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Abstract 
In this paper we show that, under some conditions, if M is a manifold with Bakry- 
Émery Ricci curvature bounded below and with bounded potential function then M 
is compact. We also establish a volume comparison theorem for manifolds with 
nonnegative Bakry-Émery Ricci curvature which allows us to prove a topolological 
rigidity theorem for such manifolds. 
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1. Introduction 

Let ( ),M g  be a complete Riemannian manifold and :f M R→  a smooth function. 
A Bakry-Émery Ricci curvature is defined by f gRic Ric Hessf= + , where gRic  stands 
the Ricci curvature of ( ),M g  and Hessf  denotes the Hessian of f. The function f is 
called the potential function. For simplicity, denote gRic  by Ric . 

The Bakry-Émery tensor occurs in many different subjects, such as diffusion 
processes and Ricci flow. 

When f is a constant function, the Bakry-Émery Ricci tensor becomes the Ricci ten-
sor so it is natural to investigate which geometric and topological results for the Ricci 
tensor extend to the Bakry-Émery Ricci tensor. 

As an extension of Ricci curvature, many classical results in Riemannian geometry 
asserted in terms of Ricci curvature have been extended to the analogous ones on Ba-
kry-Émery Ricci curvature condition. 

In [1] G. Wei and W. Wylie proved some comparison theorems for smooth metric 
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measure spaces with Bakry-Émery Ricci tensor bounded below. In this paper we estab-
lish a Myers type theorem for manifolds bounded below by a negative constant. There-
fore we prove that is a generalization of the theorem of M. Limoncu in [2] or H. Tada-
no in [3]. 

In the second part of this paper we establish a condition on noncompact manifold 
with nonnegative Bakry-Émery Ricci curvature to be diffeomorphic to the euclidean 
space n .  

2. Mains Results 

The following theorem is a similar theorem proved in [4] and [5] and is a generaliza-
tion of Myers theorem.  

Theorem 2.1. Let ( ), , e f
gM g dvol−  be a metric space such that ( ) 21fRic n k≥ − − . 

Suppose that M contains a ball ( )0 ,B x r  of center 0x  and radius r such that the mean 
curvature ( )m r  of the geodesic sphere ( )0 ,S x r  with respect the inward pointing 
normal vector verifies ( ) ( )1m r n k< − − .  

If there exists a constant c ≥ 0 such that f c≤  then M is compact and  

( )
( ) ( )0 0ln

diam 2
2

h k h k
M r

k
 − + ≤ +                   (1) 

where ( )
( )

0 ,sup .
1x S p r

m x
h

n∈=
−

  

It is well known that there exist noncompact manifolds with nonnegative Ricci cur-
vature which are not finite topological type. Recall that a manifold M is said to have fi-
nite topological type if there is a compact domain Ω  whose boundary ∂Ω  is a topo-
logical manifold such that \M Ω  is homeomorphic to [ )0,∂Ω× +∞ . An important 
result about topological finiteness of a complete Riemannian manifold M is due to Ab-
resch and Gromoll (See [6]). 

Let f be a potential function on M satisfying ( ) ( ),f x c d p x≤ ⋅  for some nonnega-
tive constant c and a fixed point p.  

Set ( ) ( ) ( )3 ,h x f x d p x= + ⋅ ; let 
( )( ),

lim hp
f r n

n

Vol B p r
r

α
ω→∞=  and ( ) inf p

f p fMα α= . 

In this paper we show a topological rigidity theorem for noncompact manifolds with 
nonnegative Bakry-Émery Ricci curvature as follow:  

Theorem 2.2. Let ( ), , e f
gM g dvol−  be a metric space such that ( ) 0fRic x ≥ . Sup-

pose 0Mα >  and 2
pK k≥ −  for a point p M∈  and ( ) ( ),f x cd p x≤ . If for all 

0r >  

( )( ) ( )
1

2

, 1 21 2 ln
8 1 e

n
h n

fn kr
n

Vol B p r
M

krr
α

ω

−
−

−

    < +   +    
           (2) 

then M is diffeomorphic to n . 

3. Proofs 

Proof of theorem 2.1. The techniques used in the proof of this theorem are based on 
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[4] and [5]. First, let construct a comparison model space. Let 1mS −  be the unit sphere 
in m  and take a real r and { }R∈ ∪ +∞  so that 0 r R< < ≤ ∞ . Let φ  be the 
solution of the differential equation  

( ) ( )2 0t k tφ φ′′ − =                           (3) 

with initial values ( ) 0r aφ =  and ( ) 1 0r aφ′ = < . Suppose ( ) 0tφ ≥  for all [ ),t r R∈ . 
Hence  

( ) ( ) ( )0 1 1

0 0

e e .
2

k t r k t ra a at k k
k a a

φ − − −    
= + + −    

     
               (4) 

On [ )1 ,mS r R− ×  we define a Riemannian metric tensor by  

( ) ( ) 1 2
,

m
canu tg t g tφ −= ⊗                          (5) 

where 1m
cang −  is the standard metric on 1mS − . 

Thus the Riemannian incomplete manifold [ )1 ,mS r R− ×  is with Ricci curvature 
constant equal to ( ) 21m k− − . 

For all s r≥ , the hypersurface { }1mS s− ×  of [ )1 ,mS r R− ×  with mean curvature 
vector with outward pointing vector i.e. with pointing positive s  

( ) ( ) ( )
( )

, 1 .
s

H u s m
s

φ
φ
′

= − −                        (6) 

Now let prove, under the hypotheses of theorem2.1, that M is compact. 
Let y be an arbitrary point in ( )\ ,M S p r ; there exists a point ( ),x S p r∈  such 

that ( )( ) ( ), , ,d y S p r d x y= . Let 1γ  be a minimal geodesic joining x to y;  
( ) ( )1 xt exp t r uγ = −  with ( ),xu T S p r ⊥∈  and 1u = . 
Let ( )( )1 1 1, , , nr e eγ −

  be a parallel orthonormal frame along 1γ  and set 

( ) ( )
0

d
di x i

s

Y t exp te s
s =

= . Hence iY  is a ( ),S p r -Jacobi field along 1γ . The geodesic  

1γ  can be extend to a minimal geodesic γ  starting at p: ( ) pt exp tvγ =  with 

xu T exprv=  (see [4], Proposition 3) and iY  is a ( ),S p r -Jacobi field along 1γ  if and 
only if iY  can be extended to a Jacobi field along γ , null at p.  

In the geodesic polar coordinates the volume element can be written as:  

( ) 1d , d d n
gvol A t tθ θ −= ∧                        (7) 

where 1d nθ −  is the volume form on the unit sphere 1nS −  and  
( ) ( ) ( )1 1, nA t Y t Y tθ −= ∧ ∧ . Hence  

( ) ( )1 1e d , d d e , d df n f n
fvolg A t t A t tθ θ θ θ− − − −= ∧ = ∧ . We have  

( )( ) ( )
( ) ( ) ( ) ( )

1

1

,d ln , ,
d ,

n

i i
i

A t
A t Y t Y t m t

t A t
θ

θ
θ

−

=

′
′= = =∑              (8) 

( )( ) ( )
( ) ( )

,d ln ,
d ,

f
f f

f

A t
A t m t

t A t
θ

θ
θ

′
= =                          (9) 

To prove the theorem 2.1 we use the following theorem proved by G. Wei and W. 
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Wylie in [1].  
Theorem 3.1. (Mean Curvature Comparison). Let p be a point in M. Assume  

( ) ( ), 1 .fRic r r n H∂ ∂ ≥ −                       (10) 

1) If ( )0r f a a∂ ≥ − ≥  along a minimal geodesic segment from p (when 0H >  

assume π
2

r
H

≤ ) then  

( ) ( )f Hm r m r a≤ +                         (11) 

along that minimal geodesic segment from p. Equality holds if and only if the radial 
sectional curvatures are equal to H and ( ) ( )f t f p at= −  for all t r< .  

2) If f c≤  along a minimal geodesic segment from p and 0H <  or 0H >  and 

π
4

r
H

≤  then  

( ) ( )4n c
f Hm r m r+≤                          (12) 

along that minimal geodesic segment from p.  
3) If f c≤  along a minimal geodesic segment from p and 0H >  and  

π π,
4 2

r
H H

 
∈  
 

 then 

( ) ( )41 4 .
1f H

cm r m r c H
n

 ≤ + ⋅ + − 
                 (13) 

In particular when 0H =  we have  

( ) 4 1
f

n cm r
r

+ −
≤                          (14) 

where 4n c
Hm +  is the mean curvature of the geodesic sphere in 4n cM +  the simply con-

nected model space of dimension 4n c+  with constant curvature H and Hm  is the 
mean curvature of the model space of dimension n.  

In fact in [1] G. Wei and W. Wylie stated that, if π π,
4 2

r
H H

 
∈  
 

 then  

( )( ) ( ) ( )2
0

2d 2
r

H Hf t sn t t c sn r
H

 ′′ ≤ − 
 

∫                 (15) 

where ( )Hsn t  is the solution of equation ( ) ( ) 0.y t Hy t′′ + =  
From theorem 3.1 above and Equations ((8) and (9)) for all s r≥ , we have:  

( )
( )

( ) ( ) ( )
( )

4
22

2

4
, d, d

4

,,
e e .

, ,

s n cs
rf kr

n c
m t tm t tf k

n c
f k

A sA s
A r A r

θθ θθ
θ θ

+
−

+
−
+

−

∫∫= ≤ =              (16) 

where ( )2
4 ,n c

k
A s θ+
−

 denotes the volume element in the space of dimension 4n c+  
and constant Ricci curvature ( ) 21n k− − . From the assumption we have:  

( ) ( )( )2

4 14 ,
n cn c

k
A s sθ φ

+ −+
−

= . 

If 
( )
( )

r
h k

r
φ
φ
′

= < −  then ( ) 0sφ →  when 
( )
( )

0

0

1 ln .
2

h k
s R r

k h k
 −

→ = +  
+  
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Hence there exists 0R R≤  so that ( )0 , 0A R θ =  which means that there exists 0i  
so that the ( ),S p r -Jacobi field 

0i
Y  vanishes at ( )0Rγ . Therefore we conclude that 

( )0Rγ  is a conjugate point of the center p of the sphere ( ),S p r . Hence γ  ceases to  

be minimal, that is ( ) ( )
( )

0

0

1, ln
2

h k
d p y R r

k h k
 −

≤ = +  
+  

 and  

( ) ( )
( )

0

0

12 ln .
h k

Diam M r
k h k

 −
≤ +  

+  
 

In [2] M. Limoncu generalized a classical Myers theorem by using the Bakry-Émery 
Ricci curvature tensor on complete and connected Riemannian manifolds ( ),M g . 
This theorem can be viewed as a corollary of theorem 2.1.  

Corollary 3.2. Let (M, g) be a complete and connected Riemannian manifold of di-
mension n. If there exists a smooth function :f M →   satisfying the inequalities  

( ) ( ) 21 0Ric Hess f n k+ ≥ − >                     (17) 

and f c≤  then M is compact.  
Proof of Corollary 
To prove this corollary it suffices to show that there exist a positive real   with 

k<  and a geodesic sphere ( ),S p r  which mean curvature verifies  
( ) ( )1fm r n< − −  . 

Let x be a point in M and let [ ]: 0, r Mγ →  be a minimal geodesic joining p to x 
and ( )( )1 1i i n

e t
≤ ≤ −

 be a parallel orthonormal vector fields along γ  orthonormal to γ . 

Set ( ) ( ) ( )i iY t t e tφ=  where ( ) πsin
2

t t
r

φ  =  
 

. We have  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )

1
2 2

0
1

2 2 2 2
0 0

2
2 2 2 2

20 0

2
2 2 2

20 0

2

, 1

1 d

π π π1 cos sin d 2 d
2 24

π π π1 cos sin d 2 d
2 24

π1
8

n r
i i

i
r r

r r
r t

r r
r

r x I Y Y n t t Ric t

n t k t t Hess f t

n t k t t r f t t f t
r rr

n t k t t f c d t t t
r rr

n

φ φ γ

φ φ φ

φ φ φ

φ φ

−

=

′ ′∆ ≤ ≤ − −

′≤ − − +

 
′= − − + ∂ − ∂ 

 
   ′≤ − − + ∂ +  

  

≤ −

∑ ∫

∫ ∫

∫ ∫

∫ ∫

( )

( )

2 2 22

2 20 2

2
2

π 2π π 2π1 cos cos
2 2 2

11 ππ .
8 2

r r
r r

r

k rn f c t c t
r r rr r

n kn cr f
r r

   − − + ∂ + −   
   

−−
≤ − + ∂ +

∫ ∫

 (18) 

Therefore  

( ) ( ) 2
2 11 ππ

8 2f r

n kn cm r r f r
r r

−−
= ∆ − ∂ ≤ − +               (19) 

which allows that ( ) 0fm r <  if 
( )

π 81
2 1 π

cr
k n

> +
−

. 

By Compactness of ( ),S p r , there exists a positive constant ′  so that, for any 
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geodesic γ  emanating from p we have ( ) ( )1 0fm r n ′≤ − − <  
Since ( ) ( )2 21 1fRic n k n ′≥ − > − −  , the conclusion follows from theorem 2.1.  
Corollary 3.3. (E. Calabi) 
Let ( ),M g  be a complete and connected Riemannian manifold of dimension n. 

Suppose there exists a smooth function :f M →   so that f c≤  and 0fRic ≥ . If 
M is noncompact then there exists a geodesic γ  in M so that  

( )( )2liminf 1ft Ric t nγ ′ ≤ − . 
Proof 
It is clear that, if for a geodesic γ  issuing from p there exist two positive reals k and r 

so that ( )( ) ( ) 21fRic t n kγ ′ ≥ −  for all t r≥  then p admits a conjugate point along γ . 
Hence, if M is noncompact, for all p M∈ , there exists a geodesic γ  issuing from p so 
that for any two positive real k and r there exists t r≥  so that ( )( ) ( ) 21fRic t n kγ ′ < − .  

In particular if 
1 1k
t r

= =  we take ( )( ) 2

1
f

nRic t
t

γ −′ <  and the conclusion follows.  

Corollary 3.4. (Ambrose) 
Let ( ),M g  be a complete and connected Riemannian manifold of dimension n. 

Suppose there exists a function f on M so that 0fRic ≥ . If there exists a point p in M 
so that, for any geodesic γ  emanating from p, parametrized by it’s arc-length we have  

( )( )
0

dfRic t tγ
+∞

′ = +∞∫                        (20) 

then M is compact.  
Proof 

If M is noncompact, from corollary 3.3, there exists 0 0r >  so that ( )( ) 2

1
f

nRic t
t

γ −′ <  

for 0t r≥ . Therefore,  

( )( ) ( )( )0

0 20 0

1d d d .
r

f f r

nRic t t Ric t t t
t

γ γ
+∞ +∞ −′ ′≤ + < +∞∫ ∫ ∫           (21) 

Proof of theorem 2.2 
Let ( )( ) ( ),

, e df
f gB p s

Vol B p s vol−= ∫  denotes the weighted volume of the geodesic ball 
of center p and radius s in M and ( )m

Hvol s  the volume of geodesic ball of radius s in 
the model space m

HM  with constant curvature H and dimension m.  
In Differential Geometry, the volume comparison theory plays an important rule. 

Many important results in this topic can not be obtained without volume comparison 
results as topological rigidity results. 

For complete smooth metric measure space with 0fRic ≥  the following lemma 
improved the volume comparison theorem proved by G. Wei and W. Wylie In [1]:  

Lemma 3.5. Let ( ), , e fM g dvolg−  be complete smooth metric measure space with 
0fRic ≥ . Fix p M∈ ; if there exists c so that ( ) ( ),f x cd p x≤  then for 0R r≥ >   

( )( )
( )( )

3,
e .

,

n
f c

f

Vol B p R R
rVol B p r

 ≤  
 

                     (22) 

Proof 
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Let x be a point in M and let [ ]: 0, r Mγ →  be a minimal geodesic joining p to x 
and ( )( )1 1i i n

e t
≤ ≤ −

 be a parallel orthonormal vector fields along γ  orthonormal to γ .  

Set ( ) ( )i i
tY t e t
r

= . 

By the second variation formula we have:  

( ) ( )

( ) ( ) ( )( ) ( ) ( )

( )( )

( )( )

( )

( )( )( ) ( ) ( )

( ) ( )

1

1

1

0
1

2
2 0

2

20

2

20

2
2 20 0

2 0

,

, , d

1 1 d

1 , d

1 d

1 1 d 2d d
d

1 2 2 d

1 3 .

n

i i
i

nr
i i i

i

r

r

r

r r

r
r

r

m r r I X X

X t R X t t t X t t

n t Ric t
r
n t Hess f t

r r
n t f t

r r
n t f t t t f t t

r tr r
n f f x f t

r r r
n f c

r

γ γ

γ

γ γ

γ

γ γ

γ

−

=

−

=

= ∆ ≤

′ ′ ′= −

′≤ − −

− ′ ′≤ +

− ′′≤ +

− ′ ′= + −

−
= + ∂ − +

−
≤ + ∂ +

∑

∑∫

∫

∫

∫

∫ ∫

∫



 



        (23) 

Hence ( ) 1 3f r
nm r r f c

r
−

= ∆ − ∂ ≤ + . From (9) and the above relation, we have 

( ) ( )( ) ( )
( )

,d 1ln , 3 .
d ,

f
f f

f

A t nm t A t c
t A t t

θ
θ

θ

′ −
= = ≤ +  

For all positive reals r and s, integrating this relation we have:  

( ) ( )
( )

1
3,

d e .
,

n
s f c

fr
f

A s sm t t
A r r

θ
θ

−
 = ≤  
 ∫                   (24) 

Therefore we have ( ) ( )1 3 1, e , .n c n
f fr A s A r sθ θ− −≤  Hence  

( ) ( )1 1
1 3 1

0 0
, d d e , d dn n

R Rn c n
f fS S

r A s r A r s rθ θ θ θ− −
− −≤∫ ∫ ∫ ∫            (25) 

which implies  

( ) ( ) ( )( )1 1
3 1 3 1

0
, d e , d d e , .n n

n Rc n c n
f f fS S

R A s s A r r s vol B p R
n

θ θ θ θ− −
− −≤ =∫ ∫ ∫    (26) 

and integrating from 0 to R′  with respect to s we obtain the conclusion. 
Set ( ) ( ) ( )3 ,h x f x c d p x= + ⋅ . Then  

( ) 13 .h h r f
nm r r r h r c

r
−

= ∆ = ∆ − ∂ = ∆ ⋅ − ≤               (27) 

Hence we have  

( )( )
( )( )

,
.

,

n
h

h

Vol B p R R
rVol B p r

 ≤  
 

                      (28) 
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From the relation (28) we deduce that the function 
( )( ),h

n
n

vol B p r
r

rω
→  is nonin-

creasing. 

Let 
( )( ) ( )( ), ,1

lim h hp
f r n

nn

Vol B p r Vol B p
r

α
ωω→∞= ≤  and ( ) inf .p

f p fMα α=  

We have ( )
( )( ),1

0 h
f

n

Vol B p
Mα

ω
≤ ≤ . 

We say that M is of large weighted volume growth if ( ) 0f Mα > . 
Let ,p tR  be the set of the unit initial tangent vectors to the geodesics starting from p 

which are minimized at least to t and ,
c
p tR  its complementary set. Set  

( ) ( ) [ ] ( ) ( ){ },
, , , : 0, , 0 , 0 .

p rR pB p r x B p r s M minimal p Uγ γ γ ′= ∈ ∃ → = ∈   (29) 

Let pΣ  a subset of the unit sphere p pU T M⊂ . Set  

( ) ( ) [ ] ( ) ( ){ }, , , : 0, , 0 , 0 .
p pB p r x B p r s M minimal pγ γ γΣ ′= ∈ ∃ → = ∈Σ   (30) 

Lemma 3.6. If ( ) ( ),f x c d p x≤ ⋅  and 0fRic ≥  then  

1) the function 
( )( ),

ph

n
n

Vol B p r
r

rω
Σ

→  is nonincreasing and  

2) for any 0r > , 
( )( ),

,
p rh R p

fn
n

vol B p r

r
α

ω
≥  where h is defined by:  

( ) ( ) ( )3 ,h x f x c d p x= + ⋅ . 

Proof  
By Equation (27) we have  

( ) ( ) 1d 1 dln , ln ;
d d

n
h h

nA t m t t
t t t

θ −−
= ≤ =                 (31) 

hence we deduce that the function 
( )

1

,h
n

A t
t

t
θ

−→  is decreasing. 

By lemma 3 in [7] we have:  

( )

( )

1
0 0

1
0 0

, d d d d
.

, d d d d
p p

p p

R R n n nh
n

r r nn
nh

A t t t t RR
r rA t t t t

θ θ θ ω
ωθ θ θ

−

Σ Σ

−

Σ Σ

 ≤ = = 
 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
            (32) 

Therefore  

( )( )
( )( )

[ ] ( )
[ ] ( )

( )

( )

min ,

0 0

min ,

00

, d d , d d,
.

, , d d, d d

p p p

p pp

R cut R
h hh

rr cut
h hh

A t t A t tVol B p R

Vol B p r A t tA t t

θ

θ

θ θ θ θ

θ θθ θ

Σ Σ Σ

Σ ΣΣ

= ≤
∫ ∫ ∫ ∫

∫ ∫∫ ∫
      (33) 

For 1 20 r r< ≤  we have ( ) ( )2 1p pr rΣ ⊂ Σ  and by part (1) of the lemma 3.6 we have:  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2 12 1 1

2 1 1

, , ,

, , ,
p p ph h hr r r

h h h

vol B p r vol B p r vol B p r

vol B p r vol B p r vol B p r
Σ Σ Σ

≤ ≤           (34) 

and the part (2) can be proved as the lemma 3.10 in [8]. 
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Lemma 3.7. Let ( ),M g  be a complete noncompacte Riemannian manifold and f a 
potential function on M with ( ) ( ),f x cd p x≤  and 0fRic ≥ . If M is of large 
weighted volume then  

[ ) ( )( )
( )

,
, 0.ph

fn
n

Vol B p r
M r

r
α

ω
Σ ∞

≥ ∀ >                  (35) 

Proof 
We have  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ), , \ , ,
p p p ph h hr rVol B p r Vol B p r B p r Vol B p rΣ Σ Σ ∞ Σ ∞= +    (36) 

and  

( ) ( ) ( ) ( )\ \ 0
( , ) , d d

p p p p

r
h hr r R

Vol B p r A t tθ θΣ Σ ∞ Σ
= ∫ ∫                (37) 

( ) ( ) ( )( )1
\ 0

d d \ .
p p

nr n
p pr R

rt t Vol r
n

θ−

Σ
≤ ≤ Σ Σ ∞∫ ∫               (38) 

Since ( ) ( )0p pr
r

>
Σ ∞ = Σ



 we have ( ) ( )( )lim \ 0;r h p pVol r→∞ Σ Σ ∞ =  hence  

( ) ( ) ( )( ) ( ) ( )( ), ,
lim lim .p ph hr

f n nr r
n n

Vol B p r Vol B p r
M

r r
α

ω ω
Σ Σ ∞

→∞ →∞
≤ =          (39) 

Lemma 3.8. Let ( ),M g  be a complete noncompacte Riemannian manifold and f a 
potential function on M with ( ) ( ),f x cd p x≤  and 0fRic ≥ . If M is of large 
weighted volume then for any ( ),x B p r∈∂  we have 

( ) ( ) ( ) ( )
1

1 ,
, 2 .

n
hnp f fn

n

Vol B p r
d x M M r

r
α α

ω
−   ≤ − 
  

            (40) 

The proof of this lemma is step by step similar to the one in [9] (lemma 2.4). 
Let ,p q  be two points in M. The excess function is defined as:  

( ) ( ) ( ) ( ), , , .pqe x d p x d q x d p q= + −                  (41) 

By triangle inequality the excess function is nonnegative and is lipschitz. Let γ  be a 
ray from p and set ( ) ( ),s x d x γ= . Hence, for any 0t ≥  we have:  

( ) ( ) ( ) ( )( ), , , .p te x d p x d t x tγ γ= + −                   (42) 

The function ( ),p te γ  is nonincreasing on t and ( ) ( ), 0.p te xγ ≥  
Set ( ) ( ) ( ), ,lim .p t p te x e xγ γ=  
By the fact that ( ),p te γ  is nonincreasing on t, we have ( ) ( ) ( ), , , 0.p p te x e x tγ γ≤ ∀ >  
Applying the Toponogov’s theorem and the definition of critical point we have:  
Lemma 3.9. Let M be a complete noncompacte Riemannian manifold such that 
min 2
pK k≥ −  for some 0k ≠  and p M∈ . Suppose that x p≠  is a critical point of 

pd . Then for any ray γ  issuing from p, we have  

( ) ( )2 ,

1 2ln .
1 ep kd p x

e x
kγ −

 ≥  + 
                     (43) 

Recall that a point x is a critical point of pd  if for any vector xu T M∈  there exists  



I. A. Kaboye, B. Mahaman 
 

763 

a minimal geodesic γ  from x to p so that ( )( ) π, 0 .
2

v γ ′∠ ≤  

From the inequality (28) and using the arguments of the proof of the Proposition 2.3 
in [6], we deduce the following excess estimate for complete smooth metric measure 
space with 0fRic ≥  and potential function bounded by ( ),c d p x⋅ .  

Theorem 3.10. Let ( ),M g  be a complete noncompacte Riemannian manifold and f 
a potential function on M with ( ), ,f cd p x≤  for some fixed point p, 0fRic ≥  and 
( ) ( ) ( ){ }min , , ,s x d p x d q x<  then  

( )
1 1

8 .
nn

pq
se x
r

−
 

≤  
 

                        (44) 

By the same arguments as in [10] and using h∆  instead of ∆ , one can prove the 
above lemma. 

To prove the theorem 2.2, it suffices to show that M contains no critical point of pd  
other than p.  

For this, let x be a point in M and x p≠  and set ( ),r d p x= . From the lemma 3.8 
and the inequality (2) we have:  

( )
1

1
2

1 2, ln
8 1 e

n
n n

p krd x r
k

−

−

  < ⋅  +  
                  (45) 

hence, there exists a ray γ  issuing from p verifying  

( )
1

1
2

1 2, ln
8 1 e

n
n n

krs d x r
k

γ

−

−

  = < ⋅  +  
                 (46) 

Let q be a point on γ  so that ( ) ( ), ,d x q d x γ=  then ( ),d x q r< . From the trian-
gle inequality we have: ( ) ( )( )min , , ,d p x d x sγ =  for all 2t r≥ , which means 

[ ]( )0,2q rγ∈ . Such from the relations (44) and (45) we obtain  

( ) ( ) ( )
( )1 1

, , 2 2

1 28 ln
1 e

nn

p p r kr

se x e x
r kγ γ

−

−

   ≤ ≤ <   +  
            (47) 

The inequalities (43) and (47) show that x is not a critical point of pd . Hence, by 
isotopy lemma M is diffeomorphic to n . 
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