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Scientific Research Publishing Inc. 1. Introduction

This work is licensed under the Creative

Commons Attribution International G. Caginalp introduced in [1] the following phase-field system

License (CC BY 4.0). ou

http://creativecommons.org/licenses/by/4.0/ — —A%u-—Af (U) =—-A6# (1)

i
9O _no=-X @)
ot ot

where u is the order parameter and @ is the (relative) temperature. These equations
model phase transition processes such as melting-solidification processes and have
been studied, see [2]-[6], for a similar phase-field model with a nonlinear term.

These Cahn-Hilliard phase-fiel system are known as the conserved phase-field sys-
tem (see [7]-[9]) based on type III heat conduction and with two temperatures (see
[10]). The authors have proved the existence and the uniqueness of the solutions, the

existence of global attractor and of exponential attractors with singularly or regular
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potentials.

In [11], Ntsokongo and Batangouna have studied the following Cahn-Hilliard phase-

field system
ou 2 oa oa
—+AU-Af (U)=-A| —-pA— 3
ot (v) (at p 8tj N
2 2
6—f—Aaf—Aa—“—Aa=—a—” (4)
ot ot ot ot

where S =1, uis the order parameter and « is the (relative) temperature, they have
proved the existence and the uniqueness solution with Dirichlet boundary condition
and regular potentials.

In this paper, we consider the following Cahn-Hilliard hyperbolic phase-fiel system

u au oa

—“A)—+—+AU-Af (U)=-A—, 5
2 2

Oa_\02 A% pg=-2M ©)
ot ot ot ot
u|anza|aQ:Au m:O, 7)

ou oa

u, =u,,—| =uU,al  =a,—| =a,, 8
|t:0 0 ot o 1 |t:0 0 ot > 1 (8)

which is the perturbed phase-field system of Cahn-Hilliard phase-field system (3)-(4)
with S =0. In the above hyperbolic system Q is a bounded and regular domain of
R" with n=2 or 3 and fis the nonlinear regular potentials.

The hyperbolic system has been extensively studied for Dirichlet boundary condi-
tions and regular or singular potentials (see [12]-[14]). Whose certain have to end at
existence of global attractor or at the existence of exponential attractors (see [15]).

In this paper we prove the existence and the uniqueness of solutions of (5)-(8). We

consider the regular potential f (S) =s® —s which satisfies the following properties:
f is of class C%; f (0) =0, 9)

-, < f'(s), ¢ =0, VseR, (10)
—¢, <F(s)<f(s)s+c,, ¢,c, >0, VseR where F(s):_[;f(r)dr. (11)

2. Notations

We denote by |||| the usual Z?-norm (with associated product scalar (.,.)) and set
;1
|, =|(-2)z

boundary conditions. More generally, || . "x denote the norm of Banach space X.

, where —A denotes the minus Laplace operator with Dirichlet

Throughout this paper, the same letters c,c, and ¢, denote (generally positive)

constants which may change from line to line, or even a same line.
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3. A Priori Estimates

We multiply (5) by (-A) 18_u and (6) by % integrate over Q and add the two
resulting differential equahtles. We find
2 2
9, ol L olv el S,
dt ot ot
where
oul? oa oalf 2
=ell—|| +|Vu| +2 dx+ +|(|V—| +|[Vel ,
e I R T i A
satisfies
oulf oalf |oalf ,
E >C ‘I3 +||u||H1+ o +E + e ||H1]+C C>0.

Finaly, we conclude that U, e L” (R*, H; (Q)),

M 17 (R, 2(Q)) N 2(0,T:H (@)
and

oa + g1 2 T

S <Y (R™Hg (Q))n(0,T; Hy ()
forall T>0.

2

Multiply (6) by 68_122 and integrate over Q. We get.

2 |12 2 2 2
7] i P 82 yAlgdal_ o Oa 2[v va—“j
at at ot ot ot
oa ou o’a
]
al | % dalf _ou
e e

(0,T;Hs ().
In this study, we have three main results; existence theorem, uniqueness theorem and

existence theorem with more regularity.

4. Existence and Uniqueness of Solutions

Theorem 4.1. (Existence) We assume (Uy,U;, o, ;) € Hg (Q) x L* (Q) ( He (Q))2 then
the system (5) - (8) possesses at least one solution (u, a) such that

uael” (R, Hy(Q)),

ou

Y e (R @)U (0TH @),

KD
+%%, Scientific Research Publishing

1921



J. De Dieu Mangoubi et al.

% 1 (R () L (0T ()

d’a 2 gl
and ?EL (O,T,HO(Q)),forall T>0.

The proof is based on a priori estimates obtained in the previous section and on a

standard Galerkin scheme.
Theorem 4.2. (Uniqueness) Let the assumpptions of Theorem 4.1 hold. Then, the

system (5) - (8) possesses a unique solution (u,a) such that
uael” (R, Hy(Q)),
o/) I S-
et (R, 2(Q))nL*(0,T;H(Q)),
a—0‘e|_°°(R*-H1(Q))mL2(0 T;H;s (Q))
ot e e

Pa .yt
<t (0.T:Hg(Q)) forall T>0.

and

Proof. Let (u(l),a(l)) and (u(z),a(z)) be two solutions of the system (5)-(8) with
initial data (Uol), u, 051(1)) and (uéz), u?, a?, al(z)) e Hg (Q)xL? (Q)X(Hé (Q))2 ,
respectively. We set u=u" —u® and a=a" -a'®, then (u,&) is solution of the

following system

azu ou 2 (1) )\ _ oa
6(—A)¥+E+A U—A(f(u )—f(u ))——AE, (12)
2 2
00 AT2 A% pg=-2 (13)
ot ot ot ot

U|BQ = Au|8§2 = a|6Q = 0’

u|t:0 =Uy = u(()l) - u(()2)' 6_U =U uil) U{Z)
ot
oa
a|t:o =0 = ac()l) - (()2), a =0 = a:fl) _al(Z)'
t-0

We multiply (12) by (-A)” gt_u and integrate over Q. We find

%[e 1+2(f(u(1))—f(u<2>),‘;—ujzz(‘2—‘i‘,;—“j. (14)

Multiplying (13) by % and integrating over Q, we get

d § u da
o afm)

oot
Now summing (14) and (15) we obtain

2

ou

ou

2
+||Vu||zJ+ 2
ot

dalf v
ot

ot

yia
ot

+

2
+||Va||2]+2
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1922 0:52: Scientific Research Publishing



J. De Dieu Mangoubi et al.

2 2
di+2%“ +2Hva—“ :—Z(f(u(”)—f(u(z)),gt—uj
N ) (16)
2 2 ou
s”f(u(l))—f(u()) 5
where
2
E, = 5“ +vuff + va—“ +[valf.

Lagrange theorem gives a estimates

O e O B A e e e
= [(3(s0® + 0 9)u) -1 ash,
which implies
<36, (o) () 1) o
< 36(”u<2> ] +1)||u||;

<c (”ww ovut +1j [vulf.

] K>0.
Applying Gronwall’s lemma, we obtain for all te(0,T)
t)+2[ 8_u( ) 2 e“dr <E,(0)e"
ol [t T 7<E, .

We deduce the continuous dependence of the solution relative to the initial condi-

”f (u(l))— f (u(2)> 2

Inserting the above estimate into (16), we have

<K (uwu

voaf
ot

¢,
dt

oul®
ot

+2 +2

2

oa
v L
5 ()

-1

tions, hence the uniqueness of the solution.
The existence and uniqueness of the solution of problem (5)-(8) being proven in a
larger space, we will seek the solution with more regularity. O

Theorem 4.3. Assume

(U, e ) € (H? (2) A HE (@) x HE (@) % (H2 (@) A HE ()
then the system (5)-(8) possesses a unique solution (u, a) such that
uael”(0,T;H?(Q)NH; (Q)),

My (0.T:H3 ()12 (0.T; 12 (Q)),

e L (R, H?(Q) " Hy () N L (0,T;H? () M H Q)
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62

T el2(0T:H? (Q) N H(Q))

2
and aat—‘je 12(0,T;2(Q)). forall T>0.
Proof Following theorems 4.1 and 4.2, the system (5)-(8) possesses the unique solu-
tion (u, a) such that
uael”(0,T;H3 (Q)),

L (R, (Q))nL*(0.T:H (),

% (R My (@)L (0T iH )

(0.T;H3 (), forall T>0.

Multiply (2.1) by z—ltj and integrate over Q. We have

E(EHV el +|Auff ]+2 oul_ 2[Va—“ va“j Z(Vf (u),va—”j
dt ot ot ot ot ot
we deduce the following inequality
d aulf el gyl , ou
a(e“V +||Au|| J+ 2= e < 2( = EJJF 2I0|f (u)||Vu| V—dx. (17)
Thanks to use f'(s), we find the following estimate
2[ |f'(u )[vulv dx<j [3u” ]“Vu|Va—u dx
< _fQ(3u2 +1)|Vu| v M gy
<c{ull +3ivull <|v 2
Since uel” (O,T; Hé (Q)) , then the estimate (17) implies
2
EH‘V s ]+ 2l < 2(va—“ v a”j+c lauf v as
dt ot ot 0 ot
Multiplying (6) by —A% and integrating over Q , we get
2
E(HV oaf* | 2alf +|Aalf }rz adef —2( oo va—”j. (19)
dt ot ot
Now summing (18) and (19), we obtain
2 2 2
B, 2| L 2fa 2] <cfauf +|v
dt ot ot

where

K2
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2
g, = v +Jauf +Hva_"‘ N

2 2
Appling the Gronwall’s lemma, we deduce that U, € L* (O,T; H?(Q)NH; (Q)) ,

N \= (0.T;Hy ()~ *(0.T; 2 (Q))

and

%“e L”(0,T; H* (Q) M Hg (Q)) L2 (0,T; H? () n Hg (Q)).

2

Multiplying (5) by (—A)_l Zt_l; and integrating ovre €, we obtain

2 2 2 2
] 5” =2(a—“,8—g]+z(Au,a—‘2‘j-2[f (u),a—‘j],
6t dt ot ot ot ot
, (20)
oa 6 u o°u
<2)=Hl= 2||Au|| +2[ |t (u)|¥dx
Thanks to use f(s) and the fact that ueL” (O,T; H° (Q)m H(l) (Q)), we get
.[Q|f(u| dx<||u LxJ.|U dx+j|u dx
<ciwf + |2
Inserting the above estimate into (20), we obtain
ol dJoul? ol 2 2
‘Il talal. <Cla +C, |Au|” +C,|Vu[",C,, C,, € >0
L. . o’u 2 .2
which implies that —- e L (O,T,L (Q))
ot
2
Multiplying (6) by _A?at_? and integrating over Q, we find
o’a ’
oo el el da2e <o ppaap,
ot at
hat i . da 2 g2 1
that implies We L (O,T,H (Q)n HO(Q)). O

5. Conclusion
We have just shown the theorems of existence and uniqueness of the solutions for per-

turbed Cahn-Hilliard hyperbolic phase-field system with regular potentials.
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