
Journal of Computer and Communications, 2016, 4, 1-38
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2016.412001 October 18, 2016

Source Code Comparison of DOS and CP/M

Bob Zeidman

Zeidman Consulting, Cupertino, CA, USA

Abstract
In a previous paper [1], I compared DOS from Microsoft and CP/M from Digital
Research Inc. (DRI) to determine whether the original DOS source code had been
copied from CP/M source code as had been rumored for many years [2] [3]. At the
time, the source code for CP/M was publicly available but the source code for DOS
was not. My comparison was limited to the comparison of the DOS 1.11 binary code
and the source code for CP/M 2.0 from 1981. Since that time, the Computer History
Museum in Mountain View, California received the source code for DOS 2.0 from
Microsoft and was given permission to make it public. The museum also received the
source code for DOS 1.1 from Tim Paterson, the developer who was originally con-
tracted by Microsoft to write DOS. In this paper, I perform a further analysis using
the newly accessible source code and determine that no code was copied. I further
conclude that the commands were not copied but that a substantial number of the
system calls were copied.

Keywords
Copyright Infringement, CP/M, Digital Research, DOS, Intellectual Property,
Microsoft, Operating Systems, Software Forensics

1. CP/M Oddities

The DOS files were written in standard Intel assembly language syntax, but some CP/M
files used a variation I call DRI assembler that was created at DRI while other files were
written in the PL/M programming language developed at DRI. In particular, I found
that an exclamation point could be used to separate multiple instructions on a single line.
I eventually found an assembler user’s guide from DRI [4] that confirmed this syntax.

1.1. Cleaning the Code

For CP/M version 1.3, the code consisted of low-resolution PDF scans of dot matrix
printouts of source code. I performed a number of processes to recover the source code

How to cite this paper: Zeidman, B. (2016)
Source Code Comparison of DOS and CP/
M. Journal of Computer and Communica-
tions, 4, 1-38.
http://dx.doi.org/10.4236/jcc.2016.412001

Received: August 20, 2016
Accepted: October 15, 2016
Published: October 18, 2016

Copyright © 2016 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.412001
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.412001
http://creativecommons.org/licenses/by/4.0/

B. Zeidman

2

from the scans as best as could be done. These steps are described below.

1.2. Remove Things That Are Not Source Code

There are stamps on each page indicating that the code copyrighted by Digital Research
in 1976. Each stamp needed to be cut out from the document. Where a stamp was on
top of code, and cutting out the stamp removed source code text, the underlying text
was rebuilt using characters copied from other sections of code to exactly replace what
could be seen under the stamp. There were also memory locations and machine code
hex on the left margins—these scans were obviously printouts of assembler listings
showing the generated machine code and where the code had been located in memory
after assembly. I manually cut out line numbers on the left margins and memory maps
that were not source code.

Also, the scans had dots and smudges that were either due to scans of multi-gener-
ation photocopies, ink spraying from the printer, or dirt from handling the pages over
the years. I went through each page and digitally erased all dots and smudges to im-
prove the OCR reliability.

Some of the code ran off the printed page. Usually these were comments, which did
not affect the functionality of the code but might have contained potential clues to co-
pying. Unfortunately, without other printouts or the original code, this missing code
could not be replaced.

1.3. Optical Character Recognition (OCR)

I used the ABBYY FineReader program to perform OCR scanning on each page of each
PDF of source code. Several passes of manual corrections were needed where the OCR
did not produce good results, usually because the printouts were not clear.

1.4. Fix Printer Glitches

There were a number of errors that were introduced by problems with the printer that
was used to print the pages. These took a while to figure out because while some of the
glitches were obvious, others were masquerading as strange code syntax. One easy glitch
to figure out was in file BDOS. plm, where I found following gibberish at lines 193 - 194:

BCBBSSNPQQTHUNCBJUTDHQRTPQHUSSSSH;

CBSHHSSQCBSSSNCBSSSSBYTE;

Examining the code before and after the gibberish, I could discern a simple pattern
and determined the correct code and substituted it for the gibberish:

END SELSEC; READ$DISK: PROCEDUREBYTE;

Another problem with the printer caused some words to occasionally print with a
duplicate letter at the end, like SCANN, OPENN, and MOVV. I discovered this when I no-
ticed that these variables could not be found elsewhere in the code or these instructions
were not valid DRI assembly instructions, but were correct without the extra letter on
the end. When I found these variables and instructions, I deleted the extra letter.

B. Zeidman

3

In the PL/M files, there were extra letters “N” and “D” at the beginning of some lines
like NDECLARE and DDECLARE. These are not valid PL/M statements, though
DECLARE is a valid PL/M statement. I figured out this printer anomaly when I saw a
procedure called NDISKMON that ended with the statement END DISKMON. So if I
found a PL/M instruction or identifier that would only be valid without that initial let-
ter, I removed the initial letter.

1.5. Run CodeMatch of Each File against Itself

I found that by running the CodeMatch function of CodeSuite to compare files of a
particular language (assembler or PL/M) against itself, I could find additional problems
with the OCR scans. Each time I found a problem this way, I would correct it and rerun
CodeMatch. I continued this process until I could find no more errors. The types of
problems I found are described below.

1.5.1. Comments as Instructions
CodeMatch listed some comments as instructions. This meant that there was a missing
comment delimiter that needed to be added back in.

1.5.2. Instructions as Comments
CodeMatch listed some instructions as comments. This also meant that there was a
missing comment delimiter that needed to be added back in, though there were cases
where an instruction was commented out, so each case needed to be examined indivi-
dually to determine whether it was correct or whether it was an OCR problem to be
corrected.

1.5.3. Strange Identifiers
Some identifiers seemed wrong because, for example, they looked like common words
that were not spelled correctly. I examined these identifiers in the original scans, de-
termined the correct identifier, and fixed it in the code.

1.5.4. Incorrect OCR
I searched through the files for the letter “O” within numbers and changed it to the
numeral “0”. I checked the original scan before making the correction.

I also searched for the numeral “0” within identifier names. If it was at the end of the
identifier, it was probably correct. If it was part of a word then it should probably be the
letter “O”. I checked the original scan before making the correction.

I also searched for the letter “W” and changed it to letter “U” if necessary. This could
be seen in words where the word was nonsensical with a “W” but made sense with a
“U”. I checked the original scan before making the correction.

1.5.5. Reformatted Code
To make the assembly code more readable, I used the program asmbc.exe from the
website 8051 assembly formatter [5] to beautify the assembly code, making it more
readable. Even though this program is intended for use on Intel 8051 assembly code, it
works well on Intel x 86 assembly code as well, which I manually checked by using a

B. Zeidman

4

diff between the original code and the beautified code. This formatter program simply
lined up labels, instructions, and comments by adding or subtracting whitespace. I also
made edits by hand, but other than whitespace, and the changes listed above, I did not
make further changes to the code.

To make the PL/M code more readable, I created an AWK script to format the code.
The AWK script, and a batch file to run it on a Windows machine, is given in the tools
folder that can be downloaded from the link at the end of this paper.

2. Code Comparisons

I used the CodeSuite® tool from my software company Software Analysis and Forensic
Engineering and followed the procedures that I have written about in my textbook on
software forensics [6] and that have been used at my company Zeidman Consulting in
over 80 software copyright litigation cases. The purpose of this procedure is to find all
of the correlation between the two sets of code and then eliminate the correlation that
can be explained by reasons other than copying: commonly used identifier names,
common algorithms, common author, automatically generated code, and third party
code. Any correlation that cannot be explained by one of these five reasons must have
been copied. It is important to remember that all of these five kinds of correlations
could have been due to copying, but copying cannot be reasonably proven. If some
correlation can only be reasonably explained by copying, then that is proof of copying,
and it makes sense to go back and look at other correlation that had previously been
filtered out, to determine the extent of the copying.

The steps in the procedure are:
1) Use the FileIdentify™ function of CodeSuite to search the source code directories

for source code files and determine the programming languages used.
2) Load the source tree into the Understand tool from Scientific Toolworks and re-

view for errors and warnings to determine that the code is not corrupted and to deter-
mine whether files and functions are missing.

3) Perform global searches within the source code files for the following terms:
4) The string copyright.
5) Company names.
6) Author names and initials.
7) Any relevant terms.
8) Run the CodeMatch® function of CodeSuite on all programming language files;

export the resulting CodeMatch databases to HTML reports and inspect the most high-
ly correlated file pairs.

9) Run the SourceDetective® function of CodeSuite on the CodeMatch databases to
determine the frequency of matching program elements (identifiers, statements, com-
ments, and strings) on the Internet.

10) Produce search spreadsheets showing the number of times matching program
elements can be found on the Internet.

11) Filter out the matching program elements with high search counts. Focus on

B. Zeidman

5

matches with low search count.
12) Filter out any program elements with low but unimportant hit count matches.
13) Inspect the most highly correlated file pairs.
14) Create a spreadsheet of partially matching identifiers to find any unusual ones

and examine the surrounding code.
15) Run the CodeCross® function of CodeSuite; export the resulting Code Cross da-

tabases to HTML reports and inspect the most highly correlated file pairs.
16) Run the SourceDetective function of CodeSuite on the CodeCross databases to

determine the frequency of cross-matching program elements (statements, comments,
and strings) on the Internet.

17) Produce search spreadsheets showing the number of times cross-matching pro-
gram elements can be found on the Internet.

18) Filter out the cross-matching program elements with high search counts. Focus
on matches with low search count.

19) Filter out any cross-matching program elements with low but unimportant hit
count matches.

20) Inspect the most highly correlated file pairs.
21) Draw conclusions.

2.1. Run FileIdentify

FileIdentify is a function of the CodeSuite program that identifies the number of file
types in a folder and reports which programming language is typically associated with
each file type. There is nothing to prevent someone from mislabeling a file as a type
containing code in one programming language when it really contains code in a differ-
ent programming language, and FileIdentify does not actually do a semantic analysis to
determine the programming language, but in this case, opening the files revealed that
the file types are indeed correct. The file types are listed in Table 1 for each version of

Table 1. CP/M files.

CP/M Version File Type No. of Files Contents
1.1 .plm 7 PL/M

 .sub 1 *Configuration file
 .txt 2 *Text file documentation
 .z80 2 **Z80 simulator code from 2007

1.3 .asm 7 Assembly
 .plm 5 PL/M

1.4 .asm 1 Assembly
 .plm 1 PL/M

2.0 .asm 22 Assembly language
 .lin 5 *ASCII hex
 .pdf 1 *Documentation
 .plm 5 PL/M
 .src 1 Assembly
 .txt 1 *Text file documentation

*These files are not source code as determined by their extensions and opening them up. **These files are assembly
code for a Z80-based CP/M simulator developed in 2007, as determined by the code and the comments in the files.

B. Zeidman

6

the CP/M operating system to be compared. The file types are listed in Table 2 for each
version of the DOS operating system to be compared.

2.2. Run Understand

Understand is a program from Scientific Tool works that analyzes source code and re-
ports the relationships between functions and files. Understand reported 114 errors in
the PL/M code, which seems to be because this code conforms to an older version of
PL/M that Understand does not fully recognize. Understand cannot analyze assembly
code so it could not be used to analyze the assembly code.

2.3. Perform Global Searches

I searched the source code files for terms that could be clues to copying.

2.3.1. Search for the String “Copyright”
The CP/M files all had copyright notices for Digital Research and Gary Kildall. The
DOS files had copyright notices for Seattle Computer Products, IBM, Tele Video Sys-
tems, or Microsoft.

The Seattle Computer Products copyright notice is found in a comment the file ASM.
ASM in the DOS 1.1 source code. The exact code is:

DB 13, 10, “Copyright 1979-1983 by Seattle Computer Products,

Inc.”

Seattle Computer Products was the hardware company that hired Tim Paterson to
write an operating system, called QDOS, that was eventually purchased by Microsoft
and turned into DOS, so it makes sense for this notice to be in the code.

The Tele Video copyright notice is found in a comment the file UINIT. ASM in the
DOS 2.0 source code. The exact code is:

IF IBM; HEADER DB 13,10,13,10, “Tele Video Personal Computer

DOS Vers. 2.11”, 13, 10; DB “(C) Copyright Tele Video Systems,

Inc. 1983”, 13, 10; DB “(C) Copyright Microsoft Corp. 1981,

1982, 1983”, 13, 10, “$”; ENDIF.

Table 2. DOS files.

DOS Version File Type No. of Files Contents
1.1 .ASM 7 Assembly language

 .txt 1 *Text file documentation
2.0 .ASM 100 Assembly language

 .BAS 1 Basic
 .HLP 1 *Text file documentation
 .OVR 2 *WordStar overlay files
 .txt 12 *Text file documentation
 DOSLINK 1 *Linker file
 COMLINK 1 *Linker file

*These files are not source code as determined by their extensions and opening them up.

B. Zeidman

7

TeleVideo was a company that manufactured computer terminals. In the early 1980
s, it also built CP/M and DOS computers, including the Model TS-1603 that ran both
DOS 2.0 and CP/M-86 1.1 [6].

2.3.2. Search for the Company Names
The CP/M files had mentions of Digital Research. The DOS files had mentions of Seat-
tle Computer Products, IBM, TeleVideo Systems, and Microsoft. A case-insensitive
search for the following terms in the DOS code did not produce any results.
 DRI (searched for whole word only)
 Digital
 Research (found two generic program labels)

2.3.3. Search for Author Names and Initials
The CP/M files had mentions of Gary Kildall while the DOS files had mentions of Tim
Paterson. A case-insensitive search for the following terms in the DOS code did not
produce any results.
 Kildall
 Gary
 GK

2.3.4. Search for Any Relevant Terms
Interestingly, a search for the terms CP/M and CPM did find some results in the DOS
source code.

In file MSDOS.ASM in DOS 1.0:

; 1.12 10/09/81 Zero high half of CURRENT BLOCK after all

(CP/M programs don’t)

.

.

.

STOSB; Set it to zero (CP/M programs set low byte).

In file MSHEAD.ASM in DOS 2.0:

; 1.12 10/09/81 Zero high half of CURRENT BLOCK after all

(CP/M programs don’t).

And in the file SYSCALL.ASM in DOS 2.0:

STOSB; Set it to zero (CP/M programs set low byte).

My research on the Internet and my reading of the code led me to believe that the
code above has something to do with the file system. Because it discusses differences
between DOS and CP/M, it would not be reasonable to interpret this as a clue that the
code was copied from CP/M.

I also found the following reference to CP/M in file EXEC.ASM in DOS 2.0:

XORAX, AX; zero extent, etc for CPM.

B. Zeidman

8

And in files PRINT.ASM and PRINT_v211.ASM I found:

DOCHAR:

MOV AL, BYTE PTR [BX]

CMP AL, 1AH ; ^Z?

JZ FILEOFJ ; CPM EOF

CMP AL, 0DH ; CR?

JNZ NOTCR

MOV [COLPOS], 0

And in file PRINT_V211.ASM I found:

JZFILEOFJ; CPM EOF.

The CP/M file system used fields called “extents” to keep track of files in directories.
The sizes of CP/M files were stored in “sectors” of 128 bytes each. If a file filled up less
than the 128 bytes of the last sector, the other bytes were filled with an ASCII Control-Z
character as an end-of-file marker (EOF) [8] [9].

DOS had a different way of keeping track of file information. It recorded file sizes in
bytes and so no EOF marker was needed. The code above seems to indicate that DOS
could read CP/M files and had special code to do so, but initial research showed that
CP/M files were incompatible with DOS. Was this a clue to copying?

Further research showed that very early versions of DOS were designed to read and
write CP/M files. The code above confirms that compatibility [10]. Eventually that
compatibility was dropped from DOS. The mention of CP/M in DOS makes sense once
this purposeful compatibility is recognized. It is not a sign of copying.

2.4. Run CodeMatch and Inspect Most Highly Correlated File Pairs

Because CP/M is written in two different languages, two comparisons needed to be run.
First, all DOS assembly code was compared to all CP/M assembly code. Second, all
DOS assembly code was compared to all CP/M PL/M code.

2.4.1. DOS Assembly Code to CP/M Assembly Code
Examples and discussions of the matching elements between DOS and CP/M assembly
code are given below.

1) Matching statements
Some examples of matching statements are shown in Appendix A. The first example

shows that the constant TRUE is set to NOT FALSE. This is logical and would not be a
sign of copying, especially since the line above shows that the constant FALSE is set to
different values in DOS and CP/M.

In the second example, the label DELIM is found in both programs, which is a com-
mon abbreviation for the word “delimiter” that is a common programming term for a
character that separates sections of a string of characters. The routines in both pro-
grams are examining characters of a string, and comparing them to find specific cha-
racters, but the routines are searching for different characters and thus not an indicator

B. Zeidman

9

of copying.
In the third example, the statement DW RENAME is found in both programs, which

reserves a word in memory for a variable called RENAME. In the CP/M code, this varia-
ble is used to store information about one of the operating system commands while in
the DOS code it points to one of many DOS system calls. Given the different functio-
nality, this is not an indicator of copying.

In the fourth example, the labels COMERR and COMERR1 are found. Both routines
process command errors, but the code can be seen to be significantly different other
than these two labels. In fact, the CP/M code has an additional label COMERR0 that is
not found in the DOS code. Given the different functionality, this is not an indicator of
copying.

In the fifth, sixth, and seventh examples, there are conditional jump instructions
(JC, JZ, and JNZ) to identically labelled sections of code (COMERR, GETOP, SE2).
However, the code surrounding these instructions are significantly different and these
matching instructions are thus not indicators of copying.

These matching statements, along with others, were examined, and none of them
appeared to be correlated for any reason other than common programming terms that
could be expected to be found in many programs and are thus not indicators of copy-
ing.

2) Matching comments and strings
Some examples of matching comments and strings are shown in Appendix B. The

first comment is Get next character. Looking at the surrounding code, the rou-
tines are very different, and thus not an indicator of copying.

In the second example, the terms DIR, REN, and TYPE are found in both sets of
source code. In both sets of code they are multiple byte variables. However, in the DOS
code, DIR and REN are 4 bytes while TYPE is 5 bytes. In the CP/M code they are all 4
bytes. They are also listed in a different order. When code is copied, it is rarely reor-
dered because there is no need to do so. Both sets of code contain other commands that
do not match. And there commands were well known commands in operating systems
at the time. Also note that these commands are the “intrinsic commands” that are
processed by the operating system command processor code. Every other command
had its own executable file and source code file. For example, the DDT and ED com-
mands in CP/M had source code files DDT.ASM and ED.ASM and executable files
DDT.COM and ED.COM respectively. While CP/M 1.3 implemented 5 commands in-
trinsically1, DOS 1.1 implemented 11 commands intrinsically. Given the differences, it
does not appear that this code was copied.

In the third example, the comment Select disk is found in both sets of source
code. In the DOS code, the comment is in code that is outputting to a disk. In the CP/M
code the comment is at code that is simply declaring a constant. Given the differences,
it does not appear that this code was copied.

1The USER command is actually a way for CP/M to access extrinsic commands and is not an actual intrinsic
command.

B. Zeidman

10

In the fourth example, the comment End of file can be found in both programs
where a constant is set to 1 AH in both files. The DOS constant EOF looks very similar
to the CP/M constant EOFILE. However, this is the ASCII Control-Z that CP/M uses
to signify the end of file that we already determined that DOS also uses for compatibili-
ty. Interestingly, there is more overlap here. The EOL character in DOS is 0DH, which
is the hex equivalent of the carriage return (CR) character 13 in decimal. But the car-
riage return character was intended to be used to signal the end of a line, so it is no
surprise that both operating systems use the character. This correlation is explained by
common identifier names and common algorithms, and is not an indicator of copying.

The fifth example shows the comment Print it in both sets of code. This a very
common expression. Both functions are in debugger code, looping and printing cha-
racters, but the surrounding code is significantly different, performing different func-
tions, and thus not an indicator of copying.

The matching comments and strings were examined, and none of them appeared to
be correlated due to copying.

3) Matching identifiers
Some examples of matching comments and strings are shown in Appendix C. In the

first example, CRLF is a label in both programs. CRLF is a common abbreviation for
the carriage return/linefeed that appears at the end of a string in CP/M and DOS. The
rest of the surrounding code is different, and thus not an indicator of copying.

In the second example, renam is an identifier in both programs. In DOS it is a label
whereas in CP/M it is a constant. Given that it is used differently in each program, it is
not an indicator of copying.

In the third example, BLKSIZ is a constant in both programs. In DOS it is equal to
512 and is used for printing I/O blocks. In CP/M it is equal to 2048 and is a disk block.
Given that it is used differently in each program, it is not an indicator of copying.

In the fourth example, FLGTAB is a variable of 4 bytes in both programs. In DOS, it
is the ASCII bytes for the letters t, l, s, w, and b. In CP/M it is the numbers 1, 7, 8, 3,
and 5. Given that it is used differently in each program, it is not an indicator of copy-
ing.

In the fifth example, RDLOOP is a label in the code. In both program, it marks the
beginning of a loop that ends in a conditional jump back to the beginning of the loop
using the instruction JNZ RDLOOP. However, other than those instructions, the loops
are very different. Given the differences in surrounding code in each program, it is not
an indicator of copying.

In the sixth example, LSTFCB is a variable in the CP/M code while it is a constant in
the DOS code.

The matching identifiers were examined, and none of them appeared to be correlated
due to copying. Given this difference it is not an indicator of copying.

4) Partially matching identifiers
Appendix D shows some examples of identifiers in DOS and CP/M that partially

match. This means that the identifiers have a sequence of characters in common. This
can help find identifiers that have been changed to hide copying. The leftmost column

B. Zeidman

11

shows the identifier in DOS, the middle column shows the identifier in CP/M, and the
rightmost column shows the overlap.

Examining partially identifiers requires looking at the common part and finding
something unusual that would indicate copying. For example, the identifiers variab-
leOne and variable1 might seem suspicious because they are identical except that
the number 1 appears in one identifier where the word “one” appears in the other. Or
the identifiers ZeidmanIndex and ZeidmanCount might seem like an attempt to
disguise copying. Reviewing the partially matching identifiers, I found no such signs of
copying.

5) Matching instruction sequences
If code has been extensively scrubbed to hide all signs of copying, there would still be

instruction sequences that matched. If the code was modified so much that all of the
algorithms were changed, then what was the justification for copying? So the final test
is to look for instruction sequences that match.

Appendix E gives an example of one of the very few instruction sequences that
matched in DOS and CP/M. As can be seen, this is a simple jump table that is a com-
monly known algorithm and not a sign of copying.

2.4.2. DOS Assembly Code to CP/M PL/M Code
It is unlikely that a high-level programming language such as PL/M would be copied to
low-level assembly language because it would require manual translation or compila-
tion and disassembly of the PL/M code, which could introduce errors. However, for
completeness I compared the DOS assembly code to the CP/M PL/M code.

Examples and discussions of the matching elements between DOS assembly code and
CP/M PL/M code are given below.

1) Matching statements
There were few matching statements, but two examples are given in Appendix F. In

both cases, routines in both programs had an identical name but the algorithms being
implemented in each case were significantly different. The few statement matches are
not indications of copying.

2) Matching comments/strings
There were few matching comments and strings, but two examples are given in Ap-

pendix G. The comment RUBOUT is not unusual given that ASCII delete character 7 H
was also commonly called the rubout character.

In the second example, the comment get next character can be found in both
sets of code. This is not an unusual comment and the surrounding code in both rou-
tines is very different.

In the third example, the comment Return current drive number can be
found in both sets of code. Although this is a very uncommon phrase when searched on
the Internet, as I will discuss in section 3.5.2, the surrounding code in both routines is
very different.

The few comment and string matches are not indications of copying.
3) Matching identifiers

B. Zeidman

12

There were some matching identifiers in both sets of code, examples of which are
shown in Appendix H. The abbreviation FCB means file control block, a term used by
both operating systems to keep track of files, so it is not unusual to find the term
PUTFCB and SETFCB in both sets of code.

More interesting, perhaps, is the use of the term SETDMA throughout both sets of
code. In the CP/M code, SETDMA is the name of similar procedures in many files. In
DOS, SETDMA is a constant in most files but a simple routine in the file MSDOS.ASM.
Notice that while the code is very different in the two programs, the number 26 is asso-
ciated with all of the SETDMA code. I will address this in the section 3.2 System Calls.

The few identifier matches are not indications of copying.
4) Partially matching identifiers
Appendix I shows some examples of identifiers in DOS and CP/M that partially

match. The leftmost column shows the identifier in DOS, the middle column shows the
identifier in CP/M, and the rightmost column shows the overlap. Reviewing the par-
tially matching identifiers, I found no signs of copying.

5) Matching instruction sequences
There were no matching instruction sequences in the two sets of code.

2.5. Run SourceDetective for Identifiers, Statements, and Comments

The next step is to run SourceDetective to determine the number of times each match-
ing code element (statements, comments and strings, and identifiers) can be found on
the Internet. In a typical code comparison, this focuses attention on those elements that
can be found in both programs but cannot be found, or are rarely found, on the Inter-
net. These are much more likely to be smoking guns. In this case, however, since CP/M
source code has been available online for several decades, running SourceDetective was
not as helpful as it would otherwise be which is why I examined nearly all cases of
matching code elements. However, the rarely found elements may still be important
and are described below.

2.5.1. DOS Assembly Code to CP/M Assembly Code
Table 3 shows the number of hits for the rarest matching comments and strings in the
DOS and CP/M assembly code. All the matches are fairly common and provide no
signs of copying.

Table 4 shows the number of hits for the rarest matching identifiers in the DOS and
CP/M assembly code. All the matches are fairly common except for the first one,

Table 3. Matching DOS and CP/M assembly code comments and strings with hits on the
internet.

Comment or string Search Score
Save DMA address 45

decrement character count 273
Restore opcode 484

No, get next character 655
DOS entry point 988

B. Zeidman

13

Table 4. Matching DOS and CP/M assembly code identifiers with hits on the internet.

Identifier Search Score

lstfcb 10

FLGTAB 457

recsiz 1290

CHKSIZ 1300

COMERR1 1650

rdloop 1910

setdma 2210

enddir 2580

lstfcb, and provide no signs of copying. The identifier lstfcb can be seen in Ap-
pendix C and was already determined not to be an indicator of copying.

Table 5 shows the number of hits for the rarest matching statements. The top of the
table shows statements that are fairly rare, which could indicate copying. However, as
shown in Appendix A, when the surrounding code is examined, these statements are
found in very different routines in the two programs, indicating that they are not signs
of copying.

2.5.2. DOS Assembly Code to CP/M PL/M Code
Table 6 shows the number of hits for the rarest matching comments and strings in the
DOS assembly code and CP/M PL/M code. Only the first listed match is rare. Examin-
ing the procedures in which the comment is found, shown in Appendix G, the code is
different in both programs and thus not a sign of copying.

Table 7 shows the number of hits for the rarest matching statements in the DOS as-
sembly code and CP/M PL/M code. There are a few rare matches, as already described
and already shown in Appendix F, which are not signs of copying as determined by the
surrounding code. All the other matches are fairly common and provide no signs of
copying.

Table 8 shows the number of hits for the rarest matching identifiers in the DOS as-
sembly code and CP/M PL/M code. All the matches are fairly common and provide no
signs of copying.

2.6. Examine Partial Identifiers

Reviewing the list of partially matching identifiers none of them stood out as unusual
or indicated copying.

2.7. Run CodeCross

CodeCross compares functional code in one set of source code to nonfunctional com-
ments in another set of source code. In many cases, when a programmer copies code,
he or she will paste the original code into a file, comment it out, and begin writing new

B. Zeidman

14

Table 5. Matching DOS and CP/M assembly code statements with hits on the internet.

Statement Search Score

JZ GETOP 0

CALL NOWRITE 1

JC COMERR 1

jnz se 2 2

call DISKWRITE 4

JMP SETFCB 5

JNZ STERR 5

call DISKREAD 9

CALL GETOP 11

jmpcomerr 11

JNZ COMERR 15

JNZ RDLOOP 15

call SETFCB 23

DW RENAME 87

Table 6. Matching DOS assemblycode and CP/M PL/M code comments and strings with hits on
the internet.

Comment Search Score

Return current drive number 0

Get next digit 1710

Table 7. Matching DOS assemblycode and CP/M PL/M code statements with internet hits.

Statement Search Score

call CLOSEDEST 2

call DISKWRITE 4

call DISKREAD 9

call SETFCB 23

CALL GETFILE 1460

Table 8. Matching DOS assemblycode and CP/M PL/M code identifiers with internet hits.

Identifier Search Score

PUTFCB 398

CHKSIZ 1300

B. Zeidman

15

code using the old code as a guide. Code Cross finds this very strong indicator of copy-
ing.

2.7.1. DOS Assembly Code to CP/M Assembly Code
The code was compared and found to consist of one-or two-word statements that were
commented out. Source Detective was run to determine whether these commented out
statements were rare, and they were determined to be extremely common, as shown in
Table 9.

2.7.2. DOS Assembly Code to CP/M PL/M Code
The code was compared and found to consist of one-or two-word statements that were
commented out. Source Detective was also run to determine whether there commented
out statements were rare, and they were determined to be extremely common, as shown
in Table 10.

2.8. Comparing DOS 1.0 Binary

The DOS source code from Microsoft is for version 1.1. No source code was supplied
for version 1.0, and the binary files for version 1.0 are also difficult to find. I received a
copy of the DOS 1.0 binary code from Daniel B. Sedory [11] that appears to be valid. I

Table 9. 3.7.1. DOS and CP/M assembly code commented-out statements and internet hits.

Comment/Statement Search Score

ENDM 56,000

CALL PRINT 162,000

endif 1,610,000

XCHG 2,090,000

NOP 11,000,000

DAA 12,100,000

STC 12,600,000

CMC 13,200,000

RET 14,100,000

ELSE 18,800,000

NOTE: 121,000,000

END 414,000,000

Table 10. DOS assembly code and CP/M PL/M code commented-out statements and internet
hits.

Comment/Statement Search Score

EOF 11,000,000

ELSE 18,800,000

return 160,000,000

B. Zeidman

16

compared this version to both the DOS version 1.1 source code and to the CP/M source
code using the Bit Match function of Code Suite that compares binary code to binary
code or to source code.

2.8.1. Microsoft 1.0 Binary Code to Microsoft 1.1 Assembly Code
When source code is converted to binary code, much of the human-readable informa-
tion is lost. Strings such as error messages are not lost, and some words also remain.
The strings that were found in both versions of DOS are given in Table 11 while the
words that were found in both versions of DOS are given in Table 12.

Table 11. Matching strings in DOS 1.0 binary code and DOS 1.1 source code.

Matching Strings

???????????

and strike any key when ready

AUTOEXECBAT

Bad command or file name

COMMAND COM

COPY

CSED

Enter new date: $

Enter new time: $

File allocation table bad, $

Insert disk with batch file $

Invalid drive specification

Invalid parameter

Licensed Material-Program Property of IBM

PAUSE

REM

RENAME

Terminate batch job (Y/N)? $

The IBM Personal Computer DOS

TYPE

Table 12. Matching words in DOS 1.0 binary code and DOS 1.1 source code.

Matching Words
1982 abort ADDRESS AGAIN ASK BATCH BITS

BUFFER CHKDSK COM COMMAND COPIED COPY DATE

DELETE Disk Done DOS entry ERASE EXTERNAL

FALSE FATAL file files from FULL HEX

IBM Initialized LOAD MAKE March MORE

new NEXT NUL OPEN PAUSE Program RANGE

READ RENAME SCROLL Segments set SOURCE

specified Start SWITCH SYS system terminate

that the then TIME TRUE version WRITE
YYY

B. Zeidman

17

The fact that a relatively large number of strings and words were found in both ver-
sions confirms that version 1.0 is probably a legitimate version of DOS.

2.8.2. Microsoft 1.0 Binary Code to CP/M Assembly Code
The strings that were found in DOS 1.0 binary code and CP/M assembly code are given
in Table 13 while the words that were found in DOS 1.0 binary code and CP/M assem-
bly code are given in Table 14.

There was only on string that could be found in both programs. The words that can
be found in both operating systems are common words, most of which are simple Eng-
lish language words. This comparison gives no indications of copying.

2.8.3. Microsoft 1.0 Binary Code to CP/M PL/M Code
The strings that were found in DOS 1.0 binary code and CP/M PL/M code are given in
Table 15 while the words that were found in DOS 1.0 binary code and CP/M PL/M
code are given in Table 16.

Table 13. Matching strings in DOS 1.0 binary code and CP/M assembly code.

Matching Strings

TYPE

Table 14. Matching words in DOS 1.0 binary code and CP/M assembly code.

Matching Words

BAD base BIOS bit BOOT BOUNDS COLUMN COM

continued copied COPY DELETE disks DISPLAY

DONE empty ENTER EOF ERASE ERRO error false

FOUND HEX KEY LETTER list LOW MAKE MODULE

NEXT note NUMERIC offset OPEN per position

PUBLIC READ RENAME RETRY SECTOR seek SELECT STACK

STARS START title TRACK true TYPE user VALUE

VERSION WRITE

Table 15. Matching strings in DOS 1.0 binary code and CP/M PL/M code.

Matching Strings

RENAME TYPE

Table 16. Matching words in DOS 1.0 binary code and CP/M PL/M code.

Matching Words

BASE BIT boot BUFFER COLUMN copyright CTS

DELETE DISK ERROR ESC FALSE FOREVER INPUT INT

ITEMS length LOAD LOW MAKE MON OPEN OUTPUT

READ reading RENAME SELECT stack TRACK TRUE

B. Zeidman

18

The only matching strings and words are common words, most of which are simple
English language words. This comparison gives no indications of copying.

3. Other Possible Copying

In addition to code, I examined whether the DOS commands were copied from CP/M
and whether the DOS system calls were copied from CP/M.

3.1. Commands

The commands for DOS and CP/M are given in Table 17 along with those of OS/8, the
operating system from Digital Equipment Corporation for the PDP-8 computer that
was released before CP/M in 1974 [12].

As can be seen, there is overlap between the commands, which I will discuss in my
conclusions.

3.2. System Calls

System calls are the way that a computer program requests a service from the underly-
ing operating system. Examples of early system calls included rebooting the system,
outputting text to a console or a printer, determining the amount of memory that is in-
stalled in the system, or reading/writing data from/to a hard disk.

The DOS source code and CP/M source code for implementing the system calls are
shown in Appendix J. Programs running on DOS and CP/M used different software
code to perform system calls, and the code to implement the system calls was written
very differently. However, at least 22 system calls—the numbers of system calls 0
through 5, 9 through 11, 13 through 23, 25, and 26—are identical functions2. I will dis-
cuss the implications of this in my conclusions.

4. Conclusions

Here are my conclusions about copying. And because many people are interested in
whether DRI could have brought a copyright lawsuit against Microsoft, I will tie in my
conclusions with that possibility. Keep in mind that while I have extensive experience
in copyright law, I am not a lawyer and the law is constantly changing.

4.1. Software Source Code

There is no indication of copying of software source code. The small number of corre-
lations between DOS source code and CP/M source code can all be explained by rea-
sons other than copying.

4.2. Commands

The command names are descriptive of the functionality, which would preclude copy-
rightability because only creative expression that is not descriptive or functional can be

2Based on the code comments and research into DOS and CP/M. It is possible that other system calls also use
identical numbers, but the functions of the system calls are not clearly described.

B. Zeidman

19

Table 17. DOS, CP/M, and VMS commands.

DOS CP/M OS/8

 ASSIGN

 BACKSPACE

 BOOT

 CCL

 COMPARE

 COMPILE

COPY COPY

 CORE

 CREATE

 CREF

DATE DATE

 DEASSIGN

DEL DELETE

DIR DIRECT DIRECT

 EDIT

 EOF

ERASE ERASE

 EXECUTE

 HELP

 LIST

 LOAD

 MAKE

 MAP

 MUNG

 PAL

PAUSE

 PRINT

 PUNCH

REM

RENAME RENAME RENAME

 RES

 REWIND

 SAVE

 SKIP

 SQUISH

 SUBMIT

 TECO

TIME

TYPE TYPE TYPE

 UA

 UB

 UC

 UNLOAD

 VERSION

 ZERO

B. Zeidman

20

copyrighted. Also, DOS commands have more in common with OS/8 commands than
with CP/M commands, and even many CP/M commands appear copied from OS/8, so
it would be difficult to claim that DOS copied CP/M. A claim of copyright infringement
of the commands would probably not hold up.

4.3. System Calls

The DOS system calls were definitely copied from the CP/M system calls. Given the
quantity of identical numbers representing identical functions, it is clear that Tim Pa-
terson referenced the CP/M manual when writing DOS.

So the question of copyright infringement of system calls remains. While a list of
numbers is not by itself creative and thus not copyrightable, a list of numbers that arbi-
trarily express specific functions is creative and thus copyrightable. Furthermore, DRI
appears to have indicated its copyright by putting a copyright notice on the CP/M In-
terface Guide [13] that describes the system calls. Had DRI brought a copyright in-
fringement case against Microsoft, it would have had to show that it guarded its system
calls from copying.

On the other hand, Microsoft could have prevailed by showing that it was a fair use
to copy the system calls. According to copyright law, fair use is determined by the fol-
lowing factors [14]:

1) The purpose and character of the use, including whether such use is for nonprofit
educational purposes.

2) The nature of the copyrighted work, especially whether it benefits the public.
3) The amount and substantiality of the portion used in relation to the copyrighted

work as a whole.
4) The effect of the use upon the potential market for or value of the copyrighted

work.
It is clear that the copying did not pass the first two factors. DOS was a commercial

product sold at a profit and it would be hard to argue that the copying served a public
benefit. Therefore to defeat a copyright infringement charge, Microsoft would have had
to show that the amount of copyrighted material copied into DOS was minimal and
that copying the CP/M system calls did not, by itself, cause DRI any financial harm.

It is my opinion that DRI could have brought a legitimate copyright claim against
Microsoft for copying a substantial number of system calls. Furthermore it is my belief
that Microsoft could have claimed a fair use defense because using the same system
commands did not reduce the market for CP/M. In other words, no one bought DOS
over CP/M solely because many of the system commands used the same numbers.

I further believe that had had DRI brought a copyright case against Microsoft that
Microsoft would have won using the fair use argument.

5. Download Full Results and Tools

The detailed results are too extensive to be included in their entirety in this paper. The
custom scripts and code comparison results can be downloaded in a zip file at

B. Zeidman

21

http://www.ZeidmanConsulting.com/DOS_comparisons.

Acknowledgements

I would like to thank Len Shustek and John Hollar at the Computer History Museum
for pointing me to the DOS code and encouraging me to do another comparison. I
would also like to thank Daniel B. Sedory for providing me with a rare copy of PC DOS
1.0 binary code. I would like to thank Clement Cole for pointing me to the DEC OS/8
handbook and pointing out the similarities to CP/M commands. And I would like to
thank Tom Rolander, employee number one at Digital Research, who was always happy
to answer my questions.

References
[1] Zeidman, B. (2014) A Code Correlation Comparison of the DOS and CP/M Operating Sys-

tems. Journal of Software Engineering and Applications, 7, 513-529.
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=46362#.U4WDefldWCU

[2] Evans, H., Buckland, G. and Lefer, D. (2004) They Made America. Little, Brown and Co.,
New York.

[3] Hamm, S. and Greene, J. (2004) The Man Who Could Have Been Bill Gates. Bloomberg.
http://www.bloomberg.com/news/articles/2004-10-24/the-man-who-could-have-been-bill-
gates

[4] CP/M Assembler (ASM) User’s Guide (1978).
http://www.cpm.z80.de/randyfiles/DRI/ASM.pdf

[5] 8051assemblyformatter. https://code.google.com/p/8051assemblyformatter

[6] Zeidman, B. (2011) The Software IP Detective’s Handbook. Prentice Hall, Upper Saddle
River.

[7] Model TS-1603, Old-Computers.com.
http://www.old-computers.com/museum/computer.asp?c=1077

[8] Haardt, M. and Elliott, J. (2013) CP/M Disk and File System Format. Welcome to the
Wonderfully Ancient World of CP/M. http://www.cpm8680.com/cpmtools/cpm.htm

[9] Tanenbaum, A.S. (2002) The CP/M File System.
http://www.informit.com/articles/article.aspx?p=25878&seqNum=3

[10] Keet, M. (2001) File Systems: Microsoft Disk Operating Sysytem [sic].
http://meteck.org/msdos.htm

[11] Sedory, D.B. (2011) The Starman’s Realm. http://thestarman.pcministry.com

[12] OS/8 Handbook. Digital Equipment Corporation, April 1974.
http://bitsavers.trailing-edge.com/pdf/dec/pdp8/os8/OS8_Handbook_Apr1974.pdf

[13] CP/M Interface Guide (1978).
http://www.cpm.z80.de/randyfiles/DRI/CPM_1_4_Interface_Guide.pdf

[14] Tysver, D.A. (2015) Fair Use in Copyright Law. Bitlaw.
http://www.bitlaw.com/copyright/fair_use.html

http://www.zeidmanconsulting.com/DOS_comparisons
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=46362%23.U4WDefldWCU
http://www.bloomberg.com/news/articles/2004-10-24/the-man-who-could-have-been-bill-gates
http://www.bloomberg.com/news/articles/2004-10-24/the-man-who-could-have-been-bill-gates
http://www.cpm.z80.de/randyfiles/DRI/ASM.pdf
https://code.google.com/p/8051assemblyformatter
http://www.old-computers.com/museum/computer.asp?c=1077
http://www.cpm8680.com/cpmtools/cpm.htm
http://www.informit.com/articles/article.aspx?p=25878&seqNum=3
http://meteck.org/msdos.htm
http://thestarman.pcministry.com/
http://bitsavers.trailing-edge.com/pdf/dec/pdp8/os8/OS8_Handbook_Apr1974.pdf
http://www.cpm.z80.de/randyfiles/DRI/CPM_1_4_Interface_Guide.pdf
http://www.bitlaw.com/copyright/fair_use.html

B. Zeidman

22

Appendix A: Matching Statements in DOS Assembly Code and CP/M Assembly Code

DOS Code
CP/M Code

In file DOS\v11source\COMMAND.ASM: In file CPM\1.3\CCP.asm:

FALSE EQU 0
TRUE EQU NOT FALSE

FALSEEQU 8000H
TRUEEQU NOT FALSE

In file DOS\v11source\MSDOS.ASM: In file CPM\1.3\CCP.asm:

IFIBM
DELIM:
ENDIF
CMPAL,":";Allow ":" as separator in IBM version
JZRET21
IFNOT IBM
DELIM:
ENDIF

CMPAL,"+"
JZ RET101
CMP AL,"="
JZ RET101
CMP AL,";"
JZ RET101
CMP AL,","
JZ RET101
SPCHK:
 CMP AL,9 ;Filter out tabs too
 JZ RET101;WARNING! " " MUST be the last

compare
 CMP AL," "
RET101: RET

DELIM:;LOOK FOR A DELIMITER
LDAXD! ORA A! RZ;NOT THE LAST ELEMENT
CPI' '! JC COMERR;NON GRAPHIC
RZ;TREAT BLANK AS DELIMITER
CPI'='! RZ
CPILA! RZ;LEFT ARROW
CPI','! RZ
CPI','! RZ
CPI';'! RZ
CPI'<'! RZ
CPI'>'! RZ
RET;DELIMITER NOT FOUND

In file DOS\v11source\MSDOS.ASM: In file CPM\1.3\CCP.asm:

; Standard Functions
DISPATCH DW ABORT ;0
 DW CONIN
 DW CONOUT
 DW READER
 DW PUNCH
 DW LIST ;5
 DW RAWIO
 DW RAWINP
 DW IN
 DW PRTBUF
 DW BUFIN ;10
 DW CONSTAT
 DW FLUSHKB
 DW DSKRESET
 DW SELDSK
 DW OPEN ;15
 DW CLOSE
 DW SRCHFRST
 DW SRCHNXT
 DW DELETE
 DW SEQRD ;20
 DW SEQWRT
 DW CREATE

JMPTAB:DWDIRECT;DIRECTORY SEARCH
 DW ERASE ;FILE ERASE
 DW TYPE ;TYPE FILE
 DW SAVE ;SAVE MEMORY IMAGE
DW RENAME ;FILE RENAME
 DW USERFUNC ;USER-DEFINED FUNCTION

B. Zeidman

23

DW RENAME
 DW INUSE
 DW GETDRV ;25
 DW SETDMA
 DW GETFATPT
 DW GETFATPTDL
 DW GETRDONLY
 DW SETATTRIB ;30
 DW GETDSKPT
 DW USERCODE
 DW RNDRD
 DW RNDWRT
 DW FILESIZE ;35
 DW SETRNDREC

In file DOS\v20source\EDLIN.ASM: In file CPM\1.3\CCP.asm:

COMERR:
MOV DX,OFFSET DG:BADCOM
COMERR1:
 MOV AH,STD_CON_STRING_OUTPUT
INT 21H
JMP COMMAND

COMERR: ;ERROR IN, COMMAND STRING STARTING AT
POSITION

 ;'STADDR' AND ENDING WITH FIRST DELIMITER
CALLCRLF ;SPACE TO NEXT LINE
LHLDSTADDR ;H,L ADDRESS FIRST TO PRINT
COMERR0: ;PRINT CHARACTERS UNTIL BLANK OR ZERO
MOVA, M! CPI ' '! JZ COMERR1; NOT BLANK
ORAA! JZ COMERR1; NOT ZERO, SO PRINT IT
PUSHH! CALL PRINTCHAR! POP H! INK X
JMPCOMERR0 ; FOR ANOTHER CHARACTER
COMERR1: ;PRINT QUESTION, MARK, AND DELETE SUB

FILE
MVIA, '?'! CALL PRINTCHAR
CALLCRLF! CALL DEL$SUB
JMPCCP ;RESTART WITH NEXT COMMAND

In file DOS\v20source\SYSINIT.ASM: In file CPM\1.3\CCP.asm:

ASSUME ES:SYSINITSEG

MOV DX,OFFSET COMMND ; NOW POINTING

TO FILE DESCRIPTION

IF NOEXEC
MOV ES,BP ; SET LOAD

ADDRESS
MOV BX,100H
CALL LDFIL ; READ IN

COMMAND
JC COMERR
MOV DS,BP
CLI
MOV DX,80H
MOV SS,BP
MOV SP,DX
STI

FCB SCAN, AND FILL SUBROUTINE (ENTRY IS AT FILLFCB
BELOW)

 ;FILL THE COMFCB, INDEXED
BY A (0 OR 16)

 ;SUBROUTINES
DELIM: ;LOOK FOR A DELIMITER
LDAX D! ORA A! RZ ;NOT THE LAST ELEMENT
CPI' '! JC COMERR ;NON GRAPHIC
RZ ;TREAT BLANK AS DELIMITER
CPI '='! RZ
CPI LA! RZ ;LEFT ARROW
CPI ','! RZ
CPI ','! RZ
CPI ';'! RZ
CPI '<'! RZ
CPI '>'! RZ
 RET ;DELIMITER NOT FOUND

In file DOS\v11source\ASM.ASM: In file CPM\1.3\asm.asm:

FLG:
CMP DL,[MAXFLG] ;Invalid flag for this

operation?
MOV CL,27H
JG ERR1
CALL GETSYM

OPER6: ;UNARY SET, MUST BE +
OR -

MOV A, C ;RECALL OPERATOR
CPI PLUS
JZ GETOP ;IGNORE UNARY PLUS
CPI MINUS
JNZ CHKNOT

B. Zeidman

24

CMP AL,','
JZ GETOP
JP GETOP1 OR DX,DX
 JZ FULLREC ;If remainder 0, then full

record transfered
 MOV BYTE PTR [DSKERR],3 ;Flag partial

last record
 SUB CX,DX ;Bytes left in last

record
 PUSH ES
 MOV ES,[DMAADD+2]
 XCHG AX,BX ;Save the record

count temporarily
 XOR AX,AX ;Fill with zeros
 SHR CX,1
 JNC EVENFIL
 STOSB

INR A ;CHANGE TO UNARY MINUS
MOV C, A
JMP OPER2

In file DOS\v20source\FC.ASM: In file CPM\1.3\DDT.asm:

get_nextl:
mov si,word ptr [bx].curr
get_next:
mov cx,word ptr [bx].dat_end
sub cx,si
mov di,si
mov al,LF
cld
repnz scasb
mov si,di ;pointer to

next line
jnz se2 ;not found
clc
ret
se2:
inc si ;point past

the LF
stc
ret

SE1:
LDAX D ;POINT TO FIRST BYTE TO MATCH
CMPM ;SAME CHARACTER AS TABLE?
JNZ SE2 ;NO, SKIP TO NXT TABLE ENTRY
INXH ;YES, LOOK AT NEXT CHARACTER
INXD ;MOVE TO NEXT CHARACTER TYPED
DCRB ;DECREMENT CHARACTER COUNT
JNZSE1 ;MORE TO MATCH?
;
; COMPLETE MATCH, RETURN WITH D,E ADDRESSING BYTE

VALUE
POPD
RET

Appendix B: Matching Comments and Strings in DOS Assembly Code and CP/M Assembly
Code

DOS
CP/M

In file DOS\v11source\ASM.ASM: In file CPM\2.0\as4sear.asm:

FPREG:
;Have detected "ST" for 8087 floating point stack

register
MOV DL,0 ;Default is ST(0)
CALL SCANB ;Get next character
CMP AL,"(" ;Specifying register number?
JNZ HAVREG
;Get register number
CALL NEXTCHR ;Skip over the "("
CALL GETOP ;A little recursion never hurt

anybody
CMP AL,CONST ;Better have found a constant
MOV CL,20 ;Operand error if not

NEXTS: ;LOOK AT NEXT SUFFIX
 LXI H,ACCUM+1 ;SUFFIX POSITION
 LDAX D ;CHARACTER TO ACCUM
 CMP M
 INX D ;READY FOR NEXT CHARACTER
 JNZ NEXT0 ;JMP IF NO MATCH
 LDAX D ;GET NEXT CHARACTER
 INX H ;READY FOR COMPARE WITH ACCUM
 CMP M ;SAME?
 RZ ;RETURN WITH ZERO FLAG SET, B IS

SUFIX

B. Zeidman

25

JNZ ERRJ3
CMP [DLABEL],0 ;Constant must be defined
MOV CL,30
JNZ ERRJ3
MOV DX,[DATA] ;Get constant
CMP DX,7 ;Constant must be in range 0-7
MOV CL,31
JA ERRJ3
MOV AL,[SYM]
CMP AL,")"
MOV CL,24
JNZ ERRJ3
HAVREG:
MOV DH,FREG
XOR AL,AL ;Zero set means register found
RET

In file DOS\v11source\COMMAND.ASM: In file CPM\1.3\CCP.asm:

COMTAB DB 4,"DIR",1
 DW OFFSET TRANGROUP:CATALOG
 DB 7,"RENAME",1
 DW OFFSET TRANGROUP:RENAME
 DB 4,"REN",1
 DW OFFSET TRANGROUP:RENAME
 DB 6,"ERASE",1
 DW OFFSET TRANGROUP:ERASE
 DB 4,"DEL",1
 DW OFFSET TRANGROUP:ERASE
 DB 5,"TYPE",1
 DW OFFSET TRANGROUP:TYPEFIL
 DB 4,"REM",1
 DW OFFSET TRANGROUP:COMMAND
 DB 5,"COPY",1
 DW OFFSET TRANGROUP:COPY
 DB 6,"PAUSE",1
 DW OFFSET TRANGROUP:PAUSE
 DB 5,"DATE",0
 DW OFFSET TRANGROUP:DATE
 DB 5,"TIME",0
 DW OFFSET TRANGROUP:TIME
 DB 0 ;Terminate command table

intvec:
;intrinsic function names (all are four

characters)
db 'DIR '
db 'ERA '
db 'TYPE'
db 'SAVE'
db 'REN '
db 'USER'

In file DOS\v11source\IO.ASM: In file CPM\1.3\SYSGEN.asm:

CHKDENS:
SEG CS
MOV AL,[SI] ; Get previous disk I/O driver number.
MOV BX,DRVTAB
SEG CS
XLAT ; Get drive select byte for previous

density

IF CROMEMCO16FDC
CALL MOTOR ; Wait for motor to come up to

speed.
ENDIF

OUT DISK+4 ; Select disk
MOV AL,0C4H ; READ ADDRESS command
CALL DCOM
AND AL,98H

ORG 100H ;BASE OF TRANSIENT AREA
;
LOADP EQU 900H;LOAD POINT FOR SYSTEM DURING

LOAD/STORE
BDOS EQU 5H ;DOS ENTRY POINT
BOOT EQU 0 ;JUMP TO 'BOOT' TO REBOOT SYSTEM
CONI EQU 1 ;CONSOLE INPUT FUNCTION
CONO EQU 2 ;CONSOLE OUTPUT FUNCTION
SELF EQU 14 ;SELECT DISK
DISKA EQU 0 ;NUMBER CORRESPONDING TO A
DISKB EQU 1 ;AND B, RESPECTIVELY

B. Zeidman

26

IN DISK+3 ; Eat last byte to reset DRQ
JZ HAVDENS ; Jump if no error in reading address.
NOT AH ; AH = -1 (disk changed) if new density

works.
SEG CS
XOR B,[SI],1 ; Try other density
LOOP CHKDENS
MOV AX,2; Couldn't read disk at all, AH = 0 for don't
 STC ; know if disk changed, AL = error code 2

-
RET L; disk not ready, carry set to indicate error.

In file DOS\v11source\TRANS.ASM: In file DOS\1.3\CCP.asm:

 ORG 100H
EOF: EQU 1AH ;End of file
EOL: EQU 0DH
FCB: EQU 5CH
SYSTEM: EQU 5
OPEN: EQU 15
CLOSE: EQU 16
SETDMA: EQU 26
CREATE: EQU 22
DELETE: EQU 19
READ: EQU 20
WRITE: EQU 21
PRNBUF: EQU 9

DISKAEQU 0004H ;DISK ADDRESS FOR CURRENT
DISK

BDOS EQU 0005H ;PRIMARY BDOS ENTRY
POINT

BUFF EQU 0080H ;DEFAULT BUFFER
FCB EQU 005CH ;DEFAULT FILE CONTROL BLOCK
;
RCHARF EQU 1 ;READ CHARACTER FUNCTION
PCHARF EQU 2 ;PRINT CHARACTER FUNCTION
PBUFF EQU 9 ;PRINT BUFFER FUNCTION
RBUFF EQU 10 ;READ BUFFER FUNCTION
BREAKF EQU 11 ;BREAK KEY FUNCTION
LIFTFEQU 12;LIFT HEAD FUNCTION, (SHUGART SA3900

ONLY)
INITF EQU 13 ;INITIALIZE BDOS FUNCTION
SELF EQU 14 ;SELECT DISK FUNCTION
CPENF EQU 15 ;OPEN FILE FUNCTION
CLOSEF EQU 16 ;CLOSE FILE FUNCTION
SEARF EQU 17 ;SEARCH FOR FILE FUNCTION
SEARNF EQU 18 ;SEARCH FOR NEXT FILE

FUNCTION
DELF EQU 19 ;DELETE FILE FUNCTION
DREADF EQU 20 ;DISK READ FUNCTION
DWRITF EQU 21 ;DISK WRITE FUNCTION
MAKEF EQU 22 ;FILE MAKE FUNCTION
RENF EQU 23 ;RENAME FILE FUNCTION
LOGF EQU 24 ;RETURN LOGIN VECTOR
CSELFEQU 25;RETURN CURRENTLY SELECTED DRIVE

NUMBER
DMAF EQU 26 ;SET DMA ADDRESS
;
CR EQU 13 ;CARRIAGE RETURN
LF EQU 10 ;LINE FEED
LA EQU 5FH ;LEFT ARROW
EOFILE EQU 1AH ;END OF FILE
NDISKS EQU 2 ;NUMBER OF DISKS

In file DOS\v20source\DEBCOM1.ASM: In file CPM\1.3\DDT.asm:

DOSCAN:
SCASB; Search for first byte
 LOOPNEDOSCAN; Do at least once by using LOOP
 JNZ RET1 ; Exit if not found
PUSH BX ; Length of list minus 1
XCHG BX,CX
PUSH DI ; Will resume search here
REPE CMPSB ; Compare rest of string
MOV CX,BX ; Area length back in CX

DELT: ;DISPLAY CPU ELEMENT GIVEN BY COUNT IN
REG-B, ADDRESS IN H,L

MOVA, M ;GET CHARACTER
CALL PCHAR ;PRINT IT
MOVA, B ;GET COUNT
CPIAVAL ;PAST A?
JNCDELT0 ;JMP IF NOT FLAG

B. Zeidman

27

POP DI ; Next search location
POP BX ; Restore list length
JNZ TEST ; Continue search if no match
DEC DI ; Match address
CALL OUTDI ; Print it
INC DI ; Restore search address
CALL CRLF

Appendix C: Matching Identifiers in DOS Assembly Code and CP/M Assembly Code

DOS Code
CP/M Code

In file DOS\v11source\COMMAND.ASM: In file CPM\1.3\CCP.asm:

CRLF:
 MOV DX,OFFSET RESGROUP:NEWLIN
 PUSH AX
 MOV AH,PRINTBUF
 INT 33
 POP AX
RET10: RET

CRLF: MVI A, CR! CALL PRINTCHAR
 MVI A, LF! JMP PRINTCHAR

In file DOS\v11source\COMMAND.ASM: In file CPM\2.0\os2ccp.asm:

RENAM EQU 23
renam: ;rename the file given by d,e

In file DOS\v20source\PRINT.ASM: In file CPM\2.0\deblock.asm:

;WARNING DANGER WARNING:
; PRINT is a systems utility. It is

clearly understood that it may have
; to be entirely re-written for future

versions of DOS. The following
; TWO vectors are version specific,

they may not exist at all in future
; versions. If they do exist, they may

function differently.
; ANY PROGRAM WHICH IMITATES PRINTS USE OF

THESE VECTORS IS ALSO A SYSTEMS
; UTILITY AND IS THEREFORE NOT VERSION

PORTABLE IN ANY WAY SHAPE OR FORM.
; YOU HAVE BEEN WARNED, "I DID IT THE SAME

WAY PRINT DID" IS NOT AN REASON
; TO EXPECT A PROGRAM TO WORK ON FUTURE

VERSIONS OF DOS.
SOFTINT EQU28H ;Software interrupt

generated by DOS
COMINT EQU2FH ;Communications

interrupt used by PRINT
 ; This vector number is DOS

reserved. It
 ; is not generally available to

programs
 ; other than PRINT.

BLKSIZ EQU512 ;Size of the PRINT I/O

block in bytes
FCBSIZ EQU40 ;Size of an FCB

;***
;* *
;* CP/M to host disk constants *
;* *
;***
blksiz equ 2048 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask
 smask hstblk ;compute sector mask
secshf equ @x ;log2(hstblk)

In file DOS\v11source\ASM.ASM: In file CPM\1.3\DDT.asm:

B. Zeidman

28

FLGTAB: DB "tlswb"
; FLGTAB ELEMENTS DETERMINE SHIFT COUNT TO

SET/EXTRACTFLAGS
FLGTAB:
DB . 1, 7, 8, 3, 5 ;CY, ZER, SIGN, PAR, IDCY

In file DOS\v20source\PROFIL.ASM: In file CPM\2.0\xsub1.asm:

RDLOOP:
MOV BX,DX
AND DX,000FH
MOV CL,4
SHR BX,CL
ADD AX,BX
PUSH AX
PUSH DX
PUSH DS
MOV DS,AX
MOV AH,SETDMA
INT 21H
POP DS
MOV DX,FCB
MOV CX,0FFF0H ;Keep request in

segment
OR SI,SI ;Need > 64K?
JNZ BIGRD
MOV CX,DI ;Limit to amount

requested
BIGRD:
MOV AH,BLKRD
INT 21H
SUB DI,CX ;Subtract off amount done
SBB SI,0 ;Ripple carry
CMP AL,1 ;EOF?
POP DX
POP AX ;Restore transfer

address
JZ RET10
ADD DX,CX ;Bump transfer address by

last read
MOV BX,SI
OR BX,DI ;Finished with request
JNZ RDLOOP
RET10: STC
RET

rdloop:
ldax d ;next char
mov m,a
inx h
inx d
dcr c
jnz rdloop ;loop til copied
mvi c,closef
lxi d,subfcb
lxi h,modnum
dad d ;hl=fcb(modnum)
mvi m,0 ;=0 so acts as if written
lda subcr ;length of file
dcr a ;incremented by read op
sta subrc ;decrease file length
ora a ;at zero?
jnz fileop
mvi c,delf ;delete if at end
fileop: call fbdos
ret

In file DOS\v20source\ASM.ASM: In file CPM\2.0\os3bdos.asm:

ERRMES: DM '***** ERROR: '
NOSPAC: DB 13,10,'File creation

error',13,10,"$"
NOMEM: DB 13,10,'Insufficient

memory',13,10,'$'
NOFILE: DB 13,10,'File not

found',13,10,'$'
WRTERR: DB 13,10,'Disk full',13,10,'$'
BADDSK: DB 13,10,'Bad disk

specifier',13,10,'$'
ERCNTM: DM 13,10,13,10,'Error Count ='
SYMSIZE DM 13,10,'Symbol Table size = '
FRESIZE DM 'Free space = '
SYMMES: DM 13,10,'Symbol

; file control block (fcb) constants
empty equ 0e5h ;empty directory entry
lstrec equ 127 ;last record# in extent
recsiz equ 128 ;record size
fcblen equ 32 ;file control block size
dirrec equ recsiz/fcblen ;directory elts / record
dskshf equ 2 ;log2(dirrec)
dskmsk equ dirrec-1
fcbshf equ 5 ;log2(fcblen)
;
extnum equ 12 ;extent number field
maxext equ 31 ;largest extent number
ubytes equ 13 ;unfilled bytes field
modnum equ 14 ;data module number
maxmod equ 15 ;largest module number

B. Zeidman

29

Table',13,10,13,10
EXTEND: DB 'ASM',0,0
IFEND: DB 5,'endif'
IFNEST: DB 2,'if'
RETSTR: DM 'ret'
HEXFCB: DB 0,' HEX',0,0,0,0
 DS 16
 DB 0,0,0,0,0
LSTFCB: DB 0,' PRN',0,0,0,0
 DS 16
 DB 0,0,0,0,0
PC: DS 2

fwfmsk equ 80h ;file write flag is high order modnum
namlen equ 15 ;name length
reccnt equ 15 ;record count field
dskmap equ 16 ;disk map field
lstfcb equ fcblen-1
nxtrec equ fcblen
ranrec equ nxtrec+1;random record field (2 bytes)

Appendix D: Partially Matching Identifiers in DOS Assembly Code and CP/M Assembly Code

DOS
CP/M Common

blank
blankzer
isblank

deblank
blank

blank

zexeccodeend
zexeccodesize

ccode ccode

conchng
concha
conchar
oconch

conch

dollar
pdollar dollar

extcom
nextcom extcom

smallddsect
olddsk ldds

nomod
nomove nomo

noover
noovf noov

drvnoset
movnamenoset
nosetbuf
nosetcasc
nosetdir
nosetsing
nosetsing2
nosetudrv
nosetver
nosetver2
nosetwrperr

noselect nose

zzopcode
opcode opcode

get_fcb_position
position position

fcb_random_read
fcb_random_read_block

setrandom random

B. Zeidman

30

fcb_random_write
fcb_random_write_block
random

dirstart
find_buf_dirstart

rstart rstart

savemes
savemem savme

issimpfile
ssimp ssimp

testins
testing testin

out_token
out_tokenp

token
stoken

token

Appendix E: Matching Instruction Sequences in Dos Assembly Code and CP/M Assembly Code
DOS CP/M

In file DOS\v11source\IO.ASM: In file CPM\2.0\os4bios.asm:

 JMP INIT
 JMP STATUS
 JMP INP
 JMP OUTP
 JMP PRINT
 JMP AUXIN
 JMP AUXOUT
 JMP READ
 JMP WRITE
 JMP DSKCHG
 JMP SETDATE
 JMP SETTIME
 JMP GETTIME
 JMP FLUSH
 JMP MAPDEV

 jmp const
 jmp conin
 jmp conout
 jmp list
 jmp punch
 jmp reader
 jmp home
 jmp seldsk
 jmp settrk
 jmp setsec
 jmp setdma
 jmp read
 jmp write
 jmp listst ;list status
 jmp sectran

Appendix F: Matching Statements in DOS Assembly Code and CP/M PL/M Code
DOS CP/M

In file DOS\v11source\ASM.ASM: In file CPM\2.0\load.plm:

LOAD:
MOV DH,25
CMP AL,BH ;Check if memory-to-memory
JZ MRERR
MOV AL,BH
CMP AL,REG ;Check if 8-bit operation
JNZ XRG
MOV DH,22
TEST CL,1 ;See if 8-bit operation is OK
JZ MRERR

LOAD:
DO;
/* C P / M C O M M A N D F I L E L O A D E

R

COPYRIGHT (C) 1976, 1977, 1978
DIGITAL RESEARCH
BOX 579 PACIFIC GROVE
CALIFORNIA 93950

 */

B. Zeidman

31

DECLARE
TPA LITERALLY '0100H', /* TRANSIENT PROGRAM AREA

*/
DFCBA LITERALLY '005CH', /* DEFAULT FILE CONTROL

BLOCK */
DBUFF LITERALLY '0080H'; /* DEFAULT BUFFER ADDRESS

*/

In file DOS\v11source\ASM.ASM: In file CPM\2.0\load.plm:

L0014:
 POP BX
 MOV AL,[BX]
 INC BX
 MOV CH,AL
 ADD AL,24
 SHR AL
 SHR AL
 SHR AL
 MOV CL,AL
 INC CL ;Invert last bit
 AND CL,1 ;Number of extra tabs needed (0

or 1)
 SHR AL ;Number of positions wide this symbol

needs
 SUB [SYMLIN],AL
 JNC WRTSYM ;Will it fit?
 SUB AL,SYMWID
 NEG AL
 MOV [SYMLIN],AL
CALL CRLF ;Start new line if not

PRINT: PROCEDURE(A);
 DECLARE A ADDRESS;
 /* PRINT THE STRING STARTING AT ADDRESS A UNTIL

THE
 NEXT DOLLAR SIGN IS ENCOUNTERED WITH PRECEDING

CRLF */
CALL CRLF;
 CALL PRINTM(A);
 END PRINT;

In file DOS\v20source\COPY.ASM: In file CPM\1.3\pip.plm:

NEXTMEL:
call CLOSEDEST
xor ax,ax
mov [CFLAG],al
mov [NXTADD],ax
mov [DESTCLOSED],al
mov si,[MELSTART]
mov [SRCPT],si
call SEARCHNEXT
jz SETNMELJ
jmp ENDCOPY2

SIMPLECOPY: PROCEDURE;
DECLARE (FASTCOPY,I) BYTE;
REAL$EOF: PROCEDURE BYTE;
RETURN HARDEOF <> 0FFFFH;
END REALEOF;
CALL SIZE$MEMORY;
TCBP = MCBP; /* FOR ERROR TRACING */
CALL SETUPDEST;
CALL SETUPSOURCE;
/* FILES READY FOR DIRECT COPY */
FASTCOPY = TRUE;
/* LOOK FOR PARAMETERS */
DO I = 0 TO 25;
IF CONT(I) <> 0 THEN
DO;
IF NOT(I = 14 OR I = 21) THEN
/* NOT OBJ OR VERIFY */
FASTCOPY = FALSE;
END;
END;
IF FASTCOPY THEN /* COPY DIRECTLY TO DBUFF */
DO; CALL SET$DBLEN; /* EXTEND DBUFF */
DO WHILE NOT REAL$EOF;
CALL FILLSOURCE;
IF REAL$EOF THEN
NDEST = HARDEOF; ELSE NDEST = DBLEN;
CALL WRITEDEST;
END;

B. Zeidman

32

END; ELSE
CALL COPYCHAR;
CALL CLOSEDEST;
END SIMPLECOPY;

In file DOS\v20source\COPY.ASM: In file CPM\1.3\pip.plm:

NOSETCASC:
push SI
mov ax,[STARTEL]
mov SI,offset trangroup:SCANBUF ; Adjust to copy
sub ax,SI
mov DI,offset trangroup:SRCBUF
add ax,DI
mov [SRCTAIL],AX
mov [SRCSIZ],cl ; Save its size
inc cx ; Include the NUL
rep movsb ; Save this source
mov[SRCINFO],bh ; Save info about it
popSI
movax,bp ; Switches so far
callSETASC ; Set A,B switches accordingly
callSWITCH ; Get any more switches on this

arg
call SETASC ; Set
call FRSTSRC
jmp FIRSTENT

ENDCOPY:
CALL CLOSEDEST

/* IF NECESSARY, CLOSE FILE OR PUNCH TRAILER */
IF PDEST = PUNP THEN
DO; CALL PUTDEST(ENDFILE); CALL NULLS;
END;
IF PDEST = 0 THEN /* FILE HAS TO BE CLOSED AND

RENAMED */
CALL CLOSEDEST;

/* COMLEN SET TO 0 IF NOT PROCESSING MULTIPLE

COMMANDS */
ENDCOM:
COMLEN = MULTCOM;

In file DOS\v20source\COPY.ASM: In file CPM\2.0\pip.plm:

DOREAD:
call DOCOPY
cmp[CONCAT],0
jnz NODCLOSE ; If concat, do not close
call CLOSEDEST ; else close current destination
jc NODCLOSE ; Concat flag got set, close

didn't really happen
mov [CFLAG],0 ; Flag destination not created

SIMPLECOPY: PROCEDURE;
DECLARE (FASTCOPY,I) BYTE;
REAL$EOF: PROCEDURE BYTE;
RETURN HARDEOF <> 0FFFFH;
END REALEOF;
CALL SIZE$MEMORY;
TCBP = MCBP; /* FOR ERROR TRACING */
CALL SETUPDEST;
CALL SETUPSOURCE;
/* FILES READY FOR DIRECT COPY */
FASTCOPY = TRUE;
/* LOOK FOR PARAMETERS */
DO I = 0 TO 25;
IF CONT(I) <> 0 THEN
DO;
IF NOT(I = 14 OR I = 21) THEN
/* NOT OBJ OR VERIFY */
FASTCOPY = FALSE;
END;
END;
IF FASTCOPY THEN /* COPY DIRECTLY TO DBUFF */
DO; CALL SET$DBLEN; /* EXTEND DBUFF */
DO WHILE NOT REAL$EOF;
CALL FILLSOURCE;
IF REAL$EOF THEN
NDEST = HARDEOF; ELSE NDEST = DBLEN;
CALL WRITEDEST;
END;
CALL SIZE$MEMORY; /* RESET TO TWO BUFFERS */

B. Zeidman

33

END; ELSE
CALL COPYCHAR;
CALL CLOSEDEST(FASTCOPY);
END SIMPLECOPY;

In file CPM\2.0\pip.plm:

/* IF NECESSARY, CLOSE FILE OR PUNCH TRAILER */
IF PDEST = PUNP THEN
DO; CALL PUTDEST(ENDFILE); CALL NULLS;
END;
IF PDEST = 0 THEN /* FILE HAS TO BE CLOSED AND

RENAMED */
CALL CLOSEDEST(FALSE);

/* COMLEN SET TO 0 IF NOT PROCESSING MULTIPLE

COMMANDS */

ENDCOM:
COMLEN = MULTCOM;

Appendix G: Matching Comments and Strings in DOS Assembly Code and CP/M PL/M Code
DOS CP/M

In file DOS\v20source\DEBCOM1.ASM: In file CPM\1.1\bdos.plm:

NOHEX:
CMP AL,8 ; Backspace
JZ BS
CMP AL,7FH ; RUBOUT
JZ RUB
CMP AL,"-" ; Back CLDto previous address
JZ PREV
CMP AL,13 ; All done with command?
JZ EOL
CMP AL," " ; Go to next address
JZ NEXT
MOV AL,8
CALL OUT ; Back CLDover illegal

character
CALL BACKUP
JCXZ DWAIT
JMP SHORT GETDIG

IF (C := CONIN) = CTLC THEN
DO; CALL CTLOUT; CALL CRLF;
GO TO BOOT;
END;
IF C = CTLE THEN /* PHYSICAL RETURN */
CALL CRLF; ELSE
IF C = CR THEN
DO; BUFFER(1) = COMLEN;
CALL CONOUT(CR);
RETURN;
END;
IF C = CTLU THEN
DO; CALL CTLOUT; CALL CRLF; COMLEN=0;
END; ELSE
IF C = 7FH THEN /* RUBOUT */
DO;
IF COMLEN > 0 THEN
CALL CONOUT(BUFFER((COMLEN:=COMLEN-1)+2));
END; ELSE
DO;
IF (C AND 01100000B) = 0 THEN /* CONTROL

CHARACTER */
CALL CTLOUT; ELSE
CALL CONOUT(C);
BUFFER ((COMLEN:=COMLEN+1)+1) = C;
END;
END;

In file DOS\v20source\DIRCALL.ASM: In file CPM\1.1\load.plm:

CopyPieceNext:
GETCHAR: PROCEDURE BYTE;
/* GET NEXT CHARACTER */

B. Zeidman

34

LODSB ; get next character
invoke PathChrCmp ; end of road?
JZ CopyPieceRet ; yep, return and don't dec

SI
CMP AL,AH ; end of filename?
JNZ CopyPiec ; go do name
CopyPieceRet:
Return ; bye!

DECLARE I BYTE;
IF RFLAG THEN RETURN READRDR;
IF (SBP := SBP+1) <= LAST(SBUFF) THEN
RETURN SBUFF(SBP);
/* OTHERWISE READ ANOTHER BUFFER FULL */
DO SBP = 0 TO LAST(SBUFF) BY 128;
IF (I:=DISKREAD(.SFCB)) = 0 THEN
CALL MOVE(80H,.SBUFF(SBP),80H); ELSE
DO; IF I<>1 THEN CALL PRINT(.'DISK READ

ERROR$');
SBUFF(SBP) = EOFILE;
SBP = LAST(SBUFF);
END;
END;
SBP = 0; RETURN SBUFF;
END GETCHAR;

In file DOS\v20source\GETSET.ASM: In file CPM\1.3\ED.plm:

 procedure $GET_DEFAULT_DRIVE,NEAR
ASSUME DS:NOTHING,ES:NOTHING

; Inputs:
; None
; Function:
; Return current drive number
; Returns:
; AL = drive number

MOV AL,[CURDRV]
return
$GET_DEFAULT_DRIVE ENDP

CSELECT: PROCEDURE BYTE;
/* RETURN CURRENT DRIVE NUMBER */
RETURN MON2(25,0);
END CSELECT;

Appendix H: Matching Identifiers in DOS Assembly Code and CP/M PL/M Code
DOS CP/M

In file DOS\v11source\TRANS.ASM: In file CPM\1.1\ccp.plm:

OPCODE: DS 80
OP1: DS 80
OP2: DS 80
PUTBUF: DS 128
GETBUF: DS 128
PUTFCB: DS 33

PUTFCB: PROCEDURE(I);
DECLARE I BYTE;
 COMFCB(J:=J+1) = I;
 END PUTFCB;

In file DOS\v11source\MSDOS.ASM: In file CPM\1.1\bdos.plm:

SETFCB:
 MOV SI,[FCB]
 MOV AX,[NEXTADD]
 MOV DI,AX
 SUB AX,[DMAADD] ;Number of bytes

transfered
 XOR DX,DX
 MOV CX,ES:[SI.RECSIZ]
 DIV CX ;Number of records
 CMP AX,[RECCNT] ;Check if all records

transferred
 JZ FULLREC

SETFCB: PROCEDURE;
/* PLACE VALUES BACK INTO CURRENTLY ADDRESSED
FCB, AND INCREMENT THE RECORD COUNT */

S(FRL) = VRECORD + 1;
S(FRC) = RCOUNT;
END SETFCB;

B. Zeidman

35

 MOV BYTE PTR [DSKERR],1
 OR DX,DX
 JZ FULLREC ;If remainder 0, then full

record transfered
 MOV BYTE PTR [DSKERR],3 ;Flag partial last

record
 SUB CX,DX ;Bytes left in last record
 PUSH ES
 MOV ES,[DMAADD+2]
 XCHG AX,BX ;Save the record count

temporarily
 XOR AX,AX ;Fill with zeros
 SHR CX,1
 JNC EVENFIL
 STOSB

In file DOS\v11source\ASM.ASM: In file CPM\1.1\bdos.plm:

SETDMA: EQU 26
SETDMA: PROCEDURE(A);
 DECLARE A ADDRESS;

DATAA=(SECTORA:=(TRACKA:=(BUFFA:=A)-3)+1
)+1;

 END SETDMA;

In file DOS\v11source\COMMAND.ASM: In file CPM\1.3\BDOS.plm:

SETDMA EQU 26
SETDMA: PROCEDURE(A);
 DECLARE A ADDRESS;
 CALL SELDMA(BUFFA.= A);
 END SETDMA;

In file DOS\v11source\HEX2BIN.ASM: In file CPM\1.3\ED.plm:

SETDMA: EQU 26
SETDMA: PROCEDURE(A);
DECLARE A ADDRESS;
/* SET DMA ADDRESS */
CALL MON1(26,A);
END SETDMA;

In file DOS\v11source\MSDOS.ASM: In file CPM\1.3\PIP.plm:

SETDMA: ;System call 26
MOV CS:[DMAADD],DX
MOV CS:[DMAADD+2],DS
RET

SETDMA: PROCEDURE(A);
DECLARE A ADDRESS;
CALL MON1(26,A);
END SETDMA;

In file DOS\v11source\TRANS.ASM: In file CPM\1.4\bdos.plm:

SETDMA: EQU 26
SETDMA: PROCEDURE;
/* SELECT DATA DMA ADDRESS */
IF DIRSET THEN CALL SELDMA(DMAAD);
END SETDMA;

In file DOS\v20source\PROFIL.ASM: In file CPM\2.0\ed.plm:

SETDMA EQU 26
SETDMA: PROCEDURE(A);
 DECLARE A ADDRESS;
 /* SET DMA ADDRESS */
 CALL MON1(26,A);
 END SETDMA;

B. Zeidman

36

 In file CPM\2.0\pip.plm:

SETDMA: PROCEDURE(A);
 DECLARE A ADDRESS;
 CALL MON1(26,A);
 END SETDMA;

 In file CPM\2.0\stat.plm:

setdma: procedure(dma);
 declare dma address;
 call mon1(26,dma);
 end setdma;

Appendix I: Partially Matching Identifiers in DOS Assembly Code and CP/M PL/M Code
DOS CP/M Common

baddisk
baddisklen

ddisk disk

dmaadd
dmaaddr

dmaad dmaad

needbat feedbase eedba

intbase printbase intbase

findfile endfile ndfile

rloopentry pipentry pentry

fcb_random_read
fcb_random_read_block
fcb_random_write
fcb_random_write_block
random

read$random
readrandom
set$random
setrandom
write$random

random

crename
fcb_rename

rename rename

simped
simplecom
simplecopy

simp

args_missing
nobatsing
nosetsing
processing

singlecom
singlercom

sing

setabort tabout tabo

addr_int_terminate
int_terminate

terminate terminate

Appendix J: DOS and CP/M System Calls
DOS CP/M

In file DOS\v11source\MSDOS.ASM: In file CPM\1.1\bdos.plm:

B. Zeidman

37

; Standard Functions
DISPATCH DW ABORT ;0
DW CONIN
DW CONOUT
DW READER
DW PUNCH
DW LIST ;5
DW RAWIO
DW RAWINP
DW IN
DW PRTBUF
DW BUFIN ;10
DW CONSTAT
DW FLUSHKB
DW DSKRESET
DW SELDSK
DW OPEN ;15
DW CLOSE
DW SRCHFRST
DW SRCHNXT
DW DELETE
DW SEQRD ;20
DW SEQWRT
DW CREATE
DW RENAME
DW INUSE
DW GETDRV ;25
DW SETDMA
DW GETFATPT
DW GETFATPTDL
DW GETRDONLY
DW SETATTRIB ;30
DW GETDSKPT
DW USERCODE
DW RNDRD
DW RNDWRT
DW FILESIZE ;35
DW SETRNDREC
; Extended Functions
DW SETVECT
DW NEWBASE
DW BLKRD
 DW BLKWRT ;40
 DW MAKEFCB
 DW GETDATE
 DW SETDATE
 DW GETTIME
 DW SETTIME ;45
 DW VERIFY

 DO CASE FUNC;
 /* 0: SYSTEM RE-BOOT */
 GO TO BOOT;
 /* 1: READ CONSOLE */
 DO; RET = CONIN; CALL CONOUTA(RET);
 END;
 /* 2: WRITE CONSOLE */
 CALL CONOUT(LINFO);
 /* 3: READ OCTOPUS (INFO=0), OR RETURN STATUS (INFO=1,2)

*/
 RET = OCTIN;
 /* 4: WRITE OCTOPUS */
 CALL OCTOUT(LINFO);
 /* 5: WRITE LIST DEVICE */
 CALL LISTOUT(LINFO);
 /* 6: INTERROGATE MEMORY SIZE */
 ARET = 2900H;
 /* 7: INTERROGATE DEVICE STATUS */
 ARET = IOSTAT;
 /* 8: CHANGE DEVICE STATUS */
 IOSTAT = INFO;
 /* 9: PRINT BUFFER AT THE CONSOLE */
 CALL PRINT(INFO);
 /* 10: READ BUFFER FROM THE CONSOLE */
 CALL READ;
 /* 11: CHECK FOR CONSOLE INPUT READY */
 RET = CONBRK;
 /* 12: */
 ;
 /* 13: RESET DISK SYSTEM, INITIALIZE TO DISK 0 */
 DO; CURDSK,DLOG = 0;
 CALL SETDMA(80H);
 CALL SELECT;
 END;
 /* 14: SELECT DISK 'INFO' */
 DO; CURDSK = LINFO;
 CALL SELECT;
 END;
 /* 15: OPEN */
 CALL OPEN;
 /* 16: CLOSE */
 CALL CLOSE;
 /* 17: SEARCH FOR FIRST OCCURRENCE OF A FILE */
 CALL SEARCH(FNM);
 /* 18: SEARCH FOR NEXT OCCURRENCE OF A FILE NAME */
 CALL SEARCHN;
 /* 19: DELETE A FILE */
 CALL DELETE;
 /* 20: READ A FILE */
 CALL DISKREAD;
 /* 21: WRITE A FILE */
 CALL DISKWRITE;
 /* 22: CREATE A FILE */
 CALL MAKE;
 /* 23: RENAME A FILE */
 CALL RENAME;
 /* 24: RETURN THE LOGIN VECTOR */
 RET = DLOG;
 /* 25: RETURN SELECTED DISK NUMBER */
 RET = CURDSK;
 /* 26: SET THE SUBSEQUENT DMA ADDRESS TO INFO */
 CALL SETDMA(INFO);

B. Zeidman

38

 /* 27: RETURN THE LOGIN VECTOR ADDRESS */
 ARET = ALLOCA;
 /* 28: UNUSED */
 ;
 /* 29: UNUSED */
 ;
 /* 30: ECHO CALL NO. 1 IF ARGUMENT IS TRUE */
 ECHO = LINFO;

 END; /* OF CASES */

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Source Code Comparison of DOS and CP/M
	Abstract
	Keywords
	1. CP/M Oddities
	1.1. Cleaning the Code
	1.2. Remove Things That Are Not Source Code
	1.3. Optical Character Recognition (OCR)
	1.4. Fix Printer Glitches
	1.5. Run CodeMatch of Each File against Itself
	1.5.1. Comments as Instructions
	1.5.2. Instructions as Comments
	1.5.3. Strange Identifiers
	1.5.4. Incorrect OCR
	1.5.5. Reformatted Code

	2. Code Comparisons
	2.1. Run FileIdentify
	2.2. Run Understand
	2.3. Perform Global Searches
	2.3.1. Search for the String “Copyright”
	2.3.2. Search for the Company Names
	2.3.3. Search for Author Names and Initials
	2.3.4. Search for Any Relevant Terms

	2.4. Run CodeMatch and Inspect Most Highly Correlated File Pairs
	2.4.1. DOS Assembly Code to CP/M Assembly Code
	2.4.2. DOS Assembly Code to CP/M PL/M Code

	2.5. Run SourceDetective for Identifiers, Statements, and Comments
	2.5.1. DOS Assembly Code to CP/M Assembly Code
	2.5.2. DOS Assembly Code to CP/M PL/M Code

	2.6. Examine Partial Identifiers
	2.7. Run CodeCross
	2.7.1. DOS Assembly Code to CP/M Assembly Code
	2.7.2. DOS Assembly Code to CP/M PL/M Code

	2.8. Comparing DOS 1.0 Binary
	2.8.1. Microsoft 1.0 Binary Code to Microsoft 1.1 Assembly Code
	2.8.2. Microsoft 1.0 Binary Code to CP/M Assembly Code
	2.8.3. Microsoft 1.0 Binary Code to CP/M PL/M Code

	3. Other Possible Copying
	3.1. Commands
	3.2. System Calls

	4. Conclusions
	4.1. Software Source Code
	4.2. Commands
	4.3. System Calls

	5. Download Full Results and Tools
	Acknowledgements
	References
	Appendix A: Matching Statements in DOS Assembly Code and CP/M Assembly Code
	Appendix B: Matching Comments and Strings in DOS Assembly Code and CP/M Assembly Code
	Appendix C: Matching Identifiers in DOS Assembly Code and CP/M Assembly Code
	Appendix D: Partially Matching Identifiers in DOS Assembly Code and CP/M Assembly Code
	Appendix E: Matching Instruction Sequences in Dos Assembly Code and CP/M Assembly Code
	Appendix F: Matching Statements in DOS Assembly Code and CP/M PL/M Code
	Appendix G: Matching Comments and Strings in DOS Assembly Code and CP/M PL/M Code
	Appendix H: Matching Identifiers in DOS Assembly Code and CP/M PL/M Code
	Appendix I: Partially Matching Identifiers in DOS Assembly Code and CP/M PL/M Code
	Appendix J: DOS and CP/M System Calls

