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Abstract 
We show that a rectangle can be signed tiled by ribbon L n-ominoes, n odd, if and 
only if it has a side divisible by n. A consequence of our technique, based on the ex-
hibition of an explicit Grӧbner basis, is that any k-inflated copy of the skewed L 
n-omino has a signed tiling by skewed L n-ominoes. We also discuss regular tilings 
by ribbon L n-ominoes, n odd, for rectangles and more general regions. We show 
that in this case obstructions appear that are not detected by signed tilings. 
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1. Introduction 

In this article, we study tiling problems for regions in a square lattice by certain sym-
metries of an L-shaped polyomino. Polyominoes were introduced by Golomb in [1] and 
the standard reference about this subject is the book Polyominoes [2]. The L-shaped 
polyomino we study is placed in a square lattice and is made out of , 3n n ≥ , unit 
squares, or cells. See Figure 1(a). In a a b×  rectangle, a is the height and b is the base. 
We consider translations (only!) of the tiles shown in Figure 1(b). They are ribbon 
L-shaped n-ominoes. A ribbon polyomino [3] is a simply connected polyomino with no 
two unit squares lying along a line parallel to the first bisector y = x. We denote the set 
of tiles by nT . 

Tilings by ,nT n  even are studied in [4] and [5], with [4] covering the case n = 4. We 
recall that a replicating tile is one that can make larger copies of itself. The order of rep-
lication is the number of initial tiles that fit in the larger copy. Replicating tiles were in-
troduced by Golomb in [6]. In [7], we study replication of higher orders for several  
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Figure 1. An L n-omino and the tile set Tn. 
 
replicating tiles introduced in [6]. In particular, it is suggested there that the skewed 
L-tetromino shown in Figure 2(a) is not replicating of order 2k  for any odd k. The 
question is equivalent to that of tiling a k-inflated copy of the straight L-tetromino us-
ing only four, out of eight possible, orientations of an L-tetromino, namely those that 
are ribbon. The question is solved in [4], where it is shown that the L-tetromino is not 
replicating of any odd order. This is a consequence of a stronger result: a tiling of the 
first quadrant by 4T  always follows the rectangular pattern, that is, the tiling reduces 
to a tiling by 4 2×  and 2 4×  rectangles, each tiled in turn by two tiles from 4T . 

The results in [4] are generalized in [5] to ,nT n  even. The main result shows that 
any tiling of the first quadrant by nT  reduces to a tiling by 2n×  and 2 n×  rectan-
gles, with each rectangle covered by two ribbon L-shaped n-ominoes. An application is 
the characterization of all rectangles that can be tiled by ,nT n  even: a rectangle can be 
tiled if and only if both sides are even and at least one side is divisible by n. Another 
application is the existence of the local move property for an infinite family of sets of 
tiles: ,nT n  even, has the local move property for the class of rectangular regions with 
respect to the local moves that interchange a tiling of an n n×  square by 2n  vertical 
rectangles, with a tiling by 2n  horizontal rectangles, each vertical/horizontal rectan-
gle being covered by two ribbon L-shaped n-ominoes. One shows that neither of these 
results is valid for any odd n. The rectangular pattern of a tiling of the first quadrant 
persists if one adds an extra 2 2×  tile to ,nT n  even. A rectangle can be tiled by the 
larger set of tiles if and only if it has both sides even. It is also shown in the paper that 
the main result implies that a skewed L-shaped n-omino, n even, (see Figure 2(b)) is 
not a replicating tile of order 2k  for any odd k. 

We investigate in this paper tiling properties of ,nT n  odd. Parallel results with [8] 
are not possible due to the fact, already observed in [5], that there are rectangles that 
have tilings by ,nT n  odd, which do not follow the rectangular pattern. See Figure 3. 
Instead of regular tilings, one can study signed tilings. These are finite placements of 
tiles on a plane, with weights +1 or −1 assigned to each of the tiles. We say that they tile 
a region R if the sum of the weights of the tiles is 1 for every cell inside R and 0 for 
every cell elsewhere. 

A useful tool in the study of signed tilings is a Gröbner basis associated to the poly-
nomial ideal generated by the tiling set. If the coordinates of the lower left corner of a 
cell are (α, β), one associates to the cell the monomial x yα β . This correspondence  
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Figure 2. Skewed polyominoes. 

 

 
Figure 3. A tiling of a ( )3 ,3 1n n +  rectangle 

by nT . 

 
associates to any bounded tile placed in the square lattice a Laurent polynomial with all 
coefficients 1. The polynomial associated to a tile P is denoted by Pf . The polynomial 
associated to a tile translated by an integer vector ( ),γ δ  is the initial polynomial mul-
tiplied by the monomial x yγ δ . If the region we want to tile is bounded and if the tile 
set consists of bounded tiles, then the whole problem can be translated in the first qua-
drant via a translation by an integer vector, and one can work only with regular poly-
nomials in [ ],X Y . See Theorem 13 below. 

Our main result is the following: 
Theorem 1. A rectangle can be signed tiled by , 5nT n ≥  odd, if and only if it has a 

side divisible by n. 
Theorem 1 is proved in Section 4 using a Gröbner basis for the tiling set computed 

in Section 3. 
For completeness, we briefly discuss regular tilings by , 5nT n ≥  odd. 
Theorem 1 gives for regular tilings by , 5nT n ≥  odd, a corollary already known (see 

Lemma 2 in [5]): 
Theorem 2. If 5n ≥  odd, a rectangle with neither side divisible by n cannot be tiled 

by nT . 
If one of the sides of the rectangle is divisible by n, we recall first the following result 

of Herman Chau, mentioned in [5], which is based on a deep result of Pak [3]. 
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Theorem 3. A rectangle with both sides odd cannot be tiled by , 5nT n ≥  odd. 
If one of the sides of the rectangle is even, one has the following result. 
Theorem 4. Let 5n ≥  odd and assume that a rectangle has a side divisible by n and 

a side of even length. 
1) If one side is divisible by n and the other side is of even length, then the rectangle 

can be tiled by nT . 
2) If the side divisible by n is of length at least 3 1n +  and even, and the other side is 

of length at least 3n  and odd, then the rectangle can be tiled by nT . 
Proof. 1) The rectangle can be tiled by 2 n×  or 2n×  rectangles, which can be tiled 

by two tiles from nT . 
2) We use the tiling shown in Figure 4. The ( )3 ,3 1n n +  rectangle is tiled as in Fig-

ure 3, and the other two rectangles can be tiled by 2 n×  or 2n×  rectangles, which in 
turn can be tiled by two tiles from nT . 

A consequence of the technique used in the proof of Theorem 1 is: 
Proposition 5. If 5n ≥  odd and 1k ≥ , then a k-inflated copy of the L n-omino has 

a signed tiling by ribbon L n-ominoes. 
Proposition 5 is proved in Section 5. 
As any 2 2n n×  square can be tiled by nT , it follows that if k is divisible by 2n then 

the skewed Ln-omnino is replicating of order 2k . Information about other orders of 
replication can be found by using Pak’s invariant [3]. 

Proposition 6. Let 5n ≥  odd. 
1) If 1k ≥  is odd and divisible by n, then the skewed L n-omino is not replicating of 

order 2k . 
2) If 1k ≥  is even and not divisible by n, then the skewed L n-omino is not repli-

cating of order 2k . 
Proposition 6 is proved in Section 6. Proposition 6 leaves open the question of rep-

lication of the skewed L n-omino if k is odd and not divisible by n. Some cases can be 
solved by using Pak’s higher invariants 2 , , mf f  [3], which are all zero for tiles in nT . 
For example, if 5n = , a 3-inflated copy of the L pentomino has 2 1f = − , showing the 
impossibility of tiling. A general result for regular tilings is out of reach due to the fact 
that for k odd and congruent to 1 modulo n, the leftover region that appears (see the 
proof of Proposition 6) is just an L n-omino that has all higher invariants 2 , , mf f  
equal to zero. This is in contrast to the case of regular tilings by ,nT n  even, discussed 
in [5], which is very well understood. 

 

 
Figure 4. A tiling of an (odd, even) rectangle by nT . 
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For completeness, we also consider the tile set nT + , consisting of ,nT n  odd, and an 
extra 2 2×  square. For n even, the tile set nT +  is studied in [5]. It is shown there that 
there is a similarity between the regular tiling properties of nT +  and nT . 

Theorem 7. If 5n ≥  odd, any region in a square lattice can be signed tiled by nT +  
Theorem 7 is proved in Section 7. 
Barnes developed in [9] [10] a general method for solving signed tiling problems 

with complex weights. In Section 8, we review the method of Barnes and offer an alter-
native proof of Theorem 1 based on this method. Having available a Gröbner basis for 
the tiling set helps even if Barnes method is used. 

Theorem 8. If complex or rational weights are allowed to replace the integral 
weights, a rectangle can be signed tiled by , 5nT n ≥  odd, if and only if it has a side di-
visible by n. 

Signed tilings by ,nT n  even, are more complicated than in the odd case. They are 
discussed in [11]. 

We make a final comment about the paper. While the methods that we use are well 
known, and algorithmic when applied to a particular tiling problem, here we apply 
them to solve simultaneously an infinite collection of tiling problems. 

2. Summary of Gröbner Basis Theory 

An introduction to signed tilings can be found in the paper of Conway and Lagarias 
[12]. One investigates there signed tilings by the 3-bone, a tile consisting of three adja-
cent regular hexagons. The Gröbner basis approach to signed polyomino tilings was 
proposed by Bodini and Nouvel [13]. In [8] one uses this approach to study signed til-
ings by the n-bone, a tile consisting of n collinear adjacent regular hexagons. 

Let [ ] [ ]1, , kR X R X X=   be the ring of polynomials with coefficients in a principal 
ideal domain (PID) R. The only (PID) of interest in this paper is ℤ, the ring of integers. 
A term in the variables 1, , kx x  is a power product 1 2

1 2x x xα α α




  with ,1i iα ∈ ≤ ≤  ; 
in particular 0 0

11 x x=


  is a term. A term with an associated coefficient from R is 
called monomial. We endow the set of terms with the total degree-lexicographical order, 
in which we first compare the degrees of the monomials and then break the ties by 
means of lexicographic order for the order 1 2x x x> > >



  on the variables. If the va-
riables are only ,x y  and x y> , this gives the total order: 

2 2 3 2 2 3 41 .y x y xy x y xy x y x y< < < < < < < < < < <             (1) 

For [ ]P R X∈  we denote by ( )HT P  the leading term in P with respect to the 
above order and by ( )HM P  the monomial of ( )HT P . We denote by ( )HC P  the 
coefficient of the leading monomial in P. We denote by ( )T P  the set of terms ap-
pearing in P, which we assume to be in simplest form. We denote by ( )M P  the set of 
monomials in P. For a given ideal [ ]I R X⊂  an associated Gröbner basis may be in-
troduced for example as in Chapters 5, 10 [14]. Our summary follows the approach 
there. If [ ]G R X⊂  is a finite set, we denote by ( )I G  the ideal generated by G in 
[ ]R X . 
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Definition 1. Let [ ], ,f g p R X∈ . We say that f D-reduces to g modulo p and write 

pf g→  if there exists ( )m M f∈  with ( ) |HM p m , say ( ) m m HM p′= , and 
g f m p′= − . For a finite set [ ]G R X⊂ , we denote by G→  the reflexive-transitive 
closure of p→ , p G∈ . We say that g is a normal form for f with respect to G if 

Gf g→  and no further D-reduction is possible. We say that f is D-reducible modulo 
G if 0Gf → . 

It is clear that if 0Gf → , then f belongs to the ideal generated by G in [ ]R X . The 
converse is also true if G is a Gröbner basis. 

Definition 2. A D-Gröbner basis is a finite set G in [ ]R X  with the property that all 
D-normal forms modulo G of elements of ( )I G  equal zero. If [ ]I R X⊂  is an ideal, 
then a D-Gröbner basis of I is a D-Gröbner basis that generates the ideal I. 

Proposition 9. Let G be a finite set of [ ]R X . Then the following statements are 
equivalent: 

1) G is a Gröbner basis. 
2) Every ( )0,f f I G≠ ∈ , is D-reducible modulo G. 
Note that if R is only a (PID), the normal form of the division of f by G is not unique. 

We introduce now the notions of S-polynomial and G-polynomial. 
Definition 3. Let [ ]0 , 1, 2,ig R X i≠ ∈ =  with ( )i iHC g a= , ( )i iHT g t= . Let  

( )1 2lcm ,i ia b a a a= =  with ib R∈ , and ( )1 2lcm ,i it s t t t= =  with is T∈ . Let  

1 2,c c R∈  such that ( )1 2 1 1 2 2gcd ,a a c a c a= + . Then: 

( )
( )

1 2 1 1 1 2 2 2

1 2 1 1 1 2 2 2

, ,

, .

S g g b s g b s g

G g g c s g c s g

= −

= +
                       (2) 

Remark. If ( ) ( )1 2HC g HC g= , then ( )1 2,G g g  can be chosen to be 1g . 
Theorem 10. Let G be a finite set of [ ]R X . Assume that for all 1 2,g g G∈ , 
( )1 2, 0GS g g →  and ( )1 2,G g g  is top-D-reducible modulo G. Then G is a Gröbner 

basis. 
Assume now that R is a Euclidean domain with unique remainders (see page 463 

[14]). This is the case for the ring of integers ℤ if we specify remainders upon division 
by 0 m≠  to be in the interval [ )0, m . 

Definition 4. Let [ ], ,f g p R X∈ . We say that f E-reduces to g modulo p and write 

,p Ef g→  if there exists ( )m at M f= ∈  with ( ) |HM p t , say ( )t sHT p= , and 
g f qsp= −  where 0 q R≠ ∈  is the quotient of a upon division with unique re-
mainder by ( )HC p . 

Proposition 11. E-reduction extends D-reduction, i.e., every D-reduction step in an 
E-reduction step. 

Theorem 12. Let R be an Euclidean domain with unique remainders, and assume G 
is a finite set of [ ]R X  and a D-Gröbner basis. Then the following hold: 

1) , 0G Ef →  for all ( )f I G∈ , where ,G E→  denotes the E-reduction modulo G. 
2) E-reduction modulo G has unique normal forms. 
The following result connects signed tilings and Gröbner bases. See [13] and [8] for a 

proof. 
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Theorem 13. A polyomino P admits a signed tiling by translates of prototiles 

1 2, , , kP P P  if and only if for some (test) monomial x yα β  the polynomial px y fα β  
is in the ideal generated in [ ],X Y  by the polynomials 

1
, ,

kP Pf f . Moreover, the set 
of test monomials { }x yα β  can be indexed by any set of multi-indices which is cofinal 
in ( ),n ≤ . 

3. Gröbner Basis for Tn,n Odd 

We write 2 1, 2n k k= + ≥ . The polynomials (in condensed form) associated to the 
tiles in nT  are: 

( )

( )

( )

( )

2

1

2
2 1

2

2

3

2
2 1

4

1 ,
1

1 ,
1

1 ,
1

1.
1

k

k
k

k

k
k

yG k x
y

yG k y x
y

xG k y
x

xG k x y
x

−

−

−
= +

−

−
= +

−

−
= +

−
−

= +
−

                        (3) 

We show in the rest of this section that a Gröbner basis for the ideal generated in 
[ ],X Y  by ( ) ( ) ( ) ( )1 2 3 4, , , ,G k G k G k G k  is given by the polynomials (written in 

condensed from): 

( )

( )

( )

2 1

1

1

2

3

1 1 ,
1 1

1 1,
1 1
1.

k k

k k

y xB k x
y x

y xB k x
y x

B k xy

+ −

+

− −
= +

− −

− −
= +

− −

= −

                       (4) 

It is convenient to look at the elements of the basis geometrically, as signed tiles, see 
Figure 5. The presence of ( )3B k  in the basis allows reducing the algebraic proofs to 
combinatorial considerations. Indeed, using addition by a multiple of ( )3B k , one can 
translate, along a vector parallel to the first bisector y x= , cells labeled by +1 from one  
 

 
Figure 5. The Gröbner basis ( ) ( ) ( ){ }1 2 3, ,B k B k B k . 
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position in the square lattice to another. See Figure 6. We will use this property re-
peatedly to check certain algebraic identities. 

Proposition 14. ( ) ( ) ( ) ( )1 2 3 4, , ,G k G k G k G k  are in the ideal generated by  
( ) ( ) ( )1 2 3, ,B k B k B k . 
Proof. The geometric proofs appear in Figure 7. First we translate one of the tiles 
( ) , 1, 2,iB k i =  multiplying by a power of x or a power of y, and then rearrange the cells 

from ( )iB k  using diagonal translations given by multiples of ( )3B k . The initial tiles 
( ) , 1, 2,iB k i =  have the cells marked by a +, and the final tiles ( ) , 1, 2,3, 4,iG k i =  are 

colored in light gray. 
Proposition 15. ( ) ( ) ( )1 2 3, ,B k B k B k  are in the ideal generated by  
( ) ( ) ( ) ( )1 2 3 4, , ,G k G k G k G k . 

Proof. We first show that ( )3B k  belongs to the ideal generated by  
( ) ( ) ( ) ( )1 2 3 4, , ,G k G k G k G k . One has: 

( ) ( ) ( )
( ) ( )

( )
( )

( )
2 1 2 1 2 1

3 1 2 3 42 2
1 1 1 .

1 1 1

k k ky y yB k G k G k xy y G k xy G k
y y y

− − − − − −
= − + + − + +  − − − 

  (5) 

 

 
Figure 6. Tiles arithmetic. 

 

 

Figure 7. Generating ( ) ( ) ( ) ( ){ }1 2 3 4, , ,G k G k G k G k  from ( ) ( ) ( ){ }1 2 3, ,B k B k B k . 
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Using (3), the RHS of Equation (5) becomes: 

( )( )
( )( )( ) ( )( ) ( )( )

( )( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )

( )( )
( )( ) ( ) ( )

( )( )

2 2 2 1 2
2

2 1 2 12

2 12 2 2 1

2 2 2 2 1 2 2
2

2

1 1 1 1 1 1 1 1
1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
1 1

1

k k

k kk

kk k k

k k

k

y y x x y x y y x
y x

x y y x xy y y y y

y x x xy y y x x x

y xy y x x y x y x y y x y x
y x

xy x xy y x

−

− −

− −

−

− − + − − − − + − −− −

 + − + − + − + − + − 
  × − + − + − − + −   

= − + − + − − − − + + − − +− −

+ − − + − + −( )
( ) ( )( )

( )( )

2 2 2 1 2 1

2 2 1 2 2 2 1

2 1 2 1 2 2 2 2 2 2
2

2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 2 2

2 2 1 2 1

1

1 1
1 1

k k k

k k k k k

k k k k

k k k k k k k k

k k

xy xy xy xy y y

xy y x xy xy yx y x x

y x y y x y xy y x x y xy x x
y x

xy y xy y x y xy x y xy x y xy x
x x y xy

− −

− −

+ +

+ + − − + +

+ +

+ − + + −

× − + − + − − + − 

= − + − + + − + − − + + −− −

+ − − + + − + − − + −
+ − +

( )( )

2 1 2 2 2 3 3 2 1 2 2 2 2 2

2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 2 1 2

2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 1 2 2 1 2

2
2

1 1
1 1

k k k k k k

k k k k k k k k k

k k k k k k k k k k k

x y xy x y xy x y xy x y xy
x y xy x y xy x y xy xy y x y y xy
y x y y x y x y xy xy x y x y x y x y

xy x y x
y x

+ +

+ − − + − −

+ + + − + −

− + + − + − − +
− + + − + − + − + − −

+ − + + − − + + − − + 

= − − +
− −

( )2 3 3 2 2
31 .y xy xy y x xy B k − − + + = − = 

 

After we obtain ( )3B k , polynomials ( ) ( )1 2,B k B k  can be obtained geometrically 
by reversing the processes in Figure 7. Reversing the process in Figure 7(a), we first 
obtain a copy of ( )2

1
ky B k− . This copy can be translated to the right using multiplica-

tion by 2kx − , and then can be pulled back with the corner in the origin using a transla-
tion by a vector parallel to y x= . Reversing the process in Figure 7(c), we first obtain 
a copy of ( )1

2
kx B k− . This copy can be translated up using multiplication by 1ky − , and 

then can be pulled back with the corner in the origin using a translation by a vector pa-
rallel to y x= . 

A step by step geometric proof of formula (5) for 7n =  is shown in Figure 8. All 
cells in the square lattice without any label have weight zero. The proof can be easily 
generalized for any odd n. 

Proposition 16. ( ) ( ) ( )1 2 3, ,B k B k B k  and ( ) ( ) ( ) ( )1 2 3 4, , ,G k G k G k G k  generate 
the same ideal in [ ],X Y . 

Proof. This follows from Propositions 14, 15. 
Proposition 17. One has the following D-reductions 

( ) ( )( ) ( ) ( ) ( )
1

1 1
1 2 1 2 3

1 1,
1 1

k k
k k k ky xS B k B k y B k x B k x y B k

y x

−
− − − −

= − + + − − −   

( ) ( )( ) ( ) ( )1 3 2 3
1,
1

kyS B k B k B k B k
y
−

= +
−

 

( ) ( )( ) ( ) ( )
1

2 3 1 3
1, .

1

kxS B k B k B k B k
x

− −
= +

−
 

Consequently, ( ) ( ) ( )1 2 3, ,B k B k B k  is a Grӧbner basis. 
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Figure 8. The polynomial ( )3 7B  is generated by ( ) ( ) ( ) ( ){ }1 2 3 4, , ,G k G k G k G k . 
 
Proof. The leading monomial of ( )1B k  is 1ky + , the leading monomial of ( )2B k  is 

kx  and the leading monomial of ( )3B k  is xy . We reduce the S-polynomials related 
to the set ( ) ( ) ( )1 2 3, ,B k B k B k : 

( ) ( )( ) ( ) ( )

( )( )

( ) ( ) ( )

1
1 2 1 2

2 1 1
1

2 2 2 2 2 1 2 1 2 2 1 1

1
1 1

1 2 3

,

1 1 1 1
1 1 1 1

1 1

1 1 .
1 1

k k

k k k k
k k

k k k k k k k k k k k k

k k
k k k k

S B k B k x B k y B k

y x y xx x y x
y x y x

xy x y x y y x y x y xy x y x
x y

y xy B k x B k x y B k
y x

+

+ − +
+

+ + + + + + + +

−
− −

= −

   − − − −
= + − +   − − − −   

− − + + − + − + − +
=

− −

 − −
= − + + − − − 

 

( ) ( )( ) ( ) ( )

( )

( )( )

( ) ( )

1 3 1 3

2 1

1 2 1 2 1 1 1 1

2 3

,

1 1 1
1 1

1 1

1 .
1

k

k k
k

k k k k k k k k

k

S B k B k xB k y B k

y xx x y xy
y x

x x y x y x x y xy xy xy y y
x y

yB k B k
y

+ −

+ + + + + +

= −

 − −
= + − − − − 

+ − − + − + − − +
=

− −

−
= +

−
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( ) ( )( ) ( ) ( ) ( )

( )( )

( ) ( )

1
1 1

2 3 2 3

2 2 2 1 2 1

1

1 2

1 1, 1
1 1

1 1

1 .
1

k k
k k

k k k k k k

k

y xS B k B k yB k x B k y x x xy
y x

xy y x x y yx xy y x
x y

xB k B k
x

+
− −

+ + − −

−

 − −
= − = + − − − − 

− − + − − + +
=

− −

−
= +

−

 

We show now that all above reductions are D-reductions by looking at the elimina-
tion of the terms of highest degree in the S-polynomials. 

The terms of highest degrees in ( ) ( )( )1 2,S B k B k , after the initial reduction 

( ) ( ) ( )
( )

1 1 1 1 2 3
1 2

1 1 2 1 2 ,

k k k k k k k k k

k k k k k k k

x B k y B k x y y y x x x

y y y y x x x

+ + − − − −

+ − − − −

− = + + + + + + +

− + + + + + + +

 

 

 

are (in this order)  
2 1 1 1 2 .k k k k k ky x y x y y+ − +− + − −  

The terms 2 1 2k ky y+− −  are contained in 

( ) ( )1 1 1 2 3
1 ,k k k k k k k ky B k y y y y x x x+ − − − −− = − + + + + + + +   

which does not contains terms of higher degree then 1 1k k k kx y x y− +− . 
The remaining terms 1 1k k k kx y x y− +−  are contained in 

( )

( ) ( ) ( )

1
1

3

1 1 2 3 2 3

1 1
1 1

1 ,

k k
k k

k k k k k k k

y xx y B k
y x

x y y y y x x xy

−
−

− − − − − −

 − −
− − − 

 = + + + − + + −  

 

which also does not contain terms of higher degree then 1 1k k k kx y x y− +− . 
The term of highest degrees in ( ) ( )( )1 3,S B k B k , after the initial reduction  

( ) ( ) ( ) ( )1 1 1 2 3
1 3 1k k k k k k k kxB k y B k x y y y x x x y xy+ − − − −− = + + + + + + + − −   

is xy . This term is contained in 

( ) ( ) ( )1 2
3

1 1 ,
1

k
k ky B k y y xy

y
− −−

= + + −
−

  

which does not contain terms of higher degree then kxy  
The term of highest degrees in ( ) ( )( )2 3,S B k B k , after the initial reduction 

( ) ( ) ( ) ( )1 1 2 1 2 1
2 3 1k k k k k k k kyB k x B k y y y y x x x x xy− − − − − −− = + + + + + + + − −   

is 1ky + . This term is contained in 1B , which does not contain terms of higher degree 
then 1ky + . 

As all higher coefficients are equal to 1, we do not need to consider the G-polyno- 
mials. 

4. Proof of Theorem 1 

Consider a , 1q p q p× ≥ ≥ , rectangle. Using the presence of ( )3B k  in the Gröbner 
basis, and Theorem 13, the existence of a signed tiling becomes equivalent to deciding 
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when the polynomial: 

( ) ( )
( )

2 1 1
,

1 3 2

1 2 3 1

2 2

p p q q
p q

q p q p q

P x x x px px px p x

p x x x

− −

+ + − + −

= + + + + + + + + −

+ − + + +

 



 

is divisible by the polynomial: 

( ) 2 11 .nQ x x x x −= + + + +  

If 1p q n+ − < , then ,deg deg p qQ P> , so divisibility does not hold. If 1p q n+ − ≥  
we look at ( ),p qP x  as a sum of p polynomials with all coefficients equal to 1: 

( ) 2 3 1 1 1 4 3 2
,

2 3 1 1 1 4 3

3 1 1 1 4 1

1

.

p p q q q p q p q p q
p q

p p q q q p q p q

p p q q q p q p q

P x x x x x x x x x x x x

x x x x x x x x x x
x x x x x x x x x

− − + + − + − + −

− − + + − + −

− − + + − −

= + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + +

  

  

    

 

Assume that 1 ,0p q nm r r n+ − = + ≤ < , and , 0p ns t t n= + ≤ < . The remainder 
( ),p qR x  of the division of ( ),p qP x  by ( )Q x  is the sum of the remainders of the di-

vision of the p polynomials above by ( )Q x . 
If r is odd, one has the following sequence of remainders, each remainder written in a 

separate pair of parentheses: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 2 2 2 3
,

1 1 1 1
2 22 2 2 2

2 1 1 3 3 2

2 3 2 32 2

1

1

0

1

r r r
p q

r r r r
r

r r r n n

r n r n
r n r n

r r

R x x x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x

x x

− − −

− + − +
−

− + + − −

+ +
+ − + −

+ +

   
      
   

   
      
  

= + + + + + + + + + + + +

+ + + − + − − + + +

− + + + + + + + + +

+ + + + + − + − + +

− +


   

 

 

   

( )3 3 2n nx x− −+ + + − 

 

If p n≥ , the sequence of remainders above is periodic with period n, given by the 
part of the sequence shown above, and the sum of any subsequence of n consecutive 
remainders is 0. So if p is divisible by n, ( ),p qP x  is divisible by ( )Q x . If p is not di-
visible by n, then doing first the cancellation as above and then using the symmetry of 
the sequence of remainders about the remainder equal to 0, the sum of the sequence of 
remainders equals 0 only if 1r t+ = , that is, only if q is divisible by n. 

If r is even, one has the following sequence of remainders, each remainder written in 
a separate pair of parentheses: 

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

2 1 2 2 2 3
,

2 22 2

2 1 1 2 3 2

1 1 1 1
2 3 2 2 2 2

2 3 1

1

1

0

r r r
p q

r r
r

r r r n n

r n r n r n r n
r n

r n r

R x x x x x x x x x

x x x x x

x x x x x x x

x x x x x x

x x x

− − −

−

− + + − −

+ − + + + − + +
+ −

+ − +

= + + + + + + + + + + +

+ + − − − + + +

− + + + + + +

   
      
   

   
+ +  

+ + +

+ + + + + + −

−

 

− +



−

 

+

 


  

  

 

 

  ( )2 3 2r n nx x x+ − −+ + + + − 
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If p n≥ , the sequence of remainders above is periodic with period n, given by the 
part of the sequence shown above, and the sum of any subsequence of n consecutive 
remainders is 0. So if p is divisible by n, ( ).p qP x  is divisible by ( )Q x . If p is not di-
visible by n, then doing first the cancellation as above and then using the symmetry of 
the sequence of remainders about the remainder equal to 0, the sum of the sequence of 
remainders equals 0 only if 1r t+ = , that is, only if q is divisible by n. 

5. Proof of Proposition 5 

Consider a k-inflated copy of the L n-omino. Using the presence of ( )3B k  in the 
Gröbner basis, and Theorem 13, the existence of a signed tiling of the copy becomes 
equivalent to deciding when a k nk×  rectangle has a signed tiling by nT . Theorem 1 
implies that this is always the case. 

6. Proof of Proposition 6 

1) We employ a ribbon tiling invariant introduced by Pak [3]. Each ribbon tile of 
length n can be encoded uniquely as a binary string of length 1n − , denoted 
( )1 1, , nε ε − , where a 1 represents a down movement and a 0 represents a right 
movement. The encoding of a 1 n×  bar is ( )0,0, , 0 , for a 1n×  bar is ( )1,1, ,1 , 
and for the tiles in 5T  the encodings are shown in Figure 9. Pak showed that the func-
tion ( )1 1 1 1 1, , n nf ε ε ε ε− −= −  is an invariant of the set of ribbon tiles made of n-cells, 
which contains as a subset the tile set nT . In particular, one has that 

( )1 1 1, , 1.nf ε ε − = ±  

for any tile in nT . The area of a k-inflated copy of the L n-omino is an odd multiple of 
n and can be easily covered by 1n×  and 1 n×  bars, each one having the invariant 
equal to zero. If we try to tile by nT , then the invariant is zero only if we use an even 
number of tiles. But this is impossible because the area is odd. 

2) Let , 0k n r r n= + < < . After cutting from a k-inflated copy a region that can be 
covered by 1n×  and 1 n×  bars, and which has the 1f  invariant equal to zero, we 
are left with one of the regions shown in Figure 10. Case a) appears if 2r n<  and case 
b) appears if 2r n> . Both of these regions can be tiled by r ribbon tiles of area n as in 
Figure 11. In the first case the sequence of r encodings of the ribbon tiles is: 

1,1,1, ,1,1,1,0,0, , 0,0,0
1,1,1, ,1,1,0,0,0, , 0,0,1
1,1,1, ,1,0,0,0,0, , 0,1,1

 

 

 



 

 

 
Figure 9. The four L-shaped ribbon pentominoes 
and their encodings. 
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Figure 10. Leftover regions. 
 

 
Figure 11. Tiling the leftover region by ribbon n tiles, cases 5; 4n k= = , and 17; 20n k= = . 
 
where we start with 1n r− −  ones and r zeros, and then shift the zeroes to the left by 1 
at each step, completing the sequence at the end with ones. As 1r n r≤ − − , the subse-
quence of zeroes does not reach the left side, so the 1f  invariant of the region is equal 
to 1. 

In the second case, the sequence of r encodings of the ribbon tiles starts as above, but 
now the subsequence of zeroes reaches the left side. Then we have a jump of n r−  
units of the sequence of zeroes to the left, the appearance of an extra one at the right, 
and a completion of the sequence by zeroes to the right. Then the subsequence of ones 
that appears start shifting to the right till it reaches the right edge. The 1f  invariant of 
the region is equal to −1. 

So in both cases the 1f  invariant is an odd number. Nevertheless, if the k-copy is 
tiled by nT , one has to use an even number of tiles and the invariant is an even number. 
Therefore we have a contradiction. 

7. Proof of Theorem 7 

It is enough to generate the tile consisting of a single cell. We show the proof for 7n =  
in Figure 12. The proof can be easily generalized to any 5n ≥  odd. First we construct 
a domino with both cells having the same sign (as in Figure 12(c)), and then we use it 
to reduce the L n-omino until a single cell is left. 

8. The Method of Barnes 

In this section we give a proof of Theorem 8 following a method developed by Barnes. 
The reader of this section should be familiar with [9] [10]. We apply the method to the  
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Figure 12. Generating a single cell by nT + . 

 
infinite collection of tiling sets , 5nT n ≥  odd. 

Let 5n ≥  odd. Consider the polynomials (3) associated to the tiles in nT  and de-
note by I the ideal generated by ( ) ( ) ( ) ( )1 2 3 4, , ,G k G k G k G k . We show that the alge-
braic variety V defined by I is zero dimensional and consists only of the pairs of points  

1, ,
1

nεε
ε

 −
 − 

                             (6) 

where ε  is an n-th root of identity different from 1. 
Separate x from ( )1 0G k =  and replace in ( )2 0G k =  to have: 

2 2
2 1 1 1 0.

1 1

k k
k y yy

y y
− − −
− =

− −
 

Eliminating the denominators gives: 

( )22 1 2 1 2 2 2 1 0,k k ky y y y y− − −− + + + + + =  

which can be factored as: 

( ) ( )2 2 1 2 2 2 2 2 2 3 21 1 0.k k k k ky y y y y y y y y− − − −+ + + + + + + + + + + =   

It is clear that all roots of the polynomial above, and of the corresponding polynomi-
al in the variable x, are roots of unity of order 2 1k +  and 2 1k − . Using the system of 
equations that defines V, the roots of order 2 1k −  can be eliminated. Moreover, the 
only solutions of the system are given by (6). 

We show now that I is a radical ideal. For this we use an algorithm of Seidenberg 
which can be applied to find the radical ideal of a zero dimensional algebraic variety 
over an algebraically closed field. See Lemma 92 in [15]. Compare also with Theorem 
7.1 in [9]. As V is zero dimensional, one can find ( )1f x  and ( )2f y  that belong to 
the radical ideal. We consider the square free polynomials: 

( ) 2 2 1 2 2 2
1 1,k k kf x x x x x x− −= + + + + + +  
( ) 2 2 1 2 2 2

2 1.k k kf y y y y y y− −= + + + + + +  

If ( ) ( )1 2,f x f y  are square free, then the ideal generated by I and ( ) ( )1 2,f x f y  is 
radical. So, in order to show that I itself is radical, it is enough to show that 

( ) ( )1 2,f x f y  belong to I. It is easier to generate ( )if x  using the Gröbner basis, so we 
will use this approach. 
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Proposition 18. The polynomials ( ) ( )1 2,f x f y  belong to the ideal I. 
Proof. It is enough to generate ( )1f x . One has: 

( ) ( ) ( )1 3 3 .f x xG x B k= −  

We can apply now the main result in Lemma 3.8, [9]: a region R is signed tiled by nT  
if and only if the polynomial ( ),Rf x y  associated to R evaluates to zero in any point of 
the variety V. If R is a rectangle of dimensions p q×  in the square lattice, then 

( ) 1 1, ,
1 1

q p

R
x yf x y
x y
− −

=
− −

 

which clearly evaluates to zero in all points of V if and only if one of ,p q  is divisible 
by n. 

The fact that Theorem 8 implies Theorem 1 follows the idea of Theorem 4.2 in [9]. 
Indeed, a set of generators for the regions that are signed tiled with rational numbers by 

nT  is given by the polynomials ( ) ( )1 2,f x f y  above. Both of them can be generated by 
the Gröbner basis using only integer coefficients. 

9. Conclusion 

We show that a rectangle can be signed tiled by ribbon L n-ominoes, n odd, if and only 
if it has a side divisible by n. A consequence of our technique, based on the exhibition 
of an explicit Grӧbner basis, is that any k-inflated copy of the skewed L n-omino has a 
signed tiling by skewed L n-ominoes. 
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