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Abstract 
We consider an extension to Sequential Probability Ratio Tests for when we have 
uncertain costs, but also opportunity to learn about these in an adaptive manner. In 
doing so we demonstrate the effects that allowing uncertainty has on observation 
cost, and the costs associated with Type I and Type II error. The value of information 
relating to modelled uncertainties is derived and the case of statistical dependence 
between the parameter affecting decision outcome and the parameter affecting un-
known cost is also examined. Numerical examples of the derived theory are pro-
vided, along with a simulation comparing this adaptive learning framework to the 
classical one. 
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1. Introduction 

Sequential Probability Ratio Tests (SPRTs) were introduced by Wald in 1945 [1] [2] as 
a sequential hypothesis test procedure for when data is considered in sequence rather 
than in entirety. They have been used in many fields of industry, for example: nuclear 
physics [3], medicine [4] [5], standardised testing [6] and radar detection [7], to name 
just a few, and even though the classical theory has now been known for some seven dec-
ades, they are still the subject of research into extensions and generalisations [8]-[10]. 

Generally, the objective of a SPRT is to balance the consequence of an error with the 
cost of acquiring further data and/or making additional observations, e.g. clinical trials, 
or stress tests. In this approach data is sought until the belief in the state of nature 
(namely the parameter controlling the decision outcome) is such that the expected cost 
of implementing the current optimal decision is less than that expected from seeking 
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additional data, updating beliefs, and then implementing the (possibly different) op-
timal decision. 

In its simplest form a SPRT consists of the following: A choice between two decisions 
or courses of action (here denoted 0d  and Ad ), and a state of nature w that can take 
one of two possible values ( ow  or Aw ). Depending on the decision that is selected and 
the true state of nature value, one of three possible losses may occur. Without loss of 
generality we assume a loss of 1 0c >  occurs if Ad  is selected when ow  is true, 

2 0c >  occurs if 0d  is selected but Aw  is true, and a loss of 0 otherwise (Table 1). 
From the above it can be seen that the objective of the Decision Maker (DM) is to 

choose between 0d  and Ad  on the basis of their beliefs over the state of nature, 
seeking to match the decision to what they hope is its correct value. In general we de-
note such belief by the probability [ ]0,1φ ∈  with ( ) ( )0 1 AP w P wφ= = − . In this sense 
the losses 1c  and 2c  can be associated with what is commonly described as making a 
Type I or Type II error, and hence the connection to sequential hypothesis testing 
originally considered by Wald. 

A graphic representation of this protocol is illustrated in Figure 1, where the x-axis 
varies over the possible value of φ  and the y-axis is the resulting expected loss incurred 

 
Table 1. Loss table applied within a SPRT. 

 0d  Ad  

ow  0 1c  

Aw  2c  0 

 

 
Figure 1. An illustration of the losses involved within a SPRT. The x-axis varies over 

( )0P wφ = , the y-axis is the associated expected loss, the solid line corresponds to making a de-

cision immediately, while the curved dashed line corresponds to collecting further information 
before making a decision. Finally the vertical dashed lines indicate the bounds on φ  within 
which the DM should observe further data before making a decision. 
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by a particular strategy. The solid line represents the expected cost of implementing a 
decision immediately, whilst the curved dash line corresponds to the expected loss of 
implementing a decision only after taking some further data (at a cost)concerning the 
correct value of the state of nature. It is included as a curve as it can be shown that the 
expected loss of deciding after data collection is a concave function of φ  (this is be-
cause we will be taking the infimum of two further choices, namely to act once the data 
is collected or to again choose to sample). 

For values of { }0,1φ ∈  the DM assumes for sure that they know what the state of 
nature will be, and hence will make a decision in the belief that they will receive a cost 
of 0. As φ  varies away from these extremes however, the DM will not presume to be 
certain in their knowledge of the state of nature, and hence expects a risk of making ei-
ther a Type I or Type II error and incurring the associated cost. This risk can be shown 
to increase and then decrease linearly between the extreme values of φ  (the change 
from increase to decrease occurring at 0.5φ =  when 1 2c c= ). The dashed curve line, 
corresponding to making a decision only after further data collection, does not have an 
expected loss of 0 at { }0,1φ ∈  because of the additional cost of collecting data. De-
pending on what this particular data collection cost is, the DM should either always 
collect further information (when the cost is 0), never collect additional information 
(when the cost of doing so is prohibitive compared to the cost of actually making a 
Type I or Type II error), or as is the case in Figure 1, either choose to collect additional 
data or not to depending on the value of φ  that they assign to ( )0P w . The vertical 
dashed lines of  

Figure 1 indicates, for the particular numerical example displayed, the range of val-
ues for φ  within which the DM expects it is better to collect further data before mak-
ing a decision. 

Whilst the approach described above outlines the classical way of performing a 
SPRT, it fails to take into account that in practice, many of the costs involved will not 
be known for certain. For example, in the case of an observation cost, the cost asso-
ciated with undertaking clinical trials prior to deciding to market a drug may not be 
known for sure, or in the case of a Type I or Type II error, the reputational or financial 
effect of implementing a poor decision may be unknown, e.g., releasing poorly coded 
software when there was opportunity to have more testing to determine unknown bugs. 
In such instances it is then natural for us to model our beliefs and uncertainties about 
relevant costs according to some parameter, say θ , to which we only specify a prior 
distribution. The question then arises as to the effect this has on how we perform a 
SPRT, given that we may now learn between successive SPRTs, or in the case of un-
known observation cost, between successive observations. 

The concept of unknown utility (utility defined to be negative loss), but which may 
instead be learned through experience, is the topic of adaptive utility theory first consi-
dered by Cyert and De Groot [11]. Here not only do we have uncertainty concerning 
decision outcome (as modelled through the unknown state of nature), but also in the 
preferences over those outcomes (or equivalently attitudes to risk) [12]-[14]. 
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In the case of only performing a solitary SPRT, and where the uncertainty relates to 
only the consequence of a Type I or Type II error, the appropriate procedure is equiva-
lent to the classical one with the cost assigned to its expected value, as there is no possi-
bility to learn about the relevant costs before implementing a decision. However, if the 
DM has opportunity to purchase information about such costs, e.g. by performing 
some market survey or enlisting the assistance of a knowledgeable expert, then the val-
ue that such information is worth may be calculated as the expected difference between 
the expected loss without the information, and the expected loss with it. Determining 
this value will be our primary interest [14] [15]: 

( ) ( )max max |i Id D d D
E L d E E L d i∈∈ ∈

 −        
.                 (1) 

Here I is the set of information statements we could receive, i is an actual informa-
tion statement, D represents the set of available decisions, d a particular decision, and 
( )L d  the expected loss for implementing decision d. 
The remainder of this paper is as follows: In Section 2 we consider SPRTs with un-

certain Type I or Type II error cost followed by uncertain observation cost in Section 3. 
In the former we consider the value of perfect information and that of noisy informa-
tion, along with providing numerical examples. The details of a simulation carried out 
in the case of perfect information are also given. Finally we conclude in Section 4. 

2. Unknown Consequence of Error 

Suppose our uncertainty does not concern the cost of taking further observations, but 
rather the cost of a Type I or Type II error, or both (possibly with different distribu-
tions describing these). Without loss of generality assume the uncertainty is with re-
spect the cost of a Type I error only. In this case our loss table is as in Table 2, where 
θ  represents the uncertain cost of a Type I error. 

There are three steps to perform to generate the expected value of information relat-
ing to these uncertain costs. In the case of information being perfect then these are the 
following: 
1) Consider a SPRT when no information is learned. 
2) Obtain expected loss following learning of the uncertain parameter(s). 
3) Subtract to obtain the expected value of information, which can then be subtracted 

from the unknown loss consequence(s). 
In performing step 1 we utilize the expected costs using the loss in Table 3. Hence 

the expected loss on making an immediate decision, as a function of φ , is: 

( ) [ ] ( )( )
[ ] [ ]
( )

2

22

2

if 
min , 1

1 otherwise

cE
E cE c

c

θ φ
θρ φ θ φ φ

φ

 ≤ += − = 
 −

.        (2) 

If a Type I or Type II error is made, we learn the value of θ . The process of per-
forming an SPRT is repeated, but now with the exact value of θ  rather than its prior 
expectation [ ]E θ , resulting in a change in the expected risk profile. An expected  
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Table 2. Loss table with uncertain cost of Type I error. 

 0d  Ad  

ow  0 θ  

Aw  2c  0 

 
Table 3. Loss table assuming no learning about uncertain cost θ . 

 0d  Ad  
ow  0 [ ]E θ  
Aw  2c  0 

 
Table 4. Loss table for numerical example in Section 2.1. 

 0d  Ad  
ow  0 2 

Aw  [ ]E θ  0 

 
expected risk profile concerning how this may look depending on what is learned, based 
on the prior distribution of θ , is now determined. This is then subtracted from the 
original risk profile (using [ ]E θ ) to obtain the expected value of the cost information. 

2.1. Perfect Information Numerical Example 

As a toy example illustrating this situation consider testing if a sequence of coins are 
fair ( 0w ) or biased ( Aw ) meaning that ( ) 0.8P H = . A Type I error corresponds to 
throwing away a fair coin and we suppose this has known loss of 2 units, namely the 
coin's value. A Type II error would correspond to accepting a biased coin, of which we 
have little experience. This could be very bad resulting in a loss of 4θ =  units, or not 
so bad resulting in a loss of 1θ =  unit. Further suppose the prior on θ  is such that 
( )1 2 3P θ = =  and let φ  represent the probability that the coin is fair. 
The expected loss table is given in Table 4. From the description we see [ ] 2E θ =  

so that if 0.5φ =  then a priori we are indifferent between saving the coin or throwing 
it away. Then the expected risk of an immediate decision is: 

( ) ( )( ) ( )
2 if 1 2

min 2 ,2 1
2 1 otherwise
φ φ

ρ φ φ φ
φ

≤= − =  −
.             (3) 

We may also consider sampling data by flipping a coin which is assumed to cost 0.1 
units. We now calculate the range of φ  where it is beneficial to flip the coin. To do so 
we determine posteriors on φ  after observing the possible results of a coin flip: 

( ) ( )0
0.5 5| |

0.5 0.8 1 8 3
P w w H H φ φφ

φ φ φ
= = = =

+ − −
             (4) 

( ) ( )0
0.5 5| |

0.5 0.2 1 2 3
P w w T H φ φφ

φ φ φ
= = = =

+ − +
.            (5) 

The predictive probability of observing heads or tails, at any point, is: 
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( ) ( )0.5 0.8 1P H φ φ= + −                        (6) 

( ) ( )0.5 0.2 1P T φ φ= + − .                       (7) 

Letting φ′  denote our posterior probability of the coin being biased after being 
flipped, the risk profiles of the decision following an observation is: 

( ) ( )
2 if 1 2
2 1 otherwise
φ φ

ρ φ
φ

′ ′ ≤
′ =  ′−

.                     (8) 

Now we can relate the bounds on φ′  to bounds on φ : 
1 5 1 8|
2 8 3 2 13

H φφ φ
φ

≤ ⇒ ≤ ⇒ ≤
−

                    (9) 

1 5 1 2|
2 2 3 2 7

T φφ φ
φ

≤ ⇒ ≤ ⇒ ≤
+

.                   (10) 

Suppose [ ]2 7,8 13φ ∈ , then the expected loss is: 

( )( ) ( )( )5 52 0.5 0.8 1 2 1 0.5 0.2 1
8 3 2 3

0.4 0.6

φ φφ φ φ φ
φ φ
φ

 
× + − + × − + − − + 

= +

.      (11) 

We also need to include the cost of flipping (0.1 units) resulting with an expected loss 
for observing once then deciding of 0.5 0.6φ+ . To see when this risk is preferable to 
deciding immediately we solve the following inequalities for φ : 

50.5 0.6 2
14

φ φ φ+ ≤ ⇒ ≥                       (12) 

( ) 150.5 0.6 2 1
26

φ φ φ+ ≤ − ⇒ ≤ .                    (13) 

Observations should continue to be taken until φ  leaves this interval, at which a 
point a decision should be made. Hence the expected risk profile is:  

( )
( )

2 if 5 14
0.5 0.6 if 5 14 15 26
2 1 if 15 26

φ φ
ρ φ φ φ

φ φ

≤
= + < ≤
 − <

.                (14) 

With this risk profile we now compute the expected loss assuming we know the pa-
rameter θ . There are two cases: when 1θ =  or 4θ = . In each case the expected loss as a 
function of φ  is computed. The process is identical to the above so we just report them: 

For 1θ = :  

( )
( )

2 if 1 4
0.3 0.8 if 1 4 7 18
1 if 7 18

φ φ
ρ φ φ φ

φ φ

≤
= + < ≤
 − <

.                 (15) 

For 4θ = : 

( )
( )

2 if 1 2
0.9 0.2 if 1 2 31 42
4 1 if 31 42

φ φ
ρ φ φ φ

φ φ

≤
= + < ≤
 − <

.                (16) 
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Recall the prior on θ  was such that ( )1 2 3P θ = = . Hence, the expected risk after 
learning θ  is: 

( )

( )

2 if 1 4
1 5 6 5 if 1 4 7 18
2 3 if 7 18 1 2
29 30 3 5 if 1 2 31 42
2 1 if 31 42

φ φ
φ φ

ρ φ φ
φ φ

φ φ

≤
 + < ≤= < ≤
 − < ≤

− <

.               (17) 

Thus the expected value of perfect information is the difference between Equation 
(14) (without perfect information) and Equation (17) (with perfect information): 

( )

0 if 1 4
1 5 4 5 if 1 4 5 14

3 10 3 5 if 5 14 7 18
1 6 3 5 if 7 18 1 2
7 15 6 5 if 1 2 15 26

31 30 7 5 if 15 26 31 42
0 if 31 42

g

φ
φ φ
φ φ

φ φ φ
φ φ
φ φ

φ

≤
− + < ≤
 − < ≤
= − + < ≤
− + < ≤

− < ≤
 <

.              (18) 

This represents the maximum amount of units we should be prepared to forsake in 
order to be informed the true value of the cost parameter θ  prior to commencing the 
SPRT. From this we obtain a new function ( ) [ ] ( )E gθ φ θ φ= −  that represents the 
loss resulting from the occurrence of a Type II error: 

( )

2 if 1 4
11 5 4 5 if 1 4 5 14
17 10 3 5 if 5 14 7 18
13 6 3 5 if 7 18 1 2
37 15 6 5 if 1 2 15 26
29 30 7 5 if 15 26 31 42
2 if 31 42

φ
φ φ
φ φ

θ φ φ φ
φ φ
φ φ

φ

≤
 − < ≤
 + < ≤
= − < ≤
 − < ≤

+ < ≤
 <

.              (19) 

Equation (19) represents the expected value of the loss of making a Type II error, but 
discounted by the fact that we obtain information which allows more informed deci-
sions to be made in subsequent SPRTs. A plot of (19) is given in Figure 2 where it can 
be observed that local minima in the expected loss occur at boundaries of indifference 
between choices in the initial SPRT, and that plateaus in the expected loss coincide with 
values of φ  where it is never beneficial to take an observation for any value of θ . 

2.2. Noisy Information 

Now assume we only receive noisy observations concerning θ  meaning that following 
observation we are not certain of its value. The procedure is similar to that for perfect 
information and again we first perform an SPRT without considering the value of the 
information. 

Denoting the true value of θ  as Tθ  and our observation as obθ  then this setting 
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Figure 2. A plot of the expected loss incurred from committing a Type II error for Example 2.1 
generated from Equation (19). The x-axis varies over the prior probability for the state of nature 
w, whilst the y-axis indicates the resulting expected loss. 

 
means ( ) 1T obP pθ θ= = < . We also allow the distribution over what is observed to 
depend on the true value Tθ  and hence generate a likelihood ( )|ob TP θ θ , from which 
a marginal distribution ( )obP θ , expected value [ ]obE θ , and posterior distribution 
( )|T obP θ θ  may be calculated in the usual way. 
For each potential obθ  a new expected value of θ , [ ]| obE θ θ , is generated. Denoting 
[ ]E Lθ  as the expected loss before observation and [ ]| obE Lθ θ  as the expected loss af-

ter observing obθ , the expected value of the noisy observation is calculated as: 

[ ] [ ] ( )|
ob

ob obE L E L Pθ θ
θ

θ θ−∑ .                    (20) 

Once this has been generated the consequence of the error will be reduced in the risk ta-
ble just as was the case with perfect information, allowing a classical SPRT to be performed. 

2.3. Noisy Information Numerical Example 

We return to the setting of Example 2.1, but now assume that the probability that the true 
value is observed is only 0.8, i.e., ( ) 0.8T obP θ θ= = . This results in ( )1 3 5obP θ = =  
and ( )4 2 5obP θ = = . 

After observing a value for θ  we update its expected value to the following: 

[ ] 8 1 4| 1 1 4
9 9 3obE θ θ = = × × × =                    (21) 

[ ] 1 2| 4 1 4 3
3 3obE θ θ = = × × × = .                   (22) 

Letting [ ]xE L  represent the expected loss when [ ]E xθ =  (so, for example, 
[ ]2E L  is the loss from step 1 where future trials are not considered), then the value of 
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information from our noisy observation obθ  for each φ  is calculated as: 

[ ] [ ]2 4 3 3
3 2
5 5

E L E L E L − −  .                    (23) 

Note that each term in the above implicitly depends on the initial value assigned to 
φ . We then simply proceed as in Example 2.1 to obtain the final decision rule. The re-
sulting loss tables are provided below for the three quantities listed in Equation (23): 

[ ]
( )

2

2 if 5 14
0.5 0.6 if 5 14 15 26
2 1 if 15 26

E L
φ φ

φ φ
φ φ

≤
= + < ≤
 − <

                   (24) 

( )
4 3

2 if 11 38
11 30 11 15 if 11 38 29 62
4 1 3 if 29 62

E L
φ φ

φ φ
φ φ

≤
  = + < ≤ 
 − <

             (25) 

[ ]
( )

3

2 if 7 16
0.7 0.4 if 7 16 23 34
3 1 if 23 / 34

E L
φ φ

φ φ
φ φ

≤
= + < ≤
 − <

.                  (26) 

As a result the expected value of noisy information ( )g φ  is calculated as: 

( )

0 if 11 38
11 50 19 25 if 11 38 5 14

8 25 16 25 if 5 14 7 16
0 if 7 16 29 62

29 50 31 25 if 29 62 15 26
23 25 34 25 if 15 26 23 34
0 if 23 34

g

φ
φ φ

φ φ
φ φ

φ φ
φ φ

φ

≤
− + < ≤
 − < ≤
= < ≤
− + < ≤

− < ≤
 <

.            (27) 

Now the new expected cost of a Type II error ( )θ φ  for the noisy information ex-
ample can be determined as in see Equation (26). A plot of this function is given in 
Figure 3 which can be contrasted with the perfect information case given in Figure 2. 
Note that as before the minima occur at boundaries of indifference and that plateaus 
occur where we would always (or never) take an observation no matter the value of θ . 
Also note that in comparison to Figure 2, the result for noisy information results in a 
larger expected cost of Type II error when the true value of θ  does play a role in the 
decision making. This is to be expected due to the weaker and less useful noisy infor-
mation in comparison to what we learn from perfect information. 

( )

2 if 11 38
111 50 19 25 if 11 38 5 14
42 25 16 25 if 5 14 7 16
2 if 7 16 29 62
129 50 31 25 if 29 62 15 26
27 25 34 25 if 15 26 23 34
2 if 23 34

φ
φ φ
φ φ

θ φ φ
φ φ
φ φ

φ

≤
 − < ≤
 + < ≤
= < ≤
 − < ≤

+ < ≤
 <

             (28) 
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Figure 3. A plot of the expected loss incurred from committing a Type II error for Example 2.3 
generated from Equation (28). The x-axis varies over the prior probability for the state of nature 
w, whilst the y-axis indicates the resulting expected loss. 

2.4. Numerical Simulation 

Details of a numerical simulation are now provided. The scenario detailed in Example 
2.1 was tested in R [16] by considering the outcome of 3 million trials of both the clas-
sic and adaptive framework. 

Each classical trial consisted of: 
1) A SPRT with consequence of Type I/II error of 2 and cost of observation 0.1 run 

repeatedly until a Type II error is made. The bounds used are those in Equation (14), 
namely [ ]5 14,15 26 , before value of information is considered. 

2) Upon making a Type II error, the cost from that particular SPRT is stored. The 
value of θ  is then learned and another SPRT is run using the true value for the conse-
quence of Type II error. The two costs are added to provide the total value for that trial. 

In accordance with our prior on θ , two-thirds of the trials were performed with the 
true value of 1θ = , while the others had 4θ = . 

A further 3 million trials were then run using the adaptive framework under the 
same procedure but with the bounds in step 1 being different. This is due to the differ-
ent values used for consequence of Type II error seen in Equation (19). Using initial 
values of 1 2φ =  corresponded to using 28 15θ = , resulting in bounds of approx-
imately [ ]0.34,0.56 . The second step remains the same as the classical trial. 

The average costs are given in Table 5. As can be seen, this indicated a substantial 
improvement (21% with the numerical scenario here) in using the adaptive framework 
and formally taking such uncertainty into account. 

2.5. Statistical Dependence 

To conclude we give a brief discussion on the effect of their being statistical dependence 
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between the state of nature w and cost parameter θ . Without loss of generality, con-
sider a joint distribution as taking on the values (and associated probability) given in 
Table 6. This implies conditional probabilities as given in Table 7. Note that this speci-
fication ensures that w and θ  are not independent. 

Now consider the implementation of the SPRT. The initial loss table when w and θ
were independent is given in Table 8. However, note that we can only incur losses go-
verned by θ  when the state of nature is Aw . So any loss that occurs in the joint dis-
tribution when 0w  is true should not be considered here. Also note that an equivalent 
scenario will occur if the uncertainties were in both Type I and Type II errors. Thus, 
Table 8 should be corrected to that given in Table 9, where, as can be seen, 
[ ]| AE w wθ =  remains constant at ( ) ( )1 6 2 5 6 1.5 19 12× + × =  independently of the 

value of φ , and hence the value of ( )1 AP wφ− = . This means the SPRT will have 
constant losses that do not change between observations, and so we simply proceed as 
before. 

 
Table 5. Average costs from the simulation described in Section 2.4. 

 Average cost 

Classical 3.66 

Adaptive 2.88 

 
Table 6. Assumed joint distribution between w and θ . 

 1θ  2θ  

ow  1 (0.2) 1 (0.2) 

Aw  2 (0.1) 1.5 (0.5) 

 
Table 7. Implied conditional probabilities. 

 1θ  2θ  

( )| oP w wθ =  0.5 0.5 

( )| AP w wθ =  1/6 5/6 

 
Table 8. Initial loss table in the case of independence. 

 0d  Ad  

ow  0 2 

Aw  [ ]E θ  0 

 
Table 9. Loss table in the case of statistical dependence. 

 0d  Ad  

ow  0 2 

Aw  [ ]| AE w wθ =  0 
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3. Unknown Observation Cost 

Now suppose that the costs of making a Type I ( 1c ) or Type II ( 2c ) error are known. 
This means that if we were to implement an immediate decision the expected loss will 
be unchanged from the classical setting. However, we assume the observation cost θ  
is uncertain but subject to some prior distribution ( )f θ  and some specified data like-
lihood, in which case the expected loss of making a decision after observation will have 
to take into account not only the uncertainty concerning the information we may re-
ceive in relation to the true state of nature, but also the uncertainty in the additional 
cost of having taken a further observation. 

If we take the expected value of θ , [ ]E θ  as the observation cost, then we can de-
termine bounds ,

init initL Uφ φ    on values of φ  within which we should seek additional 
data before implementing a decision. The expected risk profile ( )ρ φ  (expected loss), 
as a function of φ  would then be: 

( ) ( ) [ ]
( )

1

2

if 

if 
1 if 

init

init init

init

L

L U

U

c
c E
c

φ φφ
ρ φ φ θ φ φ φ

φ φ φ

 ≤
= + < ≤
 − <

.               (29) 

where ( )c φ  is a concave (or linear) function of φ  determined by the data generating 
mechanism. Then, for each possible information statement i we may receive (where 
here i contains both the information concerning the true state of nature and any infor-
mation we gain concerning θ  the cost of sampling), we can determine a posterior 
distribution on θ  and updated expected value [ ]|E iθ . With this we continue the 
SPRT leading to updated intervals | |,L i U iφ φ    which if ( )0| |i P w iφ φ′ = =  does not 
fall within, would result in our now taking an immediate decision. The updated risk ta-
ble would now have form: 

( ) ( ) [ ]
( )

1 |

| |

2 |

if 
| if 

1 if 

L i

L i U i

U i

c
c E i
c

φ φ φ
ρ φ φ θ φ φ φ

φ φ φ

′ ′ ≤
′ ′ ′ ′= + < ≤
 ′ ′− <

.               (30) 

Here c′  is another concave (or linear) function in φ′ . 
As the information i we may receive is currently unknown, we take the expectation of 

Equation (30). Subtracting this from Equation (29) (the expected risk without learning 
information) we obtain the expected value of that information, which can be thought of 
as the most we would be willing to pay for it in advance of seeing it. This should now be 
subtracted from [ ]E θ , the original expected observation cost, to obtain what we 
would use as the adaptive information cost for the adaptive SPRT. Note that this value 
will be a function of φ . A classical SPRT is then performed with this adaptive observa-
tion cost until the true cost has been learned, at which point the test continues with the 
cost uncertainty removed, i.e., in the classical way. 

Remark. The expected value of information is zero for any [ ],L Uφ φ φ∉  (the bounds 
on φ  for which we would take further samples) and also for any φ  that is always 
contained in [ ],L Uφ φ . 
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Numerical Example 

As a toy example to aid in clarification of the above, suppose we are testing the efficacy 
of a drug and are certain of the costs incurred in making a Type I or Type II error (say 
2 and 4 units respectively). Assume, however, that we have little experience in running 
clinical trials (our observation costs) and are not sure if it will be easy and cheap to or-
ganise ( 0.1θ = ) or relatively expensive ( 0.25θ = ). Prior beliefs are that it is more likely 
to be cheap so that ( )0.1 0.6P θ = = . Also suppose that the probability a bad drug 
passes the clinical trial is 0.5 whilst the probability that a drug that works passes is 0.8. 

As we begin testing of the first drug we determine how to modify the SPRT proce-
dure to take into account this uncertainty. Interest lies in the expected value of infor-
mation of the observation cost, and we assume that the information will be of a perfect 
nature (namely remove all uncertainties). Noting that [ ] 0.16E θ = , the risk profile, 
without information, is: 

( )
( )

2 if 8 15

0.96 0.2 if 8 15 76 105

4 1 if 76 105

φ φ

ρ φ φ φ

φ φ

≤
= + < ≤


− <

.               (31) 

So if [ ]8 15,76 105φ ∈  we take a further observation and hence also determine the 
true value of θ . This leads to two possible further risk profiles depending on if we 
learn 0.1θ =  or 0.25θ = .  

For 0.1θ = : 

( )
( )

2 if 1 2

0.9 0.2 if 1 2 31 42

4 1 if 31 42

φ φ

ρ φ φ φ

φ φ

≤
= + < ≤


− <

.                (32) 

For 0.25θ = : 

( )
( )

2 if 7 12

1.05 0.2 if 7 12 59 84

4 1 if 59 84

φ φ

ρ φ φ φ

φ φ

≤
= + < ≤


− <

.               (33) 

Recalling the prior on θ  is such that ( )0.1 0.6P θ = =  leads to an expected risk 
after learning information of: 

( )

( )

2 if 1 2

0.54 0.92 if 1 2 7 12

0.96 0.2 if 7 12 59 84

2.14 1.48 if 59 84 31 42

4 1 if 31 42

φ φ

φ φ

φ φρ φ

φ φ

φ φ

≤

 + < ≤
 + < ≤= 


− < ≤


− <

.              (34) 

Subtracting Equation (34) (expected risk with knowledge of θ ) from Equation (31) 
provides the expected value of perfect information for the observation cost: 
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( )

0 if 1 2
1.08 0.54 if 1 2 8 15
0.42 0.72 if 8 15 7 12
0 if 7 12 59 84
1.68 1.18 if 59 84 76 105
1.86 2.52 if 76 105 31 42
0 if 31 42

g

φ
φ φ

φ φ
φ φ

φ φ
φ φ

φ

≤
 − < ≤
 − < ≤
= < ≤
 − < ≤

− < ≤
 <

              (35) 

A plot of Equation (35) is provided in Figure 4. Note that the areas where the ex-
pected value of information is zero are where the decision rule is the same regardless of 
the information concerning the cost of sampling, agreeing with our earlier remark, and 
that the expected value of sampling information increases to be maximal where we are 
currently indifferent between making an immediate decision or taking further samples. 
With this to hand, we would continue by performing the SPRT as if we had an observa-
tion cost of [ ] ( ) ( )0.16E g gθ φ φ− = − , and if we do take an observation we learn the 
true value of θ  and continue the SPRT with this knowledge. 

4. Conclusions 

In this paper we have considered the generalisation of SPRTs from a classical to adap-
tive utility setting where preferences or associated costs are not assumed fully known 
but are instead learned through experience or by funding additional information 
through survey or trial etc. Both unknown cost of Type I/II error was examined before 
subsequently considering the effect of uncertain observation cost. 

Both perfect and noisy information were discussed, where we demonstrated the me-
thods of quantifying the value for such information and numerical examples were  

 

 
Figure 4. A plot of the expected value of information in Example 3.1 given by Equation (35). 



C. McMeel, B. Houlding 
 

896 

provided to demonstrate the theory. Statistical dependence between the parameter and 
the state of nature was also considered and shown to not influence results. The numer-
ical simulation indicated the enhanced performance by formally treating uncertainties 
and opportunities to learn within a SPRT in comparison to the somewhat easier model-
ling assumption of equating uncertainties in costs to their expected values. 
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