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Abstract 
 
In this article a new approach is considered for implementing operator splitting methods for transport prob-
lems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical va-
por deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. 
Such a field we can model by wave equations. The main contributions are to improve the standard discretiza-
tion schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- 
Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell 
and Transport equation. 
 
Keywords: Operator Splitting Method, Initial Value Problems, Iterative Solver Method, Stability Analysis, 

Beam Propagation Methods, Transport and Maxwell Equations 

1. Introduction 
 
We motivate our study by simulating thin film deposition 
processes that can be realized by PE-CVD (plasma en-
hanced chemical vapor deposition) processes, see [1,2]. 
For the deposition process, the influence of the electric 
fields to the transported gases in a plasma reactor is very 
important, see [3]. Therefore we deal with a simplified 
model of a coupled transport and Maxwell equations. 
While the transport equations modeled the transport of 
gaseous species and the Maxwell equation the influence 
of the underlying flow field. 

We deal with the following equations 
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where u is the concentration of the gaseous species, zE  
is the electric field and ,x yH H  is the corresponding 
magnetic field in two dimensions. Further  t

x yv= ,v v  
is the influenced velocity of the transport equation. 

We concentrate on the numerical modeling and simu-
lation of electrical fields, which are coupled with trans-
port equations. 

Several methods exist to solve electric field and are of 
interest. 

One method for a stationary case of the electric field is 
a propagation method (BPM). This is a powerful tool to 
analyze linear and nonlinear light propagation in axially 
varying waveguides like directional couplers, tapered 
waveguides, S-shaped bent waveguides, and optical fi-
bers [4-7]. The method has its origin in the field of 
propagation of electromagnetic beams in atmosphere, 
where the multi-physics modeling was done on the as-
sumption that “the continuous gain medium may be ap-
proximated by a series of gain sheets with free propaga-
tion between the sheets” [8,9]. As it will be shown later 
on, this method is in fact a Strang-Marchuk operator 
splitting method [10,11]. Here we first describe the BPM 
[12]. We introduce the iterative splitting idea to couple 
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Maxwell and Transport equations. Further a splitting 
analysis is presented. Numerical experiments are pre-
sented with respect to decoupled and coupled differential 
equations. 

The paper is organized as follows. The discretization 
methods are described in Section 2. In Section 3, the 
applied operator splitting methods are presented. The 
error analysis of the coupled methods is studied in Sec-
tion 4. The experiments of the new discretization meth-
ods and splitting methods are performed in Section 5. At 
the end of this paper we introduce future works. 
 
2. Discretization Method of the Maxwell 

Equation 
 
In the following we discuss the discretization methods 
for the Maxwell equation. 
 
2.1. FDTD Method: Yee’s Scheme 
 
Yee’s scheme is the standard finite difference time-do- 
main (FDTD) discretization of the following time de-
pendent Maxwell curl equations 
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where  is the electric field,  = , , , ,E x y zE E E x y t  =H  
  , , , ,x y zH H H x y t  is the magnetic field,  = ,r x y 

= 1r

 
is the relative permittivity (given data),   (non- 
magnetic material) is the magnetic permeability. Here 

0 , 0  are constants. It can be shown that if the diver-
gence free conditions  and   = 0Er    = 0H  
are satisfied at , then they are satisfied for all time. 
This is the case for our setting. Therefore it is enough to 
consider only the above curl equation. Rewriting them 
component-wise, we get in our case 
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Let x , y  are spatial discretizations, and t  is a 
time step. We use the following notation 

   , = , ,n .F i j F i x j y n t          (11) 

Let   represents a spatial coordinate such as x , . 
The goal of Yee’s scheme is to compute the approxima-

tions for the various components 

y

E  of E  and H  
of H  at the following spatial locations and temporal 
instants: 
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Thus the distributions/grid of various components are 
staggered in space and in time. This is one of the two 
unique characteristics of the Yee’s scheme. The second 
unique characteristic is that the various spatial deriva-
tives in Equations (8) - (10) are computed across the one 
spatial cell, i.e. the difference center for the central dif-
ference approximation of the spatial derivative is the mid 
point of one cell length in the corresponding direction of 
the derivative. Thus the Yee’s scheme approximates 
Equations (8) - (10) at the following points: 

  Equation (8) , 1 2i x j n t,y           (14) 

  Equation (9) 1 2 , ,ji x y n t           (15) 

  Equation (10) , , 1 2i x j y n t           (16) 

Such a staggered uncollocated arrangement gives the 
Yee’s scheme several nice numerical and physical prop-
erties, see [13]. Then we get finite-difference approxima-
tions as: 
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In Equation (19) the relative permittivity r  is com-
puted at the corresponding difference center as given by 
Equation (16). At the interface between two media, r  
is approximated by the average value. 

Conditions for the Yee’s algorithm: 
● The CFL stability condition for the Yee’s FDTD 

method is 

   2

1 1 1
t

c 2
x y

  
 

            (20) 

where c is the speed of light in vacuum, see [13]. 
● To restrict the unbounded domain to finite domain, 

one uses absorbing boundary condition like the perfectly 
matched layers, see [14,15]. 

Remark 1. Often for more accurate problems a Yee’s 
algorithm which is second order in time and second or-
der in space is often to low. For higher order methods in 
time and space can be constructed but are often to deli-
cate and expensive to implement, see [16,17]. We pro-
pose to improve with higher order implicit Runge-Kutta 
methods with an idea to sparse matrices schemes, which 
saves additional memory. 
 
2.2. Improved Time Discretization Methods for 

Maxwell Equation 
 
Based on the problem of reconstructing a higher order 
Yee’s algorithm, we deal with separate improvement of 
the discretization schemes. 

While the spatial discretization of the Yee’s algorithm 
is a second order difference scheme, the time discretiza-
tion is also only a second order scheme. 

Here we see the deficits of only improving the spatial 
scheme with higher order schemes and leave the time- 
discretization with a second order scheme. 

We propose an improved time-discretization scheme 
of higher order and apply fine spatial grids, while the time 
error is at least larger, see [18]. 

We deal with higher order time-discretization methods. 
Therefore we propose the Runge-Kutta as adapted time- 
discretization methods to reach higher order results. For 
the time-discretization we use the following higher order 
discretization methods.  

We deal with the following semi-discretized partial 
differential equations, such equations are used in each 
iterative splitting step: 
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u
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where A  is the operator that we implicit solve in the 
equation and    =f t Bu t  is the explicit operator, with a 

previous solution , e.g. last iterative solution. u
 
2.2.1. Higher Order Time-Discretization Methods 

with Runge-Kutta Methods 
We deal with the following Maxwell equation, given as: 
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For the boundary conditions we assume periodic 
boundary conditions. That means we use the identifica-
tion 

  , = 1,z zE N i E i             (26) 

   , = ,1 = 1, ,z zE i N E i i N  .      (27) 

Remark 2. For the stationary field, we apply a peri-
odic boundary condition, which is sufficient. The Mur 
absorbing boundary condition, see [5], is used for the in- 
stationary field, while respecting the influence of the 
changes at the boundaries. 

To get a first realization of an open boundary in the 
case of the line-source we use symmetry and a combina-
tion of PBC and Mur’s first order ABC. For the bound-
arys orthogonal to the propagation direction of the field 
(left-right) it is useful to work with Mur’s ABC. 
 
2.2.2. Mur’s ABC 
We can interpret the electromagnetical field as a wave 
that has to fulfill the homogeneous wave equation. 
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Considering (36) equation (32) turns to 
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which is Mur’s ABC with first order accuracy. As a first 
attempt to model an open boundary we will use this. 

Left boundary ( 0=x x ) 
For the left boundary we have do discretize the fol-

lowing equation: 

1
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This can be done with a FDM-scheme as follows. 
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his tool does not satisfy completely 
ly has first order accuracy and even more 

important it only absorbs the part of the wave that 
propagates orthogonal to the boundary. 

But there are also a few advantages. Mur’s ABC h

 

It is easy to see that t
because it on

as to 
be applied only to the zE  field because xH  and yH  
are dealt with automatically through the ordinary update- 
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For a better legibility and because the focused point of 
time does not change, we write

    = which is known (in our cai i
j jJ J t se)   (50) 
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2.2.3. Stability Analysis of the Implicit Discretizations 
We deal with the following discretized equation systems: 
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2.3.2. Explicit Runge-Kutta Methods 
In general a s-stage Runge-Kutta method can be written 
in the following way: 
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3. Splitting Methods to Couple Maxwell and 
Convection Diffusion Equation 

 
We concentrate on the splitting methods, which can be 
classified as classical and iterative splitti

We propose iterative splitting methods by discussing 
the additive iterative splitting methods, see [20,21]. 

We consider the following the linear problem 
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In the following we analyze the convergence and the 
rate of the convergence of the method (80) - (81) for m 
tending to infinity for the linear operators 

ut for the sake mplicity, in our notation 

, :A B X 
rators and their sum are

X , 
where we assume that these ope  

ors of
ar

ce is e nach spac
. Let u chy prob

generat  the 0C  semigroups. We emphasize that 
these operators  necessarily bounded, thus the con-
vergen xamined in a general Ba e setting. 

Theorem 2 s consider the abstract Cau -
lem in a Banach space X 

en't

   =tc t Ac t Bc   , 0 <t t T

  00 = ,c c

  ,
       (82) 

where , , :A B A B X X   are given lin s 
being generators of the 0C  semigroup and 0c X

ear operator
  is a 

given element. The the iteration process (80) - (81) is 
convergent and the rate of the convergence is of higher 
order.  

n 

 B are matrices (i.e. (80) - (81) 
is a system of ordinary differential equations
growth estimation we can use the concept
rithmic norm, see e.g. [23]. Hence, for many important 

of matrices we can p
hat portan

y of the split subproblems-the iterative splitting 
m o the exact solution. 

Fo

The proof can be found in [22]. 
Remark 6. When A and

), for the 
 of the loga-

classes rove the validity. 
Remark 7. We note t  a huge class of im t dif-

ferential operators generate a contractive semigroup. 
This means that for such problems-assuming the exact 
solvabilit

ethod converges in higher order t
In the next subsection we present the used time-dis- 

cretization methods. 
 
4. Error Analysis: Coupling Methods 
 

r the coupling methods we deal with nonlinear differ-
ential equations of the following type: 

           d
= , with = ,

d
n nc

A c t c t B c t c t c t c
t

 (83) 

where  = , , ,x y zc H H E u , with xH , yH  is the mag-
netic field, zE  is the 

 of the species. 
electric fi he concen-

ation
eld and u is t

tr
The main idea is to bound the operators   A c t  and 
  B c t  in the discretized equation able 

hat is discussed in 
the following subsection. 
 
Iterative Operator-Splitting Method as a 

int Scheme 
e 

earize the nonlinear operators, see 
[2

We re
quations of the form: 

to satisfy a st
method. 

A first idea is the fix-point scheme, t

Fix-Po
The iterativ operator-splitting method is used as a 
fix-point scheme to lin

1,24]. 
strict our attention to time-dependent partial dif-

ferential e

           d
= , = ,

d
n nu

A u t u t B u t u t with u t c
t

 (84) 

where    , :A u B u X X  are linear and den
fined in the real Banach space 

sely de-
X , involving only spatial 

derivatives of c, see [25]. In the following we discuss the 
standard iterative operator-splitting methods as a fix- 
point iteration method to linearize the operators. 
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lit our nonlinear differential equation (84) by 
ap

We sp
plying: 

           

 
1 1 1= ,

with = ,

i i i i

n n
i

d iu t
A u t u t B u t u t

dt

u t c

  
 (85) 

         

 

1
1 1 1

1

d
= ,

with = ,

i
i i i i

n n
i

u t
A u t u t B u t u

dt

u t c


  




  (86) 

w
m . is the starting solution, 

e  is near , or 
al fix-po
tion at 

x el 

here the time step is 1= n nt t   . The iterations are 
= 1,3, ,i  2 1

where we assum
 0 = 0u t . So we

lem. nc  is th
level = nt t . 

The split appro

  = nc  
 the solution nc 

o solve the loc
split approxim

tion at time lev

0u t

 have t
e known 

ima

1

a

nc
int 
the

1

prob-
 time 

= nt t   is de-
fined as . We assume rators  1 1

2 2=n n
mc u t 


 1 1, :i i

 the ope
 A u B u X X  

 the real Banach spac
 to be linear and de

e X, for m
nse

1,3, , 2i
ly de-

fined on = 1 . 
Here the linearization is done with respect to the itera-

tions, such that   1i1 ,iA u  re at least non-de-
ive equations, and we can 

apply the linear theory. 
nearization is at least in the first equation 

   i i

B u

ors in the iterat
 a

pendent operat

The li

1A u A u  , and in the second equation  1iB u    
B u   1i

We have 

       1 1 1 1n n nA u u u1
n

i iA u t u t 


linear

5. Experiments 
 
In the following experiments, first we deal with the de-
coupled equations, means Maxwell and transport equa-

. 

 

Maxwell equations in 2D is given 

     

with sufficient iterations  = 1,3, , 2 1i m  . 
Remark 8. The th the fix-point scheme 

can be used for smooth or weak nonlinear operators, 
otherwise we loose the convergence behavior, while we 
di

ization wi

d not converge to the local fix-point, see [21]. 

tions, to verify our methods
In the third experiment, ple we consider a sim  PE-CVD 

process and concentrate on the coupled transport and 
Maxwell equation. 

5.1. Test Experiment 1: Maxwell Equation
 

he time-dependent T
as: 

     
,

= , , , 0, ,x z
H x y E

x y t T
t y

 
 

 
   (87) 

     
,

= , , , 0, ,y z
H x y E

x y t T
t x

 


 
   (88) 

 , 1 yz x

   , , 0, ,

= ,sourceJ
t x y

         

HE x y H  

 (89) 

e 

x y t T

wher    , = sinsourceJ x y t . 
have to implement the We outflow condition,

underlying discretization method (we assume fi
ference methods), means how many concentration is 
flowing via the time-step 

 via the 
nite dif-

t  to the cell with th
step 

e spatial 
x : 

The relative spatial step is given as 

1 = relativt x   

The percentage of the outflow is given as: 

=relativx
rel


 

r 

x

 , = , ,z out zE relE x y   

The same is also given fo the ,x yH H . 
He e apply the FDTD ethod of Yee’s algorithm. re w  m

 it is important to 
balance suc

We assume to have finite difference schemes in time 
an

evy) condi-
tion is important to balance the schemes: 

While we are dealing with wave-equations: 

For spatial and time discretization
h schemes. 

d space. 
Therefore the CFL (Courant Friedrichs L

x t    

here x , t  are the spatial anw d time steps. 

fo
To control the electric field  ,zE x y , we have the 
llowing line source: 

  , = sin 
 where                  = 0, 0,100

source                              J x y t

x y
 

The control of the particle transport is given by the 
electric field in Figure 1. The electric and transport 
sit nal model 
in Figure 2. 

In the following we have the line sources with the re-
F

Maxwell
tric field in the reactor. We apply 

Yee’s algorithm to obtain at least a second order scheme 
in time and space. Based on the slower time-scales of the 
Maxwell equations, which is less stiff than the transport 
eq

uation is given with cut of the three dimensio

sults given in igure 3: 
Remark 9. We consider the  equation, that 

models a periodic elec

uations, we have sufficient accuracy in the full coupled 
system. A higher order discretization scheme is neces-
sary for the transport part. 
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Figure 1. Electric field in the apparatus. 

 

 
Algorithm 4.4 

1) Initialize Convection-Diffusion equation, till tstart. 

2) Solve Electric Field equation with , we obtain  st tart  ,zE x y  for tstart. 

3) Solve Convection Diffusion equation with  and usestartt t     ,zE x y  

for t  for the unknown. 
4) Do t and go to 2.) till 

start

 =start startt t    =start endt t  

Figure 2. Electric field in the apparatus. 
 

 

Figure 3. Line source of the Electric field in the apparatus. 

5.2. Test experiment 2: Convection-Diffusion 
Equation 

 
We deal with the 2-dimensional advection-diffusion 
equation and periodic boundary conditions 

   

2 2

2 2

0 0

= ,

   = ,

, = ,

t

x y

u v u D u
u u u

v v D D
x y

u

x y
u x t u x

    
   

   
   

 

with the parameters 

1

0

= =

= 0.01

= 0.25.

x yv v

D

t

 

The given advection-diffusion problem has an ana-
lytical solution 

   2
1

, = exp
x

4a

vt
u x t

  
   

ction: 

t Dt 
 

which we will use as a convenient initial fun

   0 0, = ,au x t u x t  

We apply dimensional splitting to our problem 

= x y

u
A u A u


  

where 
t

2

2
= .x x

u u
A v D

x x

 
 

 
 

x We use a 1st order upwind scheme for  and a 
2nd order central difference scheme for 

22 x  . By in-
troducing the artificial diffusion constant =xD D   
 2xv x  we achieve a 2nd order finite  
scheme 

difference

     

     
2

=x xL u x v
x




2u
            .x

u x u x x

u x x x u x x
D

  

x

     


because the rst 
order error (i.e. the num ical viscosity) of the Taylor 
expansion of the upwind scheme. 



 new diffusion constant eliminates the fi

 

er

yL u  is derived in the 
ay. 

We apply a BDF5 method to gai  5th order accuracy 
in time. For simplifications, we no  that the dependen-
cies of 

same w
n
te

 ,u x t  are suppressed as  u t . 

       

     

1 137
= 5 5

60
10 5 1

           2 3 4 .

tL u t u t t u t u t
t

u t t u t t u t t

      

3 4 5

t

         


(90) 
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To compare the four methods we have the following 
general setting. Let      = 0,1 0,1 0,1  

 the initial concentration 
, the unit 

cube. There we set up

 
  2

0
= 2exp

0.02tu x x     
 

 (91) 

 

x a  

           (92) 
T

with = 0.5,0.5,0.5a

which is just the analytical solution 

   2
1

, = exp
4a

x vt
u x t

t Dt



 
 

       (93) 

with  and  at  on

  
 

= 1v = 0.01D 0= = 0.25t t   . 
During the following experiments we will se  and 

consider an equidistant lattice of  poi
t = 0

nts (
v

 3N =x  
 = = 1 1y z N  ). 

The result is sho ng Figures 4 
and 5: 


wn within the wi

Remark 10. We consider the transport equation, that 
models the mass transport of the ionized species fro
lower-left to the middle of the reactor. We use h
order time and spatial discretization schemes to obtain 
higher order solutions. Such methods, 
larger time and spatial steps and obta

Based on the fast time-scales of the transport equa-
tions, which is stiffer than the Maxwell equatio
balance the larger time-steps with suffic
solution of the transport regime in the coupled system. 

5.    
 

Electric Field Equation

H

ation, see citelieb05. 

follo

m the 
igher 

we can apply with 
in sufficient accu-

rate results. 

n, we can 
ient accurate 

 
3. Test Experiment 3: Coupling    

Convection-Diffusion and         
s          

(Weak Coupling) 
 

ere, we consider a simple PE-CVD process, that an 
underlying mass transport of a gaseous species is influ-
enced by an electric field, see [1,3]. 

For transport in a plasma environment, we assume a 
homogeneous medium and that the influence of the elec-
tric field can be simulated by a coupled transport and 
Maxwell equ

For simplifications, we deal with the 2-dimensional 
advection-diffusion equation and electric field equation: 

  

   

2 2

2 2

0 0

       ,

, , = , ,

= ,t x z y

u u
u v E x y v

x y

 
  

 

u u
D D

x y

u x y t u x y

 
 

 
 

     

   

,H x y E

 

 

   , , 0, ,

= , , , 0, ,

,
= , , ,

x z

y z 0, ,

, 1
= ,yz x

source

x y t T
t y

H x y E
x y t

 
 

 
 T

t x
HE x y H

J
t x y


 

  
     

 

x y t T
The advection-diffusion problem has an analytical so-

 

lution at the beginning for  0 0, startt t  

   2
1

, = exp
4a

x vt
u x t

t Dt

  
 
 
 

 

which we will use as a convenient initial function: 

   0 0, = ,au x t u x t  

Further the function: 

   
 

( , ) = 1 for 0,

( , ) = ( , ) for

x z start

x z z

v E x y t t

v E x y E x y t t




 

start

where = 0.001 , = 10.0startt . 
 

 

Figure 4. Initial gaseous concentration at t = 0 5. 
 

.2

 

Figure 5. Gaseous concentration at t = 0.5. 
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Both equations have the same domain  = 0,1   
 0,1

Nu
. 
merically we solve the equation, as in th

algorithm 5.3: 
The following figures show the developing of the 

concentration under the influence of the electric field, we 
deal with a normalized time scale in 

e following 

 sec . Further we 
have = 0.07 ,  and r = 0.5startt =yv 0  fo startt t .  

Figure
Remark 11. Based on the transport of the ionized spe-

cies from the lower-left to the middle of the reactor, we 
see and influence of the species. The former circular 
concentration is spread out to a diffusive ellipse ere, 
we c tric 

eld
 time- and spatial scales of the underlying transport 

and Maxwell equation. Via iterative splitting, we could 
couple the two equations systems together and reduce 
the numerical errors with additional iterative steps. 
 

The results are given in  6 - 11. 

. H
an control the species in the reactor with a elec
. Numerically, it is important to deal with the differ-fi

ent

 

Figure 6. Gaseous concentration after t = 0.833. 
 

 

 

Figu
in

r  first 
fluence of the electric field. 

 

e 8. Gaseous concentration after t = 1.162 with a

 

Figure 9. Electric field after t = 1.162. 

 

 

Figure 10. Gaseous concentration after t = 1.483 with a first 
influence of the electric field. Figure 7. Electric field after t = 0.833. 
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Figure 11. Electric field after t = 1.483. 
 
6. Conclusions 
 
We present a coupled model based on Maxwell and
Transport equations, that can be applied for simplified 
transport model for an ionized gaseous species in a
PECVD reator. Based the different scale models, we
have included the optimal discretization methods for
each separate equation. Splitting methods are used to 
couple the separate equations together. Further, we d
cussed the splitting analysis. Numerical examples are 
presented to discuss the influence of decoupled and cou-
pled systems. In future, we will analyze the validity of 
the models with physical experiments. 
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