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Abstract 
 
A simple-and-analytic form for total energy (or ground-state energy) in the uniform three-dimensional elec-
tron gas, expressed as a function of any Wigner-Seitz radius rs and relative spin polarization ζ is obtained 
with a very good accuracy of 0.036% from the Stoner model and our interpolation between high-and-low 
density limits with use of a two-point approach for the correlation energy and spin stiffness at rs = 1 and 70. 
This suggests a satisfactory desciption of some physical properties such as: paramagnetic-ferromagnetic 
phase transition and thermodynamic-and-optical phenomena. 
 
Keywords: Electron Gas, Correlation Energy; Spin Stiffness, Total Energy, Spin Susceptibility,  
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1. Introduction 

First of all, in the uniform three-dimensional electron gas 
(U3DEG) at zero temperature, it should be noted that the 
state of this system is entirely specified by the Wigner- 
Seitz radius rs being related to the total electron density 

n by:    3 33 4πs s Bn r r a , where aB = 0.53 × 10–8 cm is 

the Bohr radius, and the relative spin polarization ζ de-

fined by:  1 1n n n       . Here, n n n   , 

and  and  mean the up-and down-spin electron 
densities, respectively, noting that the two particular 
values of ζ (= 0 and ±1) denote the paramagnetic (P) and 
ferromagnetic, (F) states, respectively. Furthermore, all 
the energies given in the following are calculated in 
Rydbergs (Ry). Such an U3DEG is one of the basic 
models of many-body physics, and has been investigated 
for over 73 years [1-14]. In particular, for ζ = 0, some 
physical properties at any rs such as: Ferrell’s condition 
for the stability of the total energy [7], electronic pres-
sure and compressibility [7], virial theorem [12], asymp-
totic forms for plasmon-dispersion. Coefficients obtained 
in low-and-high plasmon-energy limits [10], and spin 
susceptibility [8,9,11], were expressed in terms of the 
total energy and correlation energy, and their respective 
derivatives, being denoted in general forms for a presen-

tation simplicity as: 

n n

     n
, ,

n

n x
f x y f x y

x


 


  ,  

     
, ,

n
n

n y
f x y f x y

y


   

, for n = 1, 2, … 

The aim of the present paper is to investigate a simple- 
and-analytic form for E(rs, ζ) in the U3DEG, obtained 
with a very good accuracy of 0.036% from the Stoner 
model, an interpolation between high-and-low density 
limits (HLDL), and a two-point approach for correlation 
energy Ec(rs, ζ) and spin stiffness αc(rs) at rs = 1 and 70, 
giving rise to a satisfactory description of some physical 
properties such as: PF-phase transition and thermody-
namic-and-optical phenomena. 
 
2. Accurate and Simple Analytic Form for 

E(rs, ζ) at Any rs and ζ 
 
Accounting for a neutralizing positive background and 
denoting  1 3

4 9π , the total energy per particle is 
given by: 

     
     

 
0 0

, , ,

, ,

                       , ,
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stoner
HE s s

x s

E r E r E r

E r K r K g

E r

  

  



  ,

;    


    (1) 

where      , 3 2πx sE r h rs     is the exchange 
energy,      2

0 , 3 5s sK r k r    is the kinetic en-
ergy at Fermi surface,    2 2

0 , 3 1 10K g g      
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is the kinetic energy correction calculated within the 
mean-field Hartree-Fock approximation using the non- 
interacting wave function (i.e., a Stoner model [10]), and 
g is an empirical parameter chosen so that the relative 
errors of E(rs, ζ) for any rs and are minimized (its value 
is given in Table 1). Moreover, we use in this work a 
general spin-interpolation formula for Ec(rs, ζ) proposed 
by Vosko et al. [5] 

           
 

       

2

0

4

, ,0

                 1 ,1 ,0 .

c s c s c s

c s c s

E r E r r f f

E r E r f


   

4  


       

    

 (2) 

In Equations (1) and (2), the three functions k(ζ), h(ζ) 
and f(ζ) are defined by: 

     5 3 5 3
2 1 1k       , 

     4 3 4 3
2 1 1h       , 

   1 32 1 f h     1 , 

that gives:         2 2 3 2 3 1 32 1 1 9 2f


 
 for ζ = 0. 

            

1

1 1.709921
From Equations (1) and (2) one notes that: E(rs, ζ) = 

Ec(rs, –ζ) and Ec(rs, ζ) = Ec(rs, –ζ), reducing to the inter-
val: 0   , and that if the three functions: Ec(rs, 0), 
Ec(rs, 1) and αc(rs), represented by X(rs; a), are known, 
then Ec (rs, ζ) and E(rs, ζ) are therefore determined. Here, 
the function X(rs; a) can be expressed in terms of its two 
exact asymptotic results given in HLDL, G(rs) and W(rs, 
a),  

       ; ; ; 1s s s s sX r a W r a G r W r a r         , (3) 

reducing in the HDL to:   
0

Lim ;
s

s s
r

X r a G r



 ;

 and in 
the LDL to: 

s
s s

r
 Lim ;X r a W r a


. Thus, the present 

method used to obtain our result (3) for X(rs; a) is the 
interpolation between HLDL, being similar to those also 
used in [8,9,11]. It should be noted that this is the unique 
method used to obtain the analytic expression for X(rs; a) 
at any rs. 

In the HDL, in which the random-phase approxima  

Table 1. Parameters of the best fit to Equations (4) and (7). 
Energies in mRy. 

For  cP sE r   cF sE r   c sr  

X1 [9] –119.571 –63.185 80.64 

X70 –8.68307 [10] –5.533 [10] 5.3205 [9] 

x [9] 875.53 637.356 –407.26 

y [9] 62.18 31.09 –33.77 

Z [9] 93.288 51.198 –70.95 

a 0.0908 0.085 0 

g = 7.7 × 10–3 from Stoner model 

λ 0.03848 0.02287 0.02968 

γ 1.67379 1.63995 2.01735 

tion (RPA) may be used, the function G(rs) can be writ- 
ten under a condensed Gell-Mann-and-Bruecker’s as 
[2,9]: 

G(rs) = yln(rs) – z,           (4) 

where the values of y and z [13] are given in Table 1. 
In the LDL (or beyond RPA), the function W(rs) can 

be written under a condensed Wigner’s form [1,9] as: 

W(rs) = –x/(a + rs),           (5) 

where the values of the empirical parameter a are chosen 
so that the relative errors of E(rs, ζ) for any rs and ζ are 
minimized. The values of a and x [9] are reported in Ta-
ble 1. 

Going back to Equation (3), in order to determine the 
constants λ and γ, we now use a two-point approach by 
denoting:   11sX r X   [9] and   7070sX r X   
[9,10], being reported in Table 1. Thus, those constants λ 
and γ are determined by: 

λ = [G(rs) – X1]/[X1 – W(rs)] for rs = 1,  (6) 

and 

 
    70 70

1 ln

      ln  for 70

s

s s

r

G r X X W r r





   

    s     
 (7) 

In summary, from Equations (3)-(7) and Table 1, the 
correlation energy Ec(rs, ζ) given in Equation (2) and 
total energy E(rs, ζ) in Equation (1) are thus determined. 
Then, in order to calculate the relative errors (RE) of E(rs, 
ζ) from the present result (1) and those from other ap-
proximate results evaluated from [4,8,9,11], neglecting 
the Stoner model, we will use the accurate results ob-
tained from their diffusion Monte Carlo (DMC) method 
[4] by using backflow wave functions and twist averaged 
boundary conditions to obtain the accurate values of E(rs, 
ζ) at low densities 40 100sr   and for 0 1   
with standard errors in units of 10–8 Ry. This formula of 
RE is defined by: 1-(Approximate results/ZLC’s results). 
So, it is found that our present results of E(rs, ζ) are ac-
curate to within 0.036% while other approximate ones [4, 
8,9,11] only give: 0.24%, 0.29%, 0.42% and 0.471%, 
respectively. In Table 2, for a comparison, we only re-
port our results of RE and those obtained from [4,11]. 

Furthermore, if neglecting the Stoner model [i.e., g = 
0], then the maximal RE in absolute value of the present 
results is now found to be equal to 0.0625% (>0.036%), 
suggesting that such a Stoner model used is needed to 
obtain a better accuracy. 

Now, it is interesting to extend our numerical results 
of E(rs, ζ) for 0 1   at higher density range: 0.1  

30sr  , being reported in Table 3, in which for a com-
parison we also include some CA’s results [4]. 

Some physical properties derived from our accurate- 
nd-simple forms for E(rs, ζ) and Ec(rs, ζ) given in Equa-  a  
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Table 2. REs (%) of the present results of E(rs, ζ) (Present) are compared with those of CA [4] and SPS [11]. 

sr  ζ 0 0.185 0.333 0.519 0.667 0.852 1 

40 Present –0.036  –0.006  0.036  –0.032 

50 CA 0.200      0.240 

 Present –0.004 0.002 0.017 0.024 0.029 0.027 –0.035 

60 Present –0.004 –0.008 0.001 0.024 0.002 –0.001 –0.019 

70 Present 0.001 –0.002 0.006 0.004 –0.006 –0.011 –0.015 

         

75 SPS 0.456 0.459 0.468  0.471  0.444 

 Present 0.001 0.001 0.005  –0.011  –0.006 

85 Present 0.008  0.003  –0.021  0.004 

100 CA 0.210      0.110 

 Present 0.008  –0.010  –0.035  0.015 

Table 3. Present results of total energy for 0 ≤ ζ ≤ 1 and in 0.1 ≤ rs ≤ 30 compared with CA [4]. 

sr   0 0.185 0.333 0.519 0.667 0.852 1  

0.1         

Present 211.587 215.727 225.039 224.470 266.323 302.237 339.130  

1 CA 1.17401        

Present 1.17401 1.21047 1.29243 1.46323 1.65502 1.92929 2.29031  

2 CA 0.00410      0.25170  

Present 0.00383 0.01196 0.03021 0.06820 0.11082 0.18078 0.25174  

3         

Present –0.13519 –0.13189 –0.12449 –0.10909 –0.09184 –0.06359 –0.03517  

4         

Present –0.15628 –0.15455 –0.15067 –0.14260 –0.13359 –0.11891 –0.10436  

5 CA –0.15120      –0.12140  

Present –0.15291 –0.15187 –0.14950 –0.14462 –0.13918 –0.13040 –0.12186  

6         

Present –0.14373 –0.14303 –0.14146 –0.13822 –0.13463 –0.12888 –0.12341  

10 CA –0.10675      –0.10130  

Present –0.10775 –0.10753 –0.10704 –0.10603 –0.10492 –0.10321 –0.10173  

15         

Present –0.08020 –0.08012 –0.07993 –0.07955 –0.07913 –0.07851 –0.07804  

20 CA –0.06329        

Present –0.06379 –0.06371 –0.06362 –0.06344 –0.06325 –0.06296 –0.06276  

30        –0.06251 

Present –0.04531 –0.04527 –0.04527 –0.04522 –0.04516 –0.04507 –0.04503  

 
being obtained at low electron densities and beyond RPA, 
we can evaluate the total-energy differences:  FP sD r   

   P s F sE r E r    and      E r  

tions (1,2) are investigated as follows. 
 
3. Phase Transition WF s F s W s

1) The DFP(rs) is negative for rs < 78.147 (the P-phase) 
and positive for rs > 78.147, giving rise to a first-order 
PE-phase transition which occurs at a critical value: rsC = 
78.147, in accordance with CA’s data [4]: rsC = 75 ± 5 
and with ZLC’s data [10]: 75 < rsC < 85. One notes that 
this critical value: rsC = 78.147 corresponds to a critical 
density: nC = 3.37 × 1018 cm3 being found to be equiva-
lent to the metal-insulator transition in the n-type excited 
intrinsic Si occurring at 2.71 × 1018 cm3 [13] and in the 
P-Si at 3.52 × 1018 cm3 [14]. 

D r E r  . 
 
3.1. First-Order Phase Transition from the Total  

Energy 
 
From the three states such as: the P-state represented by 
EP(rs), the F-state by EF(rs), and the Fermi Wigner crys-
tal (W) state by [13]: 

   5 2
3 2 2

1.79186 2.65279 0.73
0w s s

s s s

E r r
r r r

      
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2) The DWF(rs) is negative for rs < 115.49 (the F-phase) 
and positive for , giving rise to the WF- 
phase transition which occurs at a critical value: rsC = 
115.49, in good agreement with CA’s data [4]: rsC = 100 
± 20. 

115.49sr 

We futher evaluate the total-energy difference times as: 
    3 2, ,0s s s  (Ry) and plot versus spin 

polarization ζ for different values of rs in the following 
Figure 1. 

E r E r r   

Some concluding remarks are given below. 
1) At , the system is P, with the unpolarized 

phase stable. 
63sr 

2) As the electron density decreases, at , the 
system becomes unstable with respect to spin fluctua-
tions while ZLC [10] obtained the corresponding instable 
point at . 

64.4sr 

50sr 
3) The partially polarized states become stable at 

. 65.6sr 
4) As the electron density continues to decrease, the 

fully polarized state has a lower energy with respect to 
unpolarized state at  while a corresponding 
ZLC’s estimation [10] is . We also find that the 
partially polarized state has an even lower energy. 

78.147sr 
80sr 

 
3.2. Second-Order Phase Transition from the Spin 

Susceptibility 
 
First of all, if denoting the unit vector, Bohr magneton, 
magnetic field and spin susceptibility, respectively, by: 
u M M
 
 , 219.274096 10B erg G   



, B(G) and χ 
(erg/cm3·G2) the magnetization vector is given by: 

     B BM n n u n u x Bu      
   

, leading to: B  

 

Figure 1.    
3 2 0s s sr E r ,ζ - E r ,

= ζnµB/χ. Then, the interaction-energy density U re-
quired to build up this magnetization is given by  

   

  

2

0 0

2

d d 1 2

   1 2

M M

B

U B M M M M

n

 

  

    



 
. (8) 

Now, from Equation (1), by a variable change: x = cζ, 
c being a length unit, x thus varies from –c to c and the 
U3DEG induces from the Hook’s law an elastic (or con-
servative) force for 1  :    d , dsF x E r x c 


xu


 
 1 sk r xu 


, where the spring constant (or force con-

stant) is defined by:     2 2
1 0

d , ds s x
k r E r x c x


   

    2 2 2 2ds sc k r c


 


   0
d ,E r , that gives: 

     

  vs ζ for different rs. 

   2 2 23 5 2 3π2 3s s s c sr g r r      k r , 

being a simple-and-analytic form and used to compute 
following physical quantities. 

Then, in such an elastic-force model, the work re-
quired to build up the magnetization is 

 

   

1
0

2 2
1

, , ,0

                       1 2 1 2 ,

x

s s s

x x
E r E r E r k x x

c c

k x k

 



   
d         

   

 

  

being used to define the interaction-energy density by: 
 ,sU n E r   , identical to the result (8), that leads to a 

simple form for the spin susceptibility χ(erg/cm3·G2) as: 

     2
s s B sr N r k r           (9) 

We now evaluate our present result (9) and plot versus 
rs in the following Figure 2, in which we also report 
other results from [8,9], indicating that our present result 
of χ shows a singularity at a critical value: 65.6, defining 
thus the second-order PF-phase transition, which can be 
compared with ZLC’s result [10]: 50. 
 
4. Some Thermodynamic-Optical  

Phenomena 
 
1) We first investigate the Ferrell’s condition for the sta-
bility of the total energy E(rs, ζ) defined by [7]: 

         

   

2 12

22

, 2 , 4 ,

                         , 0.

ss

s

s s s s s rr

s s r

r E r E r r E r

r E r

 



       

   


  (10) 

Our numerical calculation indicates that it is valid up 
to a superior value of rs found to be given by: rsS =1200, 
1400, 2200, 2300, 2600, 2700, 16000 and +∞ for ζ = 0, 
0.5, 0.78, 0.79, 0.83, 0.84, 0.99 and 1, respectively, sug-
gesting that rsS increases with increasing ζ.  

2) The electronic pressure is defined [7] and related to 
the generalized virial theorem given in Equation (A4) of  

Copyright © 2011 SciRes.                                                                                 JMP 
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Figure 2. Spin susceptibilities vs rs. 

the Appendix A by:  

     

     

1
, , 3

             3 2 , , ,

s
s s s r

s s

P r nr E r

n T r V r

 

 

     

  
   (11) 

which becomes negative for rs ≥ 4.1908 at ζ = 0 (in good 
accordance with the Ichimaru’s result [7], rs > 4.2), for rs 
≥ 4.569 at ζ = 0.5, and for rs ≥ 5.653 at ζ =1. This means 
that the equilibrium densities of the total energy E(rs, ζ) 
occur at 4.1908, 4.569 and 5.653 for ζ = 0, 0.5 and 1, 
respectively, suggesting that those values increase with 
increasing ζ. 

3) The compressibility of the non-interacting U3DEG 
is defined by:    , 3 2 ,o s F sr nE r     , where EF(rs, 
ζ) is the Fermi energy, and via the compressibility sum 
rule, the inverse reduced compressibility can thus be 
evaluated by: 

     , , 1 4 , πo s s s o sr r r r           ,  (12) 

where γo(rs, ζ) is determined in Equation (B3) of the the 
Appendix B. 

Our numerical calculation indicates that it becomes 
negative for rs ≥ 5.2597 at ζ = 0 (in good accordance 
with the Ichimaru’s result [7]: rs > 5.3), for rs ≥ 5.08 at ζ 
= 0.5, and for rs ≥ 4.55 at ζ =1, noting also that this nega-
tive compressibility does not imply an instability of the 
system when a rigid background of compensating charge 
is assumed. 

4) Finally, in order to compare the two functions γ∞ 
and γo determined in Equations (B2) and (B3) of the Ap-
pendix B, we can study the asymptotic forms for plas-

mon dispersion coefficient β as follows. 
For sufficiently low plasmon energies ( P ) and if 

one disregards the relaxation effect in the short-time do-
main, β is thus reduced to [7]:    , ,o sr r   RPA s  
   4P F o sr ,    , where F FE    and in the 
RPA: βRPA = 3ωF/5ωp, and for a sufficiently high plas-
mon energies, one obtains [7]:    , ,PA sr rs R      
   4P F sr ,    . Therefore, one gets:  

     
   

 
 

, ,
,

, ,
o s RPA s o s

s
s s s

r r r
R r

r r r

,

,

     


       


 


. (13) 

giving for any rs and ζ: 1.3 ≤ R(rs, ζ) ≤1.7, meaning that 
(rs, ζ) >1 or βo(rs, ζ) > β∞(rs, ζ) . 
 
5. Concluding Remarks 
 
In summary, we have developed simple analytic forms 
for E(rs, ζ) and Ec(rs, ζ), by basing on the Stoner model 
and interpolation between correct HLDL with the use of 
a two-point approach for correlation energy and spin 
stiffness at rs =1 and 70, giving rise to: 

1) A best precision of the order of 0.036% for our pre-
sent form for total energy, being found to be more accu-
rate compared with other works [4,8,9,11], as given in 
Table 2, and 

2) A satisfactory description of some physical proper-
ties such as: PF-phase transition and thermodynamic and 
optical phenomena, as given in above Sections 3 and 4. 
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Appendix A. Generalized Virial Theorem which reduces to:  
 

       1
, , ,

s
s s s s r

T r E r r E r         If denoting the average kinetic and potential energies by 
T(rs, ζ) and V(rs, ζ), respectively, the conjunction taken 
here is then given in the form:     1

,
s

s s r
r E r                 (A3) 

T(rs, ζ) + V(rs, ζ) = E(rs, ζ ).      (A1) Then, replacing the conjunction (A1) in Equation (A3), 
the virial theorem generalized to the case of 0 ≤ ζ ≤ 1 is 
proved:  

From [8], from which we replace the correlation en-
ergy by the total energy, the chemical potential for elec-
trons of spin σ is defined by:        1

2 , , ,
s

s s s s r
T r V r r E r        ,   (A4) 
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1

,s

 (A2) 
reducing to that given in [12] for ζ = 0. Our numerical 
calculation indicates that this result (A4) becomes nega-
tive for rs ≥ 4.1908 at ζ = 0, for rs ≥ 4.569 at ζ = 0.5, and 
for rs ≥ 5.653 at ζ =1, meaning that the equilibrium den-
sities of the total energy E(rs, ζ) occur at rsEq = 4.1908, 
4.569 and 5.653 for ζ = 0, 0.5 and 1, respectively, sug-
gesting that those values of rsEq increase with increasing 
ζ. 

where sgn σ is +1 for s = ↑ and –1 for s = ↓ .Taking into 
account Equation (A2), we define the average kinetic 
energy, expressed in terms of chemical potentials: E

  
 ,sr   and  ,E sr   , by [8]: 
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veloped in [7] are now generalized to the case of any ζ. 
The function γo(rs, ζ) may be related to γ∞(rs, ζ) by [7]:  
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  (B1) 

where the function γ∞(rs, ζ) used to calculate the total 
energy can be defined by [7]:  
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 (B2) 

being replaced in Equation (B1) one finally gets: 

   

        2 13 2

π
,

4 24
               , 2 , ,

s s

o s

s c s s c sr r

h
r

r E r r E r

  

 

 

       

 (B2) 

noting that Equations (B1,B2) for ζ = 0 are well identical 
to Ichimaru’s results [7]. 

 

Copyright © 2011 SciRes.                                                                                 JMP 


