultant 
sum based on the carry which come from prefix network. By applying carry select ad-
der in sparse PPA, routing problem is eliminated and area decreases effectively. 

3. Modulo 2n − 3 Adder 

The generalized formula for modulo 2n − 3 adder is described as [20]:  

( )
 if 2

modulo 2 3
3 if 2

n
n

n

A B A B
A B

A B A B

 + + <+ − = 
+ + + ≥

              (7) 

The above expression for modulo 2n − 3 adder has double representation for {0, 1 
and 2} with the last three numbers that are 2n − 3, 2n − 2, 2n − 1.  

Unlike the modulo 2n − 1 adder, here we have to add the end around carry to the po-
sition 0 as well as position 1, this creates problem in implementation of the modulo 
PPA structure during addition. The two inputs and the EAC for position zero and posi-
tion one [20] are taken as follows: 
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G0,P0,H0

A0 B0A1 B1A2 B2A6 B6 A5 B5 A4 B4 A3 B3A7 B7

S7 S6 S5 S4 S3 S2 S1 S0

H7 H6 H5 H4 H3 H2 H1

G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0

H0 0

Cout

  

G0,P0,H0

A0 B0A1 B1A2 B2A6 B6 A5 B5 A4 B4 A3 B3A7 B7

S7 S6 S5 S4 S3 S2 S1 S0

H7 H6 H5 H4 H3 H2 H1

G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0G0,P0,H0

H0 0

Cout

 
(a)                                                                (b) 

 (Gi,   Pi)

   
Gj

 
(Gi+Pi.Gj)

 (Gi,   Pi)

   (Gj,Pj)

 (Gi+Pi.Gj , Pi.Pj)

 (Gi  , Pi)

 (Gi   ,Pi)

PGH

Ai  Bi

Ai+Bi Ai.Bi
Ai⊕Bi

 
(c) 

Figure 1. 8-bit parallel prefix adder. (a) Ladner FISCHER [23], (b) Kogge Stone [22], (c) The basic cells used in PPA. 
 

1 2 2 1 0

1 2 2 1 0

n n

n n

A A A A A
B B B B B

e e

− −

− −



   

Figure 3 describes that the carry generated in position zero enters in to next bit that 
is position one which already contains EAC. In worst case the carry bypasses from po-
sition two to next position. This problem can be eliminated by using carry save prepro-
cessing stage [20] as shown in Figure 4. 

Where iu  is the half adder sum output of iA  and iB , 1iv +  is the half adder carry  
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A7 B7          A6 B6         A5 B5           A4 B4  

 G7, P7, H7,    G6, P6,H6,     G5, P5,H5,     G4, P4,H4     

A3 B3          A2 B2         A1 B1           A0 B0  

         S3        S2              S1            S0

G3, P3,H3,     G2, P2,H2,        G1, P1,H1,     G0, P0 ,H0,     

4-bit carry select 
adder

4-bit carry select 
adder

         S7        S6              S5            S4

A15 B15      A14 B14       A13 B13         A12 B12  

 G, P, H,          G, P,H,             G, P,H,             G, P,H     

A11 B11      A10 B10        A9 B9           A8 B8  

         S3        S2              S1            S0

G11,P11,H11, G10,P10,H10, G9, P9,H9,      G8, P8 ,H8,     

4-bit carry select 
adder

4-bit carry select 
adder

         S7        S6              S5            S4

cout

cin

 
(a) 

1          01          01               0   

H3

P2  G2

H1
H2

P1  G1 P0  G0

H0

S3 S2 S1 S0
 

(b) 

Figure 2. (a) 16 bit sparse-4 parallel prefix adder, (b) carry select adder which is used in Figure 2(a). 
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Figure 3. Two stage modulo 2n − 3 adder [21]. 

 

 
Figure 4. Modulo (2n − 3) EAC addition using carry-save processing. 

 
output of iA  and iB . 1:0nG −′  represents end around carry for the next stage. 

The alternative approach has been presented for modulo adder using PPA structures 
[20]. It had given that ith carry expression in the case of modulo 2n − 3 adder is as fol-
lows: 

1:0 1:0 1: 2 1,i i i n iC G P G i n− − −′ ′= + ≤ ≤ −                    (8) 

where, 

1 01:0 1:2 1:2 1 2 2,i i i i iP P P P P P P P− − − − −′ ′ ′= =⋅ ⋅ ⋅   

1: 1:n i n i nG G v− −′ = +  
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1 0 1:0nC u G −′= ⋅  

The sum expression for bit position one is  

1 1 1 1 0 1:0 1 1:0 1 0 1:0n n nS H C H u G H G H u G− − −⋅′ ′ ′= ⊕ = ⊕ ⋅ = + ⊕           (9) 

From above expression, the carries can be calculated by propagate and generate bits. 
Figure 5(a) shows modulo 82 3−  regular parallel prefix (RPP) adder structure [20]. 
The RPP is differing with modulo 82 1−  having half carry-save stage for preprocessing, 
one bit in “zero” position before enforcing the EAC and two carries enter into the posi-
tion “one” after EAC enforcement. Figure 5(b) represents modulo 82 3−  total paral-
lel prefix (TPP) adder structure [20]. TPP is same as RPP. The only difference is that we 
have 1 1:0 0nc G u−′=  one gate more delay than other carries. The sum S1 is implemented 
with the help of multiplexer taking 1:0nG −′  as selection line shown in Figure 5(b). For 
the rest of bits the sum expression calculated using exclusive-OR gate. 

The delay offered by RPP adder structure is more as compared to TPP adder struc-
ture due to extra prefix level. The TPP structure has a disadvantage of routing complex-
ity as well as excessive area problem as the bit length of adder increases. 

4. Sparse Modulo 2n − 3 Adder 

In this segment, we proposed modulo 2n − 3 adder by utilizing the concept of integer  
 

HAHAHAHAHAHA HAHA

A0 B0A1 B1A2 B2A6 B6 A5 B5 A4 B4 A3 B3A7 B7

P’GHPGH PGHPGH PGHPGHPG’H

S7 S6 S5 S4 S3 S2 S1 S0

C0C1C2C3C4C5C6C7
H7 H6 H5 H4 H3 H2 H1

u0

v1v2v3v4v5v6v7v8

u1u2u3u4u5u6u7

P’GHPG’HHA

u1     v1      u0

u1+v1+u
0

u1.v1 u1⊕v1un-1+vn-1un-1.vn-1+vn un-1⊕vn-1Ai.Bi   Ai⊕Bi

 (Gi , Pi)

Gj

 (Gi+Pi.Gj)

 (Gi , Pi)

(Gj,Pj)

 (Gi  , Pi)

(Gi, Pi) (Gi+Pi.Gj , Pi.Pj)

vn un-1 vn-1Ai  Bi

HAHAHAHAHAHA HAHA

A0 B0A1 B1A2 B2A6 B6 A5 B5 A4 B4 A3 B3A7 B7

P’GHPGH PGHPGH PGHPGHPG’H

S7 S6 S5 S4 S3 S2 S1

S0

C0

C1

C2C3C4C5C6C7
H7 H6 H5 H4 H3 H2

H1

u0

v1v2v3v4v5v6v7v8

u1u2u3u4u5u6u7

P’GHPG’HHA

u1     v1      u0

u1+v1+u
0

u1.v1 u1⊕v1un-1+vn-1un-1.vn-1+vn un-1⊕vn-1Ai.Bi   Ai⊕Bi

 (Gi , Pi)

Gj

 (Gi+Pi.Gj)

 (Gi , Pi)

(Gj,Pj)

 (Gi  , Pi)

(Gi, Pi) (Gi+Pi.Gj , Pi.Pj)

vn un-1 vn-1Ai  Bi

0  1

H1

 
Figure 5. (a) Modulo 28-3 EAC adder, (b) recirculating EAC modulo 28-3 adder. 
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sparse-4 PPA in which the same carry select adder, used to implement sparse modulo 
2n − 3 adder. In sparse-4, the carry is generated for every 4th bit. We are using carry se-
lect adder for modulo operation so we are required to show that the rest of carries are 
associated with available ones. 

From the general carry expression given in Equation (8) 
Let n = 32 bit, the carry expression 14C  can be derived by available 12C  written as:   

12 11:0 11:0 31:12C G P G′ ′= +                            (10) 

14 13:0 13:0 31:14C G P G′ ′= +                            (11) 

We can also write it as: 

( )14 13:0 13:0,C G P′↔    ( )31:14 31:14,G P′                     (12) 

This can also be expanded as: 

( )14 13:12 13:12,C G P↔    ( )14 13:12 13:12,C G P↔    ( )31:14 31:14,G P′           (13) 

By the formula of Rearraging the redundant terms given in [23]. 

( )14 13:12 13:12,C G P↔    ( )11:0 11:0,G P′    ( )31:14 31:14,G P′    ( )13:12 13:12,G P       (14) 

Finally it is expressed by, 

( )14 13:12 13:12,C G P↔    ( )11:0 11:0,G P′    ( )31:12 31:12,G P′            (15) 

So  

( )14 13:12 13:12,C G P↔    
12

11:0 11:0 31:12 31:0,
C

G P G P
 
 ′ ′ ′+ ⋅
 
 


            (16) 

At last, the carry expression 14C  in terms of 12C  is written as:  

14 13:12 13:12 12C G P C′= +                           (17) 

From above expression we conclude that this relation is quite similar to integer adder. 
Therefore we can directly use carry select block Figure 2(b) of sparse integer adder for 
performing modulo operation. But the main problem is the carry expression given in 
Equation (8) which is defined for 2 1i n≤ ≤ − . The carry equation for 1C  is quite dif- 
ferent so the modification of carry select block is needed for first four bits of modulo 2n − 
3 adder, it is based on carry 1C  given in Equation (9). 

Figure 6 is similar to carry select block of Figure 2(b) except at sum position S1. The 
Figure 6 is used only for first four bits of sparse-4 modulo 2n − 3 adder. The remaining 
bits uses carry select block of Figure 2(b) for implementation of sparse modulo (2n − 3) 
adder. 

This sparse-4 modulo 2n − 3 adder has double representation for {0,1,2} with 2n − 3, 
2n − 2, 2n − 1, so there are six pairs of combinations in which two pairs has tendency to 
produce wrong addition result. The solution for this problem is explained in [20] and 
[21]; these explanations still exist for proposed adder. 

Figure 7 represents the proposed 32 bit sparse modulo 2n − 3 Adder having lesser 
area than previously reported modulo adder. 
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1          01          01               0   

H3

P2  G2

H1
H2

P’1  

H0

S3 S2 S1 S0

G1

 
Figure 6. Carry select block for modulo 2n − 3 adder only for first 4 bits. 

 

HAHAHA HA HA HA HA HAHAHAHA HA HA HA HAHA

PGHPGHPGHPGHPGHPGHPGHPGHPGHPGHPGHPGHPGHPGHPGH

A0 B0B1A1A3 B3 A2 B2A5 B5 A4 B4A6 B6A7 B7A28 B28 A27 B27A30 B30 A29 B29A31 B31 A25 B25A26 B26 A24 B24

u0

v1
u1

v2
u2

v3
u5

v6
u4

v5
u3

v4
u6

v7
u7

v8
u24

v25
u25

v26
u26

v27
u27

v28
u28

v29
u29

v30
u30

v31u31v32

Modified 4-bit Carry 
Select Adder for modulo 

2n-3
4-bit Carry Select Adder 4-bit Carry Select Adder 4-bit Carry Select Adder 

S3  S2  S1  S0S7  S6  S5  S4S11  S10  S9  S8S31  S30 S29 S28
 

Figure 7. The proposed 32 bit sparse-4 modulo 2n − 3 parallel prefix adder using [17] architectures. 
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5. Performance Analysis and Comparison 

The theoretical area and delay analysis is explained in terms of area (∆a) and delay (∆g) 
of basic 2-input gates. From the concept of unit gate model, basic 2-input AND, OR, 
NAND, NOR are assumed as single unit gate (∆a, ∆g), whereas exclusive-OR & exclu-
sive-NOR and assumed to be double unit gate (2∆a, 2∆g) [15]. The area and delay of 
Inverters and buffers are not taken into account in unit gate model.  

The delay offered by proposed sparse modulo 2n − 3 adder is same as [20]. Table 1 
shows the estimated gate delay and gate area of proposed adder as function of bit length 
n. 

Table 2 shows the unit gate delays and unit gate areas for different values of n of 
proposed adder and also shows the percentage reduction in area in comparison with 
[20]. 

The percentage reduction in area increases as the number of bit length increases. We 
have also elaborated proposed work with HDL code written on Xilinx 14.7 and verified 
for correctness using simulation tests. Number of lookup table (LUTs) count is given in 
Table 3 for n = 8 which measures the area utilization for proposed adder. 

6. Conclusion 

In this paper, we have proposed an area efficient sparse modulo 2n − 3 adder which 
plays an important role in verity of computer applications. The efficiency in term of 
area of proposed adder is explained by using the concept of unit gate model. For dif-
ferent value of n (=8, 16, 32, 64), the percentage area reduction is (=2.3, 13.2, 21, 27.54)  

 
Table 1. Adders unit gate area and delay estimations. 

Adder Delay (∆g) Area (∆a) 

[20] ( )2log 4n +  ( )3 log 8 10n n n+ −  

Proposed ( )2log 4n +  ( )3 log29 11
2 4

n nn
+ −  

 
Table 2. Delay and area for different bit length. 

Bits 
(n) 

[20] Proposed Reduction % 

Delay (∆g) Area (∆a) Delay (∆g) Area (∆a) Delay (∆g) Area (∆a) 

8 

16 

32 

64 

10 

12 

14 

16 

126 

310 

726 

1654 

10 

12 

14 

16 

123 

269 

573 

1205 

0 

0 

0 

0 

2.3 

13.2 

21.0 

27.54 

 
Table 3. LUT count for n = 8. 

[20] Proposed Sparse Adder % Reduction in LUT Count 

64 42 34 
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respectively with same delay. Simulation results show that the area of proposed adder 
has been reduced by 34% in term of LUT count for n = 8. Therefore, it is observed that, 
the presented modulo adder offers less area in performing the addition for larger word 
length input and also reduces the routing complexity in comparison with the previously 
reported adder. 
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