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Abstract 
The (2 + 1)-dimensional Korteweg de Vries (KdV) equation, which was first derived 
by Boiti et al., has been studied by various distinct methods. It is known that this (2 + 
1)-dimensional KdV equation has rich solutions, such as multi-soliton solutions  
and dromion solutions. In the present article, a unified representation of its N-soli- 
ton solution is given by means of pfaffian. We’ll show that this (2 + 1)-dimensional 
KdV equation is nothing but the Plücker identity when its τ-function is given by 
pfaffian. 
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1. Introduction 

The solitary wave, so-called because it often occurs as a single entity and is localized, 
was first observed by J. Scott Russell on the Edinburgh-Glasgow Canal in 1834. It is 
known that many nonlinear evolution equations have soliton solutions, such as the 
Korteweg de Vries equation, the Sin-Gordon equation, the nonlinear Schrödinger equ-
ation, the Kadomtsev-Petviashvili equation, the Davey-Stewartson equation, etc. In or-
der to study the property of nonlinear evolution equations, methods are developed to 
derive solitary wave solution or soliton solution to nonlinear evolution equations. Some 
of the most important methods are the inverse scattering transformation (IST) [1] me-
thod, the bilinear method [2]-[7], symmetry reduction method [8], the Bäcklund or 
Darboux transformation method [9] and so on. Having soliton solutions is one of the 
basic integrable properties of nonlinear evolution equations. 

In this paper, we are interested in the general expression of N-soliton solution to the 
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(2 + 1)-dimensional KdV equation, 
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which was first derived by Boiti et al. by using the idea of the weak Lax pair [10]. This 
system can also be obtained from the inner parameter-dependent symmetry constraint 
of the KP equation [11]. Recently, the dromion solutions and some exact solutions are 
studied by Lou and Wazwaz respectively [12]-[14]. While as for the uniformed ex- 
pression of its N-soliton solution is unknown yet. 

In this article, we’ll study the N-soliton solution to the (2 + 1)-dimensional KdV 
system (1). A compact form of the N-soliton solution to Equation (1) is obtained by means 
of pfaffian technique, which is given in section 2. Conclusion and further discussions 
are given in section 3. 

2. N-Soliton Solution to the (2 + 1)-Dimensional KdV Equation 

Given a nonlinear evolution equation, if it has 3-soliton solution, then this equation is 
of great possibility of having N-soliton ( 3 N≤ ) solution. Pfaffian technique is one of 
the methods that can help us to determine whether the evolution equation has multi- 
soliton solutions or not. In this section, we first review some properties of pfaffian. 

2.1. Pfaffian 

Pfaffians are antisymmetric functions with respect to its independent variables  

( ) ( )pf , pf , , for any and .a b b a a b= −  

An n-th order pfaffian ( )pf 1, 2, , 2n  can be defined inductively by the expansion 
rule [3] 
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where ĵ  denotes the absence of letter j. For example, when n = 2, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )pf 1, 2,3, 4 pf 1, 2 pf 3, 4 pf 1,3 pf 2, 4 pf 1, 4 pf 2,3 .= − +  

There are various kinds of pfaffian identities. In this article, we just introduce the 
so-called Plüker relation for pfaffians [3]  
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which we are going to use. Hereafter, we let ( )1, 2, , 2n  denote pfaffian  
( )pf 1, 2, , 2n  for simplicity. 
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2.2. N-Soliton Solutions 

The Hirota form of the (2 + 1)-dimensional KdV system (1) is 
3 0,y t xD D D f f + ⋅ =                          (3) 

which is obtained by the dependent variable transformations  

( ) ( )2 2

2

ln , , ln , ,
2 , 2 .

f x y t f x y t
u v
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∂ ∂

= =
∂ ∂ ∂

                (4) 

Here the Hirota bilinear operator m n
x tD D  is defined by 

( ) ( )
,

, ,  ,
m n
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with n and m are arbitrary nonnegative integers. 
In [14], the 3-soliton solution to the (2 + 1)-dimensional KdV system (3) is obtained 
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via the perturbation method. It claims that the N-soliton solutions for 4 N≤  can also 
be obtained by using perturbation method, but the explicit expression of the multi- 
soliton solution is not given. 

In this article, we’ll study the the multi-soliton solution to Equation (3) using the 
pfaffian technique [15] [16]. A compact form of the N-soliton solution is given in terms 
of N-th order pfaffian. 

Proposition 1. If the τ-function f of the (2 + 1)-dimensional KdV system (3) is given 
by the pfaffian function 

( )0 0 1 2 1 2, , , , , , , , , ,N Nf d a a a b b bβ=                    (6) 

whose entries, for , 1, 2, ,j k N=  , are defined by 
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then this particular pfaffian function (6) gives an N-soliton solutions to the (2 + 1)-di- 
mensional KdV system (3). 

Proof. In the following, we will prove that the pfaffian function (6) satisfies the (2 + 
1)-dimensional KdV Equation (3). By defining “differential operators” nd  ( 1, 2,n =  )  
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( ) ( ) ( ) ( ) ( ) ( )0 0, exp , , , , , 0,n
n j j j n j n m n nd a p d b d d d d dη β= = = = =       (8) 

we obtain the following differential formulae  
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In order to find the pfaffian expression for the differential functions with derivative 
of variable y, we need to define another letter β  [17] 
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Substituting formulae (9) and (11) into the right hand side of Equation (3), we obtain 
nothing but the Plücker relation for pfaffians (2)  
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where ( )  denotes ( )0 1 1, , , , , ,N Nd a a b b  . Therefore the pfaffian function (6) solves 
the (2 + 1)-dimensional KdV system (3). 

Note that in order to derive the differential formulae of the pfaffian function (6), we 
have to define another extra letter β  besides the “differential operators” nd . The 
multi-soliton solution to the nonlinear (2 + 1)-dimensional KdV system (1) can be 
obtained by substituting pfaffian function (6) into the dependent variable transfor- 
mation (4) directly. 

3. Conclusion 

In this article, a compact form of the multi-soliton solution to the (2 + 1)-dimensional 
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KdV system is given via the pfaffian technique. As one can see, the key point of the 
proof is to derive suitable expressions of the differential formulae of pfaffian τ-function 
f. It is worth pointing out that the method used in this article is different as the one for 
the proof of the BKP equation, which the differential formulae of the pfaffian τ-fun- 
ction depend only on the “differential operators” nd . 
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