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Abstract 
In this study, possible low dimensional chaotic behavior of Sakarya river flow rates is 
investigated via nonlinear time series techniques. To reveal the chaotic dynamics, the 
maximal positive Lyapunov exponent is calculated from the reconstructed phase 
space, which is obtained using the phase space reconstruction method. The method 
reconstructs a phase space from the scalar time series, which depicts the real system’s 
invariants Positive values, because the Lyapunov exponent values calculated using 
the appropriate software program indicate possibility of chaotic behavior. Analyzed 
data involve the monthly average flow rates of eleven main branches of Sakarya River 
through the years 1960-2000. 
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1. Introduction: Sakarya River Flow Using Low Dimensional  
Deterministic Techniques 

Sakarya River is one of the longest rivers in western region of Turkey. It originates in 
the western part of Central Anatolia, but predominantly traverses the Marmara region 
and flows to the Black Sea. Its basin is 58,160 km2; its length is approximately 810 km 
and width is about 60 - 150 m [1]. Figure 1 shows its flow map. It has lots of tributaries, 
for example, Porsuk, Ankara, Goynuk and Kirmir rivulets. 

A natural phenomenon like river flow is a highly complicated one and usually treated 
as nondeterministic. Understanding the behavior of its underlying dynamics will lead 
to a more reliable base for choosing an appropriate modeling and prediction method.  
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Figure 1. Location map of Sakarya River. 

 
Some recent studies [2] have shown that low-dimensional deterministic techniques can 
be applied as an alternative method for modeling and the results are encouraging. A 
complicated behavior in nature can be identified as deterministic and chaotic or non-
deterministic and random, subject to its underlying dynamics. The use of low dimen-
sional deterministic and chaotic time series techniques in studying, modeling and pos-
sibly predicting river flow dynamics is increasing; encouraging results are being ob-
tained. As long as a sufficient amount of care is exercised in applying low-dimensional 
deterministic techniques and in interpreting the findings, such techniques can be useful 
in studying dynamics of river flow [2]. In addition, recent articles [3] [4] on flow pre-
diction using chaos theory can reveal the number of variables that influence the river 
flow dynamics. This shows nonlinear analysis is gaining importance and usefulness for 
river flow analysis. 

Observational data obtained from the natural phenomena add another complication 
by way of measurement errors and scalar values which purely represent the underlying 
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dynamical system. A well-known and widely used approach to overcome these difficul-
ties is the phase space reconstruction method. Based on the theorem of Takens, one can 
construct a phase space which successively resembles the global behavior of the original 
dynamical system from scalar measurements. A brief outline of the technique is given 
in Figure 2. When one observes complicated behavior in nature, one seeks a simple 
underlying cause. If we have only experimental or observational data at our disposal 
and in most cases, the data are one dimensional, involving a single sequence of mea-
surements at equal time intervals (a time series), and one would try to extract informa-
tion from it to ascertain whether the dynamics is deterministic and chaotic or nonde-
terministic and random. In this study, the flow discharge data obtained from monthly 
averages of Sakarya River and its eleven tributaries are analyzed to reveal the characte-
ristics of its flow dynamics which will be a guideline for modeling the flow discharge. 
The experimental data involve the average monthly discharge rate of Sakarya River. 
The data have only scalar values and are taken from the [5] EIE (General Directorate of 
Electrical Power Resources Survey and Development Administration). Fifty-four 
stream flow observation stations have been set on the Sakarya River by the EIE and the 
observation period spans the period 1960 to 2000. 

In Figure 2, from 1960 to 2000 every months’ average flow rate in m3/s unit are col-
lected from EIE. The flow rates for each tributary show similar patterns in spite of the 
fact that Sakarya River covers a relatively large and varied region involving two differ-
ent climatic regions. Hence, the Dogancay tributary has characteristics similar to the 
Sakarya River. In Figure 3, similar data for the Aktas River which is another tributary 
of Sakarya River are shown. The similarity is apparent. 

The time series analysis method applied in this work can be divided into the follow-
ing steps; observing a one dimensional signal in uniform time interval x(0), x(T), …, 
x(n, T), phase space reconstruction, and calculation of invariants of the reconstructed 
dynamics. 

 

 
Figure 2. Flow rate data on given months of Dogancay tributary. 
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Figure 3. Flow rate data on given months of Aktas tributary. 

2. Phase Space Reconstruction 

As the scalar measurements are taken at arbitrary time intervals, a suitable delay time is 
the key point to preserve the global behavior of the dynamics. 

In order to start the phase space reconstruction from the scalar flow rate ( )nns k , 
where k is the time step, we need to construct the delay vector ( )nny k�  given by; 

( ) ( ) ( ) ( ), , 1nn nn nn nny k s k s k s k dτ τ= + + −  
�

               (1) 

τ is the delay time and d means the embedding dimension. The time delay can be found 
from the first zero of the correlation function (linear criterion) or first minimum of the 
average mutual information [6]. 

A small delay time can lead to a strongly correlated phase space vectors; on the other 
hand, information loss is inevitable if a large delay time value; the delay time can be es-
timated from either the mutual information or the autocorrelation. 

One can see both periodic and irregular behavior in Figure 4. A study of the correla-
tion function confirms this conjecture. For example, the correlation function for the 
Aktas tributary, shows a decrease up to about 7 - 8 months. But the correlation function 
never reaches zero. It then reveals a periodic behavior involving approximately 40 
months. If multiple time scales are involved, a choice must be made between the zero of 
the correlation function and the first minimum of the mutual information. Although 
there is no clear indication of consistent success, the latter is usually preferred. 

2.1. Mutual Information Is Basically the Information Carried from One  
Random Variable to Another One 

Mutual information is information between two random variables. We can only see the 
information sent to a given channel by receiving the corresponding information from 
the same channel. 

In Figure 5 a brief outline of the technique is given. One can see demonstrating steps 
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Figure 4. Correlation for the Aktas subriver. 

 

 
Figure 5. Figure demonstrating steps of data analysis in time series. 

 
of data analysis in time series. 

Let X and Y be a random variables having a joint probability distribution given by 
p(X, Y). If X and Y, have individual probability distributions given by p(X) and p(Y) 
respectively, the entropy is calculated as the distance between the mutual information 
assuming equal distribution and the actual multiple distributions, given by the equa-
tions below: 

( ) ( )( ) ( ) ( ), ,I X Y D p x y p x p y=                    (2) 

Mutual information is usually calculated using time delayed vectors reconstructed 
from the scalar time series as suggested by Fraser and Swinney [6] as a tool to deter-
mine a conceivable delay. Besides, the mutual information considers nonlinear correla-
tions. For doing this one has to compute; 

( ) ( )
ln ij

ij
i j

p
S p

p p
τ

τ= −∑                        (3) 
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Here, ip  and jp  are the probabilities to find a given value in the i-th and j-th in-
tervals of the time series and ( )ijp τ  is joint probability that a given observation falls 
into the i-th interval at a given time and in the j-th one after a delay time τ. Theoreti-
cally there should be no relevance on the amount of separation if there is no correla-
tion. This value can easily be calculated. There are acceptable arguments that a marked 
minimum at a certain value of j, in the time delayed mutual information gives a good 
estimate for a reasonable time delay. However, if we use a too long time delay, the cor-
relations between the components of reconstructed vectors will be lost and signals will 
be mistakenly recognized as if it were a random signal, rather than coming from a pos-
sibly finite prediction horizon related to the maximal Lyapunov exponent. Mutual in-
formation is important for our determining maximal Lyapunov exponent as mentioned 
in [7]. 

2.2. False Nearest Neighbors 

One of the main problems of reconstructing a phase space from a scalar time series is 
choosing a suitable embedding dimension, which will at least topologically preserve the 
global properties of the dynamical system. Embedding dimension directly affects the 
attractor trajectory in the phase space, which alters the neighborhood of the points. If 
the embedding dimension is chosen to be smaller than the actual attractor dimension, 
projection of the trajectory will map false values into other neighborhoods of values; 
these are called the false neighbors. The calculation goes as follows: Choose a vector 

iR
���

 constructed using the delay time suggested by mutual information and calculate 
the distance between its nearest neighbors jR

���
 in an arbitrary dimension. Iterate this 

procedure for all the successive vectors and calculate Ri using the following equation. 

1 1i j
i

i j

R R
R

R R
+ +−

=
−

��� ���                          (4) 

A point of data is selected as a false neighbor if the distance, Ri exceeds a given thre-
shold. A typical false neighbor’s calculation is shown in Figure 6. 

3. Calculation of the Maximal Lyapunov Exponent 

Lyapunov exponent is a measure of divergence or convergence of orbits in a phase 
space, which can also be calculated for a time series. As the reconstructed phase space 
preserves the topology of the underlying dynamics, Lyapunov exponents calculated for 
the embedded phase space will show chaotic nature of the original attractor. The rate of 
exponential growth between the nearby trajectories is called as the maximal Lyapunov 
exponent and a positive rate indicates chaotic behavior. The following equation is used 
to calculate the stretching of the trajectories;  

( ) 1, , ln n n n t n t
n

S є m t s єu s s
u
σ ′+ += −                 (5) 

'ns  is a neighboring point to sn in the phase space in the course of the attractor; є is the 
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box size. At a future time t the distance between these points will be n t n ts s ′+ +− . So the 
formula measures the growth of this distance in time from the initial distance. If 
( ), ,S m t  is linear in the separation t for a range of iterations, and this is insensitive to 

the embedding dimension m, we can get an estimate of the value of the maximal Lya-
punov exponent from the slope of this line. If a robust increase, which is sufficient to 
determine its sign, is observed, this can be taken as an indicator of chaotic behavior. 

4. Results 

Table 1 shows us mutual information values, embedding dimension values and Lyapr 
values which are the largest Lyapunov exponent of a given scalar data set using the  
 

 
Figure 6. Graph of False-Nearest neighbors for botbasi tributary of Sakarya 
river. 

 
Table 1. Nonlinear time series analysis results of Sakarya river’s tributaries. 

Branches of Sakarya river Mutual information Embedding dimension Lyapr values Lyapk values 

Aktas 5 6 0.012 0.008 

Besdegirmen 4 6 0.018 0.021 

Botbasi 4 5 0.014 0.016 

Dogancay 4 4 0.016 0.012 

Dokurcan 4 5 0.016 0.016 

Hamidiye 7 6 0.015 0.008 

Karakoy 4 6 0.021 0.034 

Kargi 9 4 0.010 0.012 

Kocasu 4 6 0.018 0.030 

Mesecik 8 6 0.009 0.020 

Taksirkopru 4 11 0.015 0.039 
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algorithm of Rosenstein et al. [8] (this is claimed to be a better estimate for smaller data 
sets as explained below). Lyapk values are largest Lyapunov exponent of a given scalar 
data set using the algorithm of Kantz [9], with further explanation in [9]. In order to 
find Lyapunov exponent, we use the mutual information values calculated by the mu-
tual package in TISEAN by observing its first minimum. We get the embedding dimen-
sion by the false-nearest technique. In order to calculate the Lyapunov exponent, we 
calculate the distance between two neighboring points as a function of the separation t 
on a semilogarithmic plot is used. The Lyapunov exponent is estimated from the slope 
and their values have a standard deviation of ±0.01. 

The algorithm proposed by Kantz establishes that the rate of divergence of nearby 
trajectories can fluctuate along the trajectory and the amount of fluctuation depends on 
the stretching and folding of the phase space as given by the spectrum of effective Lya-
punov exponents. Rosenstein et al. [8] proposed a systematic algorithm where the dis-
tance between the trajectories is calculated by the Euclidian norm in the reconstructed 
phase space. They use only one neighbor trajectory which makes the method more 
suitable for shorter time series. Thus, the algorithm suggested by Rosenstein is more 
effective when the number of data is relatively small. In our study, the results obtained 
from each algorithm are in parallel with each other. A typical Lyapunov Exponent by 
stretching exponent calculation using the Rosenstein approach is illustrated in Figure 
7, while the calculation using the standard Kantz approach is illustrated in Figure 8. 
The Kanz algorithm [9] makes use of the statistical properties of the local divergence 
rates of nearby trajectories. It does not need correct embedding dimension. These fig-
ures demonstrate a positive slope and as mentioned above, show positive maximal 
Lyapunov exponents which in turn indicates chaotic behavior. We also use Kanz algo-
rithm to ensure positive maximal Lyapunov exponent. The statistical issues involved in 
the selection of the approach are discussed extensively in [10] and [11]. 
 

 
Figure 7. Stretching factor vs. iteration graph using the Rosenstein algo-
rithm. 
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Figure 8. Stretching factor vs. iteration graph using the Kantz algorithm. 

 
Table 1 shows mutual information, embedding dimension value and Lyapr value (the 

largest Lyapunov exponent of a given scalar data set using the algorithm of Rosenstein 
et al. [8]); for each tributary of Sakarya river (this is claimed to be a better estimate for 
smaller data sets as explained below). Lyapk values are largest Lyapunov exponent of a 
given scalar data set using the algorithm of Kantz [9]. 

5. Conclusions 

Understanding the dynamics of river flow is crucial to select a feasible modeling me-
thod to forecast river discharge. In this study, phase space reconstruction method is 
used to obtain a depiction of the underlying dynamics, which will preserve the global 
invariants of the system. Maximal Lyapunov exponents which constitute a very strong 
evidence for chaotic behavior for eleven tributaries of the Sakarya River have been cal-
culated. These results are encouraging for applying chaotic modeling routines instead 
of probabilistic methods. 

As a result, monthly mean flow values of Sakarya River show chaotic behavior as 
quantified by the maximal Lyapunov Exponent. That may imply that the river has no 
long time trend, which is observed by [1]. One can say climate changes and huge 
amount of usage of the river’s water and dam constructions may cause to decrease 
trend. According to article [12], Benue River in Nigeria has a comparable trend but no 
low dimensional phase space chaotic dynamics has been observed there. Therefore, we 
can say Sakarya River has limited future for electricity from dams and other human ex-
ploitation because of its chaotic dynamics. We have studied the article by S. Isik et al. 
[13] that reaches the same conclusions using quasi-linear time series analysis methods 
from regular statistical analysis. This work corroborates the findings and finally de-
monstrates that the phenomenon may be better understood by nonlinear time series 
analysis than stochastic techniques. This work is also relevant for identifying the river’s 
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complex behavior since it tries to use nonlinear techniques in river systems which come 
from the theory of complex systems [14]. 
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