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Abstract 

The exploitation of an oil field is a complex and multidisciplinary task, which de-
mands a lot of prior knowledge, time, and money. A good reservoir characterization 
is deemed essential in the accomplishment of Enhanced Oil Recovery (EOR) pro- 
cesses in order to estimate accurately the properties of the porous medium affecting 
the flow properties. Several techniques at a field scale are currently being used to de-
termine these properties, which are time and money consuming. But these alone do 
not guarantee the success of the project. Reservoir simulation and numerical tech-
niques were then included in the pre-development and follow-up studies as an effec-
tive tool to determine the productivity and future behavior of the oil field. As the 
computational power increased, more advanced and detailed models were developed, 
including different chemical and physical phenomena. But alongside this process, 
there was an active research in the area of reservoir simulation, improving the accu-
racy and efficiency of the numerical schemes used for the flow, transport, and energy 
equations. The aim of this review is to address the topics described. Firstly, the origin 
of an oil recovery process, the economic factors and field tests involved are intro-
duced. Secondly, the oil and porous medium origin and characterization as well as an 
introduction to the fundamental concepts and equations are associated to reservoir 
simulation. Finally, a brief description and analysis of the techniques are used in re-
servoir simulation employing finite difference methods, their downsides and possible 
ways to overcome these problems. 
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1. Oil Origin and Formation 
1.1. Introduction 

The era of discovery and subsequent exploitation of the denominated “easy oil” (part of 
the so called conventional reserves) is over [1]-[5]. After primary and secondary recov-
ery, oil companies have begun with more complex Enhanced Oil Recovery (EOR) 
processes involving fluids or chemical reactions that require a greater detail of the 
phenomena taking place in the porous medium. In addition to these complications 
there exist non-technical related factors that might increase the risk of an investment 
[6]. An example of this may be the development of off-shore platforms, plants located 
in remote areas of the world or the exploitation of unconventional deposits (heavy oil, 
shale oil, tar sands). All these projects require a prior investment (in the order of several 
tens of millions of dollars high risk projects), so companies make use of several tech-
niques in the stage of feasibility analysis to limit this risk and increase the chances of 
success of the operation (Figure 1) [7] [8]. 

These techniques, used to predict and optimize the exploitation, include laboratory 
and field tests (e.g. seismic 2D/3D/4C before starting operations and 4D to follow up 
the changes during exploitation, geostatistics) to give an idea of the conditions of the 
porous medium and its production performance [9]-[13]. However, these tools have 
proven to be insufficient [12] [14] [15] and therefore oil companies have begun using 
computational tools to predict and optimize their projects and production facilities, 
which is known as Reservoir Simulation. The latter consists in solving numerically the 
differential equations describing the fluid flow in porous media, which have no analyti-
cal solution, taking into account all geological, physical, chemical and/or mechanical  
 

 
Figure 1. A typical cash-flow of an exploration and production project (adapted from [8]). 
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phenomena occurring during operation so as to analyze and predict behavior as a func-
tion of time. The reservoir simulation can be used as well in inverse engineering prob-
lems for optimizing existing numerical models and couple the dynamic/historic data 
(production) in the simulation [15]-[18]. 

Generally speaking, reservoir simulation consists of three main parts: the physical 
characterization of a geological model describing the rock formation; a model characte-
rizing the fluid flow and finally “well models” which describe the conditions under 
which fluids are injected or extracted from the reservoir [19]. The latter, along with the 
wellbore and the primary surface facilities, constitutes what is known as upstream. 
During the last 30 years numerous theoretical and practical advances have been devel-
oped due to the appearance of new numerical techniques and increased computational 
power, respectively [15] [20]. This led to a new generation of more complex and de-
tailed models. The accurate representation of the reservoir and the fluid contained in it 
is an issue that still needs to be more carefully addressed in order to reduce risks in ex-
ploration and production (E&P) projects. One of the most important points is related 
to the scales of the models: current grids are still large when compared to the geological 
characterization, description of chemical processes or fluid flow. Most of current nu-
merical models used in reservoir simulation may contain from 105 to 108 grid blocks, 
depending on the model type, complexity, computational power available and fluid be-
havior. 

The development of increasingly complex and detailed models requires the use of 
numerical techniques to solve these at reasonable times. Moreover, the representation 
of the properties of the porous medium and the characteristics of crude oil and natural 
gas at high pressures and temperatures may differ from laboratory tests, causing dif-
ferences between the results and simulation. Another important topic is how to assess 
and properly estimate the properties of the rock formation. Geologists use statistical 
techniques in order to recreate the model properties of a porous medium, which are 
determined by several tests (e.g. seismic studies, drill core samples and even production 
data). However, other numerical tools are required (e.g. Monte-Carlo or Stochastic 
Processes) to take into account the effects of uncertainties in the model [21] [22]. 

The aim of this review is to briefly describe the characterization of porous media and 
its main parameters. Then, models governing fluid flow in porous media are intro-
duced. This consists in Darcy’s equation and the more complex compositional model 
for multiphase flow (where the component transfer between phases introduces nonli-
nearities in the mass transport equation), which is useful to describe chemical EOR op-
erations. The second part comprises a brief explanation of the numerical methods used 
as well as the problems associated with these schemes (numerical dispersion and dissi-
pation), and possible solutions using advanced numerical schemes. 

1.2. Origin of the Oil 

A reservoir is an underground trap where different fluids (water, oil and gas) have ac-
cumulated due to a migration from the source rock where they were originated. The 
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porous medium is generally considered of sedimentary origin and consists of a series of 
microchannels (about 1 - 100 microns diameter) interconnected where these fluids can 
flow (Figure 2). These formations may have some tens of meters thickness, but may 
extend several kilometers in the lateral directions [23]. 

The origin of crude oil prior to the migration and deposit of hydrocarbons in the 
porous media is also a long and complex process [25]-[27]. The source of hydrocarbons 
consists of a series of phenomena, both organic and inorganic, taking place during long 
periods of time (in the order of million years) [28]. Most of these hydrocarbons origi-
nate in organic decomposition processes. The first stage (called diagenesis) involves the 
sedimentation of remains of dead plants and animals. Under these conditions, at low 
depths, the action of bacteria produce methane, water and CO2, leaving as reaction 
products of kerogen substances (cyclic and large hydrocarbon molecules containing 
oxygen, nitrogen and sulfur). The second process, called catagenesis, occurs at greater 
depths and temperatures. In this region, known as the oil window zone, the kerogen 
molecules break in smaller, heavy hydrocarbons forming the oil phase. At higher tem-
peratures the cracking of hydrocarbons continues creating lighter compounds, first wet 
gas and subsequently dry gas. Finally, at even greater depths, the last process takes place 
(called metagenesis), where the remaining kerogen is out of hydrocarbons and subse-
quent cracking processes terminate when there is no hydrogen in the compound. The 
result of these reactions is the formation of graphite (Figure 3). 

1.3. Porosity and Permeability 

A porous rock formation is composed of a solid part, called solid matrix, and the re-
maining void space or microchannels whereto oil migrates [31]. The volumetric frac-
tion of these channels is denominated porosity of the porous media. The latter depends 
on the fluid pressure, if the rock is compressible, or in some other phenomena which 
may take place (e.g. adsorption of chemical components during EOR processes). The 
following list provides typical values of porosity according to the origin of the rock 
formation [32] [33]: Consolidated sandstones 0.05 to 0.3; limestones 0.1 to 0.4; uniform 
spheres with minimal porosity packing 0.25; uniform spheres with normal packing  

 

 
Figure 2. Anticlinal type petroleum trap (adapted from [24]). 
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Figure 3. Origin of oil (adapted from [29] [30]). 

 
0.35; unconsolidated sands with normal packing 0.40 and unconsolidated clays 0.60. 

The permeability of the formation is a property that characterizes the ease with 
which fluids can flow when a pressure gradient is applied between two points. None-
theless, reservoir rocks usually have no uniformity in their properties because of the 
mechanisms involved on its formation, thus the permeability will have a large dispersity 
in its values [34] [35]. The fluids used commonly in EOR operations, more mobile than 
oil, occupy the high-permeability zones (e.g. faults or fractures), with the result that 
large areas of oil will be bypassed, reducing the efficiency of the process. Mathematical-
ly, the permeability can be expressed as a diagonal tensor (K). When the medium is 
isotropic then the permeability can be represented as a scalar function. Due to transi-
tions between different rock types, the permeability may vary swiftly throughout the 
reservoir, going from extreme low permeability areas of 1 mD to areas with permeabili-
ties exceeding 10 D. 

In order to develop a mathematical model of the porous medium, Corey [32] estab-
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lished several restrictions: the whole void space of the porous medium is intercon-
nected; the mean free path length of the fluid molecules or molecules contained in the 
fluid must be negligible when compared to the dimensions of the pore channels, and 
the dimensions of the void space must be small enough so that the fluid flow is con-
trolled by adhesive forces at fluid-solid interfaces and cohesive forces at fluid-fluid in-
terfaces (in multiphase systems) [31]. These assumptions allow excluding any discon-
nected channels in which there can be no fluid flow, eliminating the difference between 
the concepts of total porosity and effective porosity. Furthermore, since the dimensions 
of the molecules or particles in the fluid are negligible with respect to the microchan-
nels, a suitable replacement for a hypothetical continuous medium can be performed. 
Finally, considering the microscopic size of the channels allows taking into account 
physical phenomena that in other cases would be negligible. In order to derive a ma-
thematical model at the macroscopic level, each point in the continuum is assigned av-
erage values over representative elementary volumes of the quantities at the micro-
scopic level. The advantage of this technique is that leads to a set of macroscopic equa-
tions that do not need an exact description of the microscopic configuration, as it 
would be the case with Navier-Stokes equations [31]. 

1.4. Representative Elementary Volume 

The flow of reservoir fluids in porous media can be described at several different scales, 
from a microscopic to a macroscopic/formation scale. In order to perform large-scale 
reservoir simulations, a microscopic description of the flow channels would be too de-
manding for the computational power available and besides to characterize a reservoir 
rock so accurately to determine the geometry of the pore network is beyond the scope 
of modern techniques and equipment. A continuum scale description is then utilized, 
and its behavior is governed by forces acting between the different fluids and the rock 
formation. The goal of a reservoir continuum model is then to average both the fluids 
and reservoir rock [28] [36]-[39]. In order to develop the mathematical model based on 
a continuum, the concept of Representative Elementary Volume (REV) (Figure 4) is 
introduced. This is based on the hypothesis that certain properties of both the fluid and 
the rock may be considered constant along a certain range of scale and thus it estab-
lishes limits for the physical scales in the numerical models. If a REV cannot be identi-
fied for a specific porous medium then this concept cannot be applied and the macros-
copic approach should be discarded [40]. 

The procedure for estimating REV dimensions and establish boundaries between 
microscopic and macroscopic scales is explained below using the porosity in Figure 4 
as an example [31]. A porous medium is then considered occupying the domain Ω, 
with a volume V(Ω). A subdomain Ω0(d) ⊂ Ω with a characteristic dimension d is also 
defined. Furthermore, the porosity piece-wise function is defined in Equation (1) as 
follows, 

( )
1 if void space
0 if solid matrix

x
f x x

x
∈

= ∀ ∈Ω ∈
                  (1) 
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Figure 4. Scheme showing the boundaries to determine the REV (adapted from [19]). 

 
Then, the porosity of an element with characteristic dimension d is defined by Equa-

tion (2), 

( ) ( ) ( )
0

0 0
0

1 d .d f x
V

φ
Ω

Ω = ⋅ Ω   Ω ∫                   (2) 

This relationship allows explaining the evaluation of the porosity as a function of the 
dimension d. For sizes smaller to a value dm the porosity varies significantly, with no 
particular pattern or trend; then, if the value of said dimension is between dm and dM, 
the value of the porosity plateaus and remains constant for the entire considered range. 
Finally, for values greater than dM, the porosity may remain constant in the case of a 
homogeneous medium, while in the case of an heterogeneous one, the function be-
comes again chaotic [41] [42]. The volume with dimensions between dm and dM is 
called a representative elementary volume (REV) (Figure 4). 

2. Fluid Flow Models 

In underground processes in porous media, fluid flow involves mainly convection 
(advection and diffusion) of the different phases through a heterogeneous medium. 
The equations used to describe the flow at a microscopic level or poralscale are 
variations of Navier-Stokes (creeping flow) and the mass conservation law. At a 
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macroscopic level, Darcy’s law [43] was derived and it is used to describe flow be-
havior. Also, the effects of the displacing process on the rock formation will be con-
sidered negligible even though these mechanisms are sometimes necessary to repre- 
sent first-order effects (e.g. adsorption) [44] [45]. When dealing with multiphase/ 
multicomponent flows, some of the processes therein involved are characterized by 
the chemical and physical interaction among the components present in the fluids. 
Therefore, diffusive and/or dispersive mixing of these components is often critical 
and must be correctly understood and modeled in order to obtain accurate results. 
Molecular diffusion is typically quite small in porous media processes. Neverthe-
less, hydrodynamic dispersion may be important and therefore it should be incor-
porated in the flow equations. This can be done by means of the standard diffu-
sion/dispersion tensor [46] [47], provided that the degree of the heterogeneity is 
not too large (Dykstra-Parsons coefficient < 0.50) resulting in a Fickian behavior. 
However, when the permeability variations are large a non-Fickian behavior was 
reported (anomalous dispersion) [48]-[52]. 

Generally, three fluid phases may exist inside a reservoir (Figure 2): aqueous/ 
brine (the phase containing predominantly water), oleous (the phase containing 
liquid hydrocarbons) and gas phase, which contains lighter gaseous hydrocarbons 
(Figure 3). In the case of single phase systems, the void space of the porous medium 
is filled by a single fluid or by several fluids completely miscible with each other. In 
multiphase systems the void space is filled by two or more fluids that are immisci-
ble with each other, thus maintaining a distinct boundary between them. Formally 
speaking, the solid matrix of the porous medium can also be considered as a phase 
called the solid phase. Each phase may also be composed by many chemical com-
ponents. For example, oil is a very complex mixture of hundreds of hydrocarbons 
with different chemical properties. In order to derive a set of equations for the fluid 
flow some terms should be defined beforehand. Firstly, the term phase stands for 
matter that has a homogeneous chemical composition and physical state of a sys-
tem under consideration that is separated from other such portions by a definite 
physical boundary. Secondly, it is defined as component present in a phase to the 
matter that is composed of an identifiable homogeneous unique chemical species or 
of an assembly of species [41]. The number of components needed to describe a 
phase is given by the conceptual model, i.e. it depends on the physical processes to 
be modeled and the desired accuracy. In many oil reservoirs (above bubble point 
pressure) crude oil contains some amount of dissolved gas. It is acceptable to as-
sume that the oil and gas compositions are fixed [15] [20] [26], and that the solubil-
ity of the gas in the oil depends on pressure only. Provided these conditions are 
met, then it is possible to consider the pseudo-components oil and gas. 

Both microscopic and macroscopic effects control the movement of fluids in the 
reservoir. At the pore scale, interfacial tension (IFT) and capillary effects control 
the fluid behavior. Macroscopically, fluid flow is controlled by reservoir hetero-
geneity and mobility differences between the fluids. Viscosities, capillary pressure, 



P. Druetta et al. 
 

407 

IFT and mobility differences vary throughout the reservoir and depend mainly on 
phase saturations, their interactions and molecular compositions. Chemical com-
ponents may transfer between contacting phases, altering the fluid properties of 
both. Interactions between the fluids or their components and the reservoir rock 
may also impact performance (e.g. adsorption of chemical components onto the 
surface of the rock altering the wettability). Thermal effects are generally very small 
due to the large heat capacity of the rock. However, in EOR thermal processes 
(steam flooding or in-situ combustion), the conservation of energy in the REV 
should be considered. 

2.1. Single Phase Flow 

The governing equations for single phase flow in porous media are the conserva-
tion of mass, the Darcy equation and an equation of state (EOS). Considering the 
flow of a single fluid with density ρ through a REV of a porous medium the diffe-
rential form of the continuity Equation (3) can be expressed as [15] [19] [20] [34] 
[36] [53]-[55], 

( ) ( )u q
t
ρφ

ρ
∂

+∇ ⋅ =
∂

                         (3) 

where φ is the porosity of the rock formation, q represents the fluid source/sink 
term and u  is the velocity vector. The fundamental law of fluid flow in a porous 
medium is Darcy’s law [43]. It gives the effective flow velocity across a REV of 
porous media and thus does not analyze the flow at a microscopic scale. In its dif-
ferential form, the relationship between velocity and pressure drop is given by Equ-
ation (4), 

( )1u K p g zρ
µ

= − ∇ − ∇                         (4) 

where K  is the absolute permeability tensor of the porous medium, µ the fluid 
viscosity, g  the acceleration field, and z represents physical dimensions. In most 
of the cases, it is possible to assume that K  is a diagonal tensor as presented in 
Equation (5), 

11

22

33

0 0
0 0 .
0 0

k
K k

k

 
 =  
 
 

                          (5) 

When 11 22 33k k k= = , the porous medium is called isotropic; otherwise, it is ani-
sotropic. Generally in porous media can be considered that both lateral permeabili-
ties are in the same order of magnitude while the vertical permeability is considera-
bly lower (at least one order of magnitude) than the other two components. Origi-
nally, Darcy’s law was derived experimentally and was thus considered an empirical 
law [28]. Several authors reported the derivation of Darcy’s law based on volume 
averaging of the Navier-Stokes momentum equations [38] [41] [46] [56]-[61]. The 
assumptions needed for the derivation of Darcy’s law include low flow speeds, 
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Newtonian behavior and that the pore/fluid friction is the dominating force acting 
on the fluid. Also, the porous medium is assumed to be rigid and not compacted 
due to fluid flow. Introducing rock and fluid compressibilities in Equation (6), cr 
and cf respectively, both equations can be coupled in the parabolic Equation (7) for 
the fluid pressure, 

1 d 1 dand
d dr fc c
p p
φ ρ

φ ρ
= =                        (6) 

( ) ( ) .r f
pc c K p g z q
t

ρφρ ρ
µ
 ∂

+ −∇ ⋅ ∇ − ∇ = ∂  
                (7) 

In the special case of incompressible rock and fluid (generally acceptable for liq-
uid systems) the partial differential equation (PDE) simplifies to a Poisson elliptic 
equation. 

2.2. Two Phase Flow 

The space in a reservoir is generally filled by both an oleous phase and brine. In ad-
dition, during secondary recovery processes, water is frequently injected in order to 
improve oil recovery. If the fluids are immiscible, they are referred to as phases. A 
two-phase system is commonly divided into a wetting and a non-wetting phase, 
given by the contact angle between the solid surface and the fluid-fluid interface on 
the microscale. For each pair of phases, one phase will wet the rock more than the 
other phase, and that phase will be referred to as the wetting phase (j = w). The 
other phase is then the non-wetting phase (j = nw). Normally, water is the wetting 
phase in a water-oil system, and oil is the wetting phase in an oil-gas system. In the 
absence of phase transitions, the saturations change when one phase displaces the 
other. During the displacement, the ability of one phase to move is affected by the 
interaction with the other phase at the pore scale. In the mathematical model, at a 
macroscopic scale, this effect is represented by the relative permeabilities krj (j = w, 
nw), which are a dimensionless scaling factor that depends on the saturation and 
modifies the absolute permeability to account for the rock’s reduced capability to 
make one phase to flow in the presence of the other. Then, the mass conservation 
Equation (8) for each phase yields [15], 

( ) ( ) .j j
j j j

S
u q

t

ρ φ
ρ

∂
+∇ ⋅ =

∂
                       (8) 

And the multiphase extension of Darcy’s law is presented in Equation (9), 

( ).rj
j j j

j

k
u K p g zρ

µ
= − ∇ − ∇                        (9) 

Together, they form the basic system of equations. Because of the interfacial ten-
sion (IFT), the pressure in the two phases will differ. This difference is called capil-
lary pressure ( c nw wp p p= − ), which is usually assumed on the macroscale to be a 
function of saturation. From the formulation exposed previously, the following 
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Equations (10) and (11) can be derived, 

1

Np

T i
i

u u
=

= ∑                               (10) 

( )
rw

w
w w

rw rnw

w nw

k

f S
k k

µ

µ µ

=
+

                         (11) 

where Tu  is the total Darcy velocity, which is useful in schemes employed to solve 
the system of equations, and ( )w wf S  is the fractional flow of the wetting phase. 
The system of equations derived from the formulation of two phases can be solved 
using various numerical techniques. The most used schemes are: formulation using 
the pressure of both phases, known as simultaneous solutions (SS); formulation 
using pressure and saturation phase, known as IMPES or IMPSAT, depending on 
the numerical treatment of the saturation equation (explicit or implicit, respective-
ly), and the global pressure formulation [62]. 

The volume fraction occupied by each phase is defined as the saturation of that 
phase. Thus, for a two-phase system, and considering no phase transitions, the sum 
of the saturation of both the wetting and non-wetting phases is equal to unity, as 
presented in Equation (12). Similar to the void space indicator function, the phase 
indicator piece-wise function is defined by Equation (13), 

( )
1

, 1
Np

i
i

S x t
=

=∑                             (12) 

( )
1 if phase  at time 

,
0 if phase  at time j

x j t
f x t x

x j t
∈

= ∀ ∈Ω ∉
              (13) 

Then, the saturation of the phase j in an REV Ω0 element with characteristic di-
mension x0 will be defined by Equation (14), 

( )
( )
( )

0

0

0

0

, dVolume of phase  in REV at time , .
Volume of void space in REV d

j

j

f x tj tS x t
f x

Ω

Ω

Ω
= =

Ω

∫
∫

       (14) 

The relative permeability of each phase depends on the phase saturations but 
does not depend directly on fluid flow properties [63]. If only a single phase is 
present the relative permeability has no physical meaning, but in a multiphase sys-
tem, the flow of one phase interferes with the others, hence this influence is taken 
into account in the Darcy equation (krj ≤ 1). It is usual in multiphase systems to use 
correlations of the relative permeabilities expressed as functions of the wetting 
phase saturation (Equation (15) and Figure 5), 

( ) ( ), .rw rw w rnw rnw wk k S k k S= =                       (15) 

In addition to relative permeability correlations, also analytical capillary pres- 
sure functions are needed. In two phase simulations it is standard to use the rela-   
tions provided by either Brooks-Corey or Van Genuchten [36]. As for the relative  
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Figure 5. Relative permeability for oil-wet (left) and water-wet (right) formation rocks. 
 
permeability, these depend on empirical constants (e.g., if the system is oil-wet or 
water-wet), so several models have been developed through the years [64]-[70]. 

2.3. Compositional Models 

In two phase models it was assumed a no mass transfer condition between the 
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phases. This assumption is valid for two phase flows of water/brine and oil, which 
is often the case in primary and secondary recovery mechanisms. In EOR processes, 
mass transfer and compositional effects are deemed essential to model accurately as 
they may become the driving mechanisms for the displacing process. A typical re-
servoir fluid may consist of several different chemical pseudo-components. Fully 
compositional models must be used when the fluid flow depends strongly on com-
ponent transfer between phases. In fact, many EOR techniques, mainly chemical 
and miscible gas processes, are specifically designed to take advantage of the phase 
behavior of multicomponent fluid systems. Because these components may be 
transferred between phases (and change their composition), the basic conservation 
laws must be expressed for each component instead for each phase. For a chemical 
flooding compositional model, the governing differential equations consist of a 
mass conservation equation for each component, Equation (16), and Darcy’s law 
for each phase [20] [71] [72]. 

( ) ( ) ( )
1

, 1, 2, ,
pN

j j j j j j j
i i i i i i comp

j
z c u D c q Ad i N

t t
ρ φ ρ ρ φ

=

 ∂ ∂
= −∇ ⋅ − ∇ + − = ∂ ∂ 

∑    (16) 

1 1
, 1

p compN N
j j j

i i i
j i

z S c c
= =

= =∑ ∑                        (17) 

Here zi is the overall concentration of component i calculated by Equation (17), 
Ncomp is the number of components in the system, j

ic  is the volumetric concentra-
tion of the component i in the phase j, j

iD  is the diffusion-dispersion tensor of the 
component i in the phase j, and Adi is the amount of component i adsorbed by the 
rock formation. In this formulation is neglected the reduction of porevolume due 
to adsorption of chemical components onto the rock surface. As in the previous 
models, the velocities are modeled using the multiphase extension of Darcy’s law. 
This system is just the starting point of modeling and must be further manipulated 
and supplied with extra equations (PVT models, phase equilibrium conditions, see 
Phase Partitioning) for specific fluid systems. This model is developed under the 
following assumptions: local thermodynamic equilibrium, immobile solid phase, 
Fickian dispersion, ideal mixing and Darcy’s law, though some of these fluids may 
not have a Newtonian behavior. Sources and sinks of a component can result from 
injection and production of this component by external means. The advantage of 
the compositional approach is the ability to handle various processes within the 
fluid phase, such as chemical reactions among components, radioactive decay, any 
kind of degradation and growth due to bacterial activities that cause the quantity of 
this component and/or its properties to increase or decrease. When miscibility de-
velops, relative permeabilities vary with IFT due the influence of the latter in the 
capillary desaturation curves. Phase viscosities are generally given by empirical 
correlations that consider the viscosity a function of the mole fractions and molar 
density for the phase. However, the non-Newtonian behavior of some oils and so-
lutions used in chemical EOR should be taken into account by means of proper 
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rheological correlations (Power Law, Carreau-Yasuda, Unified Viscosity Model 
[73]). 

In addition to the advective, directional movement of a component described by 
the Darcy phase velocity, components may also move due to dispersive forces. The 
simplest movement is molecular diffusion described by the random Brownian mo-
tion of molecules. Such motion is usually considered in reservoir simulation of neg-
ligible importance compared to other forces acting on the fluid. A more substantial 
phenomenon is mechanical dispersion. Narrow channel flows experience parabolic 
diffusion along the fronts (Taylor dispersion) and the irregular pore networks dis-
perse the mass at a microscale (Figure 6). The tensor of hydrodynamic dispersion 
considering the mentioned effects is expressed in Equation (18) [20] [39] [46] [47] 
[74], 

( ) ( )
2

j j j j j j j j
i iD S dm I u dl E u dt E uφ ⊥ = + +                 (18) 

where j
idm  denotes the molecular diffusion constant of the component i in the 

phase j, the factors dlj and dtj are the parameters of longitudinal and transversal 
dispersivity of the phase j, 

2

ju  is the Euclidean norm of the phase velocity, and 

( )jE u  is the orthogonal projection along the velocity field as expressed in Equa-
tions (19) and (20). Mechanical dispersion models the spreading of the component 
on the macroscopic level due to the random structure of the porous medium and 
depends on the size and direction of the flow velocity. 
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 
 
 

=  
 
 
 

                 (19) 

( ) ( )j jE u I E u⊥ = −                          (20) 

The dispersion part of the tensor is significantly larger than the molecular diffu-
sion; also, dlj is usually considerably larger than dtj and their relationship can be  

 

 
Figure 6. Different types of mechanical dispersion phenomena: the velocity profile developed 
due to the no-slip boundary condition (a) leads to a longitudinal spreading of the compo-
nent (Taylor diffusion); the stream splitting in (b) leads to a transversal spreading, and the 
tortuosity effect in (c) leads also to a longitudinal spreading (adapted from [28] [31]). 
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expressed as a function of the Peclet number [20] [46]. Nevertheless, at low Peclet 
numbers (Pe < 10) both dispersitivies are of the same order of magnitude [75]-[77]. 
Dispersion can represent small scale movements not captured by the REV used in 
the mathematical model, but according to Heimsund [28], taking this into account 
in the numerical model may be troublesome [78] [79]. It is worth mentioning that 
some numerical schemes, especially first order methods (see point 3.2), add artifi-
cial diffusion which is most of the times far greater than the physical dispersion 
discussed here. It is then advisable that when using naturally dissipative schemes 
the physical dispersion to be neglected [28] [54] [80]. 

If a compositional model is formed by a system of Ncomp components and Np 
phases, there are a total of ( )3p compN N⋅ +  unknowns. The unknowns in each grid 
block are: p compN N⋅  concentrations, for each component on each phase, and 3Np 
values for saturation, pressure and Darcy velocities. The governing system de-
scribed previously include Ncomp conservation of mass equations, Np − 1 capillary 
pressure relationships, Np Darcy equations, Np phase constraints, one saturation 
constraint. To define the system of equations a number of ( )1comp pN N⋅ −  extra 
relationships shall be defined so as to define the system, considering an isothermal 
medium and local thermodynamic equilibrium. This is usually determined by equi-
librium thermodynamic considerations [20] [42] [81]-[83]. These relationships 
take the form of Equation (21) relating components i1 and i2 of phase j, 

( )1
1 2 1 2 1 2

2

, , , , , .
j

i j j j
i i i i i ij

i

c
K T p p c c

c
=                        (21) 

2.4. Energy Equation 

In case the flow cannot be considered isothermal, or the recovery process involves 
the addition of considerable amounts of energy to the reservoir, an extra condition 
and variable must be introduced to the system. The conservation of energy, Equa-
tion (22), and its dependent variable, the temperature, are then added to the system. 
The major difference with respect to the other equations is that the energy is also 
conducted by the rock formation, and not only between the phases. If the local 
thermal equilibrium concept is applied, the temperature in the REV for all the 
phases and the porousmedium is considered to be the same and the energy equa-
tion is as follows [20], 

( ) ( ) ( )
1 1

1
p pN N

j j j j j j
s s t H L

j j
S U C T u H k T q q

t
φ ρ φ ρ ρ

= =

   ∂
+ − +∇ ⋅ − ∇ = −   ∂    

∑ ∑     (22) 

where Uj is the specific internal energy, Cs the specific heat capacity of the rock, Hj 
the enthalpy of the phase, tk  the thermal conductivity tensor, qH the enthalpy 
source term, and qL the heat loss. In most of the chemical EOR operations, the heat 
transfer is considered negligible and therefore an isothermal assumption is valid. 

2.5. Well Models 

A production/injection well is a vertical (or vertical/horizontal in case of horizontal 
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wells), open hole through which fluid can flow in and out of the reservoir, accord-
ing to the strategies or its degree of maturity. These are cemented and then perfo-
rated along specific intervals (multi-zone wells). The primary function of produc-
tion wells is to extract hydrocarbons and later on, the water/chemical products in-
jected as part of EOR processes. On the other hand, injection wells can be used for 
disposal of certain fluid (e.g. CO2 storage) as well as to inject chemical solutions so 
as to increase the recovery efficiency, sweeping the oil towards production wells. 
These wells are controlled through surface facilities (e.g. choke valves, Christmas 
trees) (Figure 7). 

The main purpose of a well model is to represent the flow in the wellbore and 
provide equations that serve as input for the mass conservation and Darcy equa-
tions, to calculate the flow rate of each component being injected or produced. 
Generally, the bottomhole pressure is significantly different from the average pres-
sure in the perforated grid blocks. Modeling injection and production of fluids us-
ing point sources causes numerical problems in the flow field, so the concept of 
Productivity/Well Index (PI) was introduced in the form ( )wfq PI p p− = − , to re-
late the bottomhole pressure pwf to the numerically computed pressure p inside the 
model [19]. The well index PI takes into account the geometric characteristics of 
the well and the properties of the surrounding rock, as it is indicated in Equation 
(23). 

Peaceman [85] developed a numerical correlation to calculate the productivity 
index. Assuming steady-state radial flow, the well index for an anisotropic medium 
represented on a Cartesian grid in three dimensions yields, 
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     ∆ + ∆       ∆  = ⋅ =
      +   +         

       (23) 

where s is the skin factor, rw is the well radius and r0 is the effective block radius at 
which the steady-state pressure equals the computed block pressure. The Peaceman 
model has been also extended to horizontal wells and it was modified to take into 
account non-square grids, boundary blocks and non-Darcy effects [45] [86]-[89]. 

3. Numerical Techniques for Fluid Flow in Porous Media 

Reservoir flow problems can be highly complex, consisting of many different phys-
ical effects when it comes to EOR processes. The analysis of all these phenomena 
can be achieved, up to some extent, by laboratory experiments or field tests at small 
scale, but these tend to be expensive to conduct may not be extrapolated to the 
whole reservoir. In order to solve this problem, mathematical models became pro-
gressively more important. Using these along with analytical solutions, engineers 
provided basic performance predictions so as to modify production strategies. 
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Figure 7. Schematic representation (out of scale) of a single-zone, conven-
tional oil well (adapted from [84]). 
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Several numerical formulations are employed to solve the non-linear systems of 
equations. The most stable approach is a fully implicit solution technique in pres-
sure and saturation/concentration, but this generally leads to large, ill-conditioned 
matrices. Another scheme broadly utilized in compositional formulation consists, 
in order to reduce the level of implicitness, to solve the pressure equation system 
implicitly (which can be viewed as an overall volume balance) plus a sequence of 
(Ncomp − 1) components conservation equations [20] [90]-[95]. The conservation 
equations have a strongly hyperbolic character due to the advective term. The over-
all technique is called an IMPEC (implicit in pressure, explicit in concentration). 
IMPEC methods are often limited by stability restrictions on the time step size due 
to their explicit scheme, but solutions do not suffer less smoothing than fully impli-
cit methods, which strongly affect the performance prediction of compositional 
models [72]. Different implicit techniques are also used and often provide en-
hanced efficiency, allowing bigger time steps than those employed with IMPEC. 
One of these methods is the implicit pressure and saturation (IMPSAT) procedure, 
in which pressures and (Np − 1) saturations (but not compositions) are determined 
implicitly [82]. Different techniques worth of mentioning are: Adaptive implicit 
(AIM) [82] [96], bilinear approximation techniques [97], preconditioning schemes 
[98] [99], parallel computing and adaptive mesh refinement (AMR) in composi-
tional simulation [72] [100] [101]. 

3.1. Numerical Schemes 

The aim of this section is the derivation and explanation of the numerical schemes 
to be used for solving differential equations presented above, as well as also explain 
the reasons for the occurrence and possible numerical solutions of certain pheno-
mena that affect simulation results [102]. The equation to be used as a model is the 
one-dimensional advection-diffusion Equation (24), which is a simplification of the 
continuity equation presented for the compositional model, 

2

2 .u u uv D
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
                            (24) 

Using a finite-difference approach the continuous domain is transformed into a 
discrete representation with a finite number of points in both a spatial (i) and tem-
poral ( n ) grids. Then, the time derivative in previous equation is expressed using 
a Taylor series expansion around the point n

iu  yielding Equations (25) and (26), 

( )
2 2

1 3
22

nn
n n

i i
i i

u t uu u t t
t t

+ ∂ ∆ ∂
= + ∆ + + ∆

∂ ∂
                (25) 

( )
1n n n

i i

i

u uu t
t t

+ −∂
= + ∆

∂ ∆
                       (26) 

where ( )t∆  is the Bachmann-Landau notation used to describe the extra error 
terms in the Taylor approximation to the time derivative. Time and spatial opera-
tors may have finite-difference schemes with different orders of accuracy and in 



P. Druetta et al. 
 

417 

this case the overall order of the equation is determined by the differential operator 
with the largest truncation error. Noteworthy is also that while the truncation error 
is expressed for the differential operator, the numerical algorithms will not be ex-
pressed in terms of the differential operators and will therefore have different 
(usually smaller) truncation errors. Following a similar procedure, the finite-dif- 
ference approximations in Equations (27) and (28) are obtained for the space de-
rivative in backwards and centered forms as, 

( )1
n n n

i i

i

u uu x
x x

−−∂
= + ∆

∂ ∆
                       (27) 

( )21 1 .
2

n n n
i i

i

u uu x
x x

+ −−∂
= + ∆

∂ ∆
                     (28) 

Even though the centered scheme has a higher order of precision, it generates 
unstable results when applied to the advection equation (wave transport equation). 
Hence, numerical methods using only points that are “upwind” of the wavefront 
are employed [103]. 

The inclusion of diffusion phenomena in the description of a fluid flow leads to 
non-trivial complications in the numerical solution of the mass conservation equa-
tions. From an analytical point of view, the resulting equations are no longer purely 
hyperbolic PDE’s but rather mixed hyperbolic-parabolic PDE’s. This means that 
the numerical method used to solve them must necessarily be able to cope with the 
parabolic part of the equations. For the diffusive term, the second order derivative 
is usually discretized using a centered scheme yielding Equation (29), 

( )
2

21 1
2 2

2
.

n n n n
i i i

i

u u uu x
x x

+ −− +∂
= + ∆

∂ ∆
                   (29) 

The final upwind discretized equation (FTUS-Forward in Time, Upwind in 
Space) and its matrix form for the advective-diffusive system are then presented in 
Equations (30) and (31), respectively. 

( )
1

1 1 1
2

2 ,
n n n n n n n

i i i i i i iu u u u u u uv D x t
t x x

+
− + −− − − +

+ = + ∆ ∆
∆ ∆ ∆

         (30) 

1n nAu Bu C+ = +                          (31) 

In Equation (30) the order of accuracy is expressed as function of both indepen-
dent variables ( ),x t∆ ∆ , inferring that both discretization schemes for spatial and 
temporal grids have influence in the total error of the numerical model. The solu-
tion at the new time-step 1n +  can be calculated explicitly from the quantities 
that are already known at the previous step n . This differs with an implicit 
scheme in which the finite-difference representations of the differential equation 
are expressed of terms at the new time-level 1n + . These methods require solving 
a number of coupled algebraic equations. 

Table 1 presents several finite-difference schemes indicating their orders of ac-
curacy both in spatial and temporal grids and their representation in a purely  
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Table 1. Most common numerical schemes used in reservoir simulation. 

Method Order Finite-Difference Form 

Purely Advective 

Upwind (FTUS) ( ),x t∆ ∆  
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1 0
n n n n
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Purely Diffusive 

Leapfrog ( )2 2,x t∆ ∆  
1 1

1 1
2

2
2

n n n n n
i i i i iu u u u u

D
t x

+ −
+ −− − +

=
∆ ∆

 

Crank-Nicholson ( )2 2,x t∆ ∆  
1 1 1 1

1 1 1 1
2 2

2 2
2

n n n n n n n n
i i i i i i i iu u u u u u u uD

t x x

+ + + +
+ − + −

 − − + − +
= +  ∆ ∆ ∆ 

 

Dufort-Frankel ( )2 2 2 2, ,x t t x∆ ∆ ∆ ∆  
1 1 1 1

1 1
22

n n n n n n
i i i i i iu u u u u u

D
t x

+ − + −
+ −− − − +

=
∆ ∆

 

 
advective or diffusive 1D equation. 

Table 2 summarizes the most common discretization schemes and their orders of 
accuracy [102]. Higher orders schemes allow increasing the accuracy of the numer-
ical model but at the cost of requiring a higher number of points to make the eval-
uation of the derivatives. This increases both the computational cost and the diffi-
culty of evaluating derivatives near the boundaries. 

A key factor in all numerical schemes is the issue of how treating the solution on 
the boundaries of the spatial grid as the time evolution proceeds. Two types of con-
ditions are generally used in reservoir simulation to describe whether the Darcy 
velocity or the pressure of a phase at the boundaries. These are: Dirichlet type con-
ditions, when the values of the relevant quantity are imposed at the boundaries of 
the grid (these values can be either functions of time or be held constant), and Von 
Neumann type conditions, when the values of the derivatives of the relevant quan-
tity are imposed. 

3.2. Numerical Dissipation and Dispersion 

The exact solution of the discretized equation satisfies a PDE different from the one 
being solved. This difference is represented by the local truncation error (LTE) of  
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Table 2. Higher order schemes for first and second order derivatives. 

Type Difference Stencil Order 
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∂

 

Backward 1
n n

i iu u
x

−−
∆

 ( )x∆  
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the numerical scheme. The LTE can be expressed as a function of higher order de-
rivatives [104] [105], 
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The procedure to calculate this error and assess its contribution to the numeric 

solution is straight-forward. It consists in performing an expansion in a double 
Taylor series around a single point n

iu , both in spatial and temporal grids to obtain 
a modified PDE. Besides, the high-order time derivatives as well as mixed deriva-
tives must be transformed in terms of space derivatives using this modified PDE. 
The analysis for the truncation error in the 1D advective-diffusive equation is pre-
sented using two numerical schemes: firstly the upwind scheme and subsequently 
the Lax-Wendroff scheme. For the upwind scheme it yields Equation (32), 
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Introducing these terms from Equations (33), (34) and (35) in the numerical 
scheme presented in Equation (32) it yields, 
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Rearranging Equation (36) to split the original PDE and the truncation error, 
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         (37) 

Now the temporal derivatives in Equation (37) are transformed in space deriva-
tives. Furthermore, using Courant and Peclet dimensionless groups presented in 
Equation (38) the LTE for the method is derived in Equation (39), 
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            (39) 

The numerical scheme does not solve the original PDE, but a modified PDE with 
extra terms of higher order derivatives. The extra term containing the second order 
derivative is interpreted as a numerical diffusion, additional to the physical coeffi-
cient D. As long as the Cr < 1 condition is met, the numerical solution will produce 
an artificial smearing given by the term ( )2 (1 )v x Cr∆ − . The term containing the 
third order derivative is interpreted as a numerical dispersion, which causes phase 
errors in the wave speed v. As this term is positive the spurious oscillations occur 
ahead of steep wave fronts. To summarize this analysis, the terms of derivatives of 
even-order provoke a numerical diffusion which modifies the amplitude of the 
wave, while odd-terms cause numerical dispersion, which translates as oscillations 
in the wave front (Figure 8). 
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Figure 8. Influence of even (left) and odd (right) higher order derivatives in the numerical 
solution (adapted from [104]). 

 
One way to reduce these numerical errors is by means of additional, artificial 

factors which stabilize or decrease the previously seen effects. As an example, the 
streamline diffusion method consists in adding a term of artificial diffusion to 
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counteract the added terms by the numerical scheme; the non-oscillatory shock- 
capturing methods, TVD (Total Variation Diminishing) or flux-limiters [19] can 
also be listed as improved schemes to overcome these effects. To reduce the influ-
ence of these differences a possible solution is also to use schemes of superior or-
ders (see Table 2). As an example of these techniques, the same analysis done for 
the upwind scheme is performed using the Lax-Wendroff method. The latter due to 
the fact that the time derivative is expressed as a second order Taylor series expan-
sion [104] [105]. The numerical model to solve is presented in Equation (40), 
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Following a procedure similar to the previous scheme it renders Equation (41), 
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As shown, the first diffusive term in the LTE has disappeared leaving the disper-
sive term as the main source of error in this method. Since this term is negative, the 
spurious oscillations occur behind steep fronts. It is worth mentioning that a more 
accurate numerical scheme is not necessarily a preferable one. As an example, the 
upwind and the Lax-Friedrichs methods are both dissipative, thelatterisgenerical-
lymoredissipativedespitebeingofhigherorderaccuracyinspace. 

3.3. Flux Limiters 

In the previous section two of the most common numerical schemes utilized were 
introduced, and the advantages or disadvantages of each were studied and inferred. 
While the upwind scheme can handle steep gradients, it is very diffusive and 
moreover a first order scheme; on the other hand, Lax-Wendroff is a second order 
scheme, less diffusive but presents serious problems when sharp gradients are 
present in the system. Therefore, new numerical schemes were published coupling 
low- and high-resolution methods, taking advantage of the mentioned characteris-
tics [104] [106]-[115]. For this analysis, it is considered the 1D advection-diffusion 
Equation (42) in term of fluxes, with no diffusive terms. 

( )
1

1 2 1 2
1 0.

n n
n ni i

i i
u u

F F
t x

+

+ −

−
+ − =

∆ ∆
                     (42) 

The idea behind this concept is then to write the fluxes as a function of low- and 
high-resolution numerical schemes as in Equation (43), using a proportionality 
factor. 

( ) ( )1 2 1 2 1 2 1 2 1 21n high low
i i i i i i iF r F r Fψ ψ± ± ± ± ± = ⋅ + − ⋅                  (43) 

The proportionality factor, also called flux limiter function introduced in Equa-
tion (44), depends on the ratio of consecutive gradients in the numerical mesh, this 
is, 
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−
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−
                               (44) 

Using the FTUS and Lax-Wendroff in Equation (45) as low- and high-resolution 
schemes respectively, the flux is calculated according to Equation (46), 

( ) ( )1 2 1 2 1
1

,
2

low high
i i i i i i

v Cr
F v u F v u u u+ + +

−
= ⋅ = ⋅ + −                (45) 

( ) ( ) ( )1 2 11 2

1
.

2
n

i i i i ii

v Cr
F v u r u uψ + ++

−
= ⋅ + ⋅ −                  (46) 

Finally, the discretized advection Equation (47) is written in terms of the flux li-
miter parameter, 

( ) ( ) ( )
( ) ( ) ( )

1
1 2 1

1 2 1

1
2

1
2

n n n n
i i i i i i

n n
i i i i

Cr Cr
u u Cr r u u

Cr Cr
r u u

ψ

ψ

+
− −

+ +

− 
= − − − − 

 
−

− −



           (47) 

( ) ( ) ( ) ( ) ( )1 21
1 2 1

1 2

1 1
1 .

2 2
i in n n n

i i i i i i
i

rCr Cr
u u Cr r u u

r
ψ

ψ ++
− −

+

 − −
= − − + − 

  
      (48) 

Equation (48) resembles the FTUS scheme with a modified Courant number 
[107] [110] [111]. The properties of stability and monotony of the FTUS are well- 
known. So for the new numerical scheme to meet these requirements the In Equa-
tion (49) must be valid, 

( ) ( ) ( ) ( )1 2
1 2

1 2

1 1
0 1 1.

2 2
i i

i i
i

rCr Cr
Cr r

r
ψ

ψ +
−

+

 − −
≤ − + ≤ 

  
             (49) 

This is valid for positives values of r, when the following two conditions in In 
Equation (50) are met (Figure 9). 

( ) ( )0 , 2
r

r
r

ψ
ψ

 
≤ ≤ 
 

                          (50) 

Further, more restrictive constraints are applied in order to make the scheme 
second order in accuracy (Figure 10). Several high-order flux limiter functions were 
developed within this region. These are characterized by a low numerical disper-
sion in high gradient fields as well as being less diffusive than traditional schemes 
(FTUS) in low gradient advection phenomena (Table 3 and Figure 11). 

3.4. Consistency and Stability 

This review concludes with the study of three concepts related with numerical si-
mulation. The first to be defined is the consistency of a numerical scheme: Given a 
PDE in its operator form ( ) 0u f− = , a finite difference scheme applied to this 
PDE ( ) ( )0 ,n n p p

i iu f x t∆ − = + ∆ ∆  , and the LTE being expressed by means of a 
representative variable ( ) ( ) ,p ph Ch h Cδ = = ∀ ∈ , then the finite difference 
scheme is consistent with the PDE if and only if ( )0lim 0h hδ→ = . 
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Figure 9. Total variation diminishing (TVD) region for the flux limiter func-
tion. 

 

 
Figure 10. Total variation diminishing second-order accuracy region for the 
flux limiter function. 

 
While the concept of consistency associates the original PDE with the discretized 

equation, it is necessary but is not sufficient to ensure that the numerical results 
converge to the exact solution. It should also be ensured that the numerical results 
of the discretized equation converge to the exact results of the discretized equation. 
This concept may seem trivial, but numerical errors introduced during simulation  



P. Druetta et al. 
 

425 

 
Figure 11. Second-order TVD functions presented in Table 3. 
 
Table 3. Most commonly used flux limiter functions. 

Type Flux Limiter Function Reference 

Superbee ( ) ( )max 0,min 2 ,1 ,min ,2r r    Roe [116] 

Minmod ( )max 0,min ,1r    Roe [117] 

Van Leer 
1
r r

r
+

+
 Van Leer [118] 

Van Albada 
2

21
r r

r
+
+

 Van Albada [119] 

Koren 
2max 0, min 2 , , 2

3
rr +  

    
 Koren [120] 

CHARM 
( )
( )2

3 1

1

r r
r
⋅ +

+
 Zhou [121] 

MUSCL 
1max 0,min 2 , , 2

2
rr +  

    
 Van Leer [122] 

 
can grow boundless, amplifying the errors until the system eventually collapses. 

This is ensured introducing the concept of numerical stability. To understand 
this, a system of equations written in the form of modified PDE Equation (31) is 
analyzed. Perturbations at the baseline as well as at a generic time n m t= ∆  due 
to numerical errors during the simulation are introduced. This is expressed as 

n n n
i i iu u= +   and 0 0 0

i i iu u= +  . Replacing these values it renders Equation 
(51), 

1 1 1 .n n n n n nAu Bu A B G+ + += → = → =                    (51) 

where G  is the amplification matrix of the numerical perturbations in the system. 
Using Equation (51), a relationship between the perturbations at the time step n  
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with the initial perturbation can be established. 
1 1 02n n n nG G G+ −= = = =                        (52) 

Equation (52) exposes a central issue in the stability analysis: the question of 
whether amplification matrices have their powers uniformly bounded. In order for 
the numerical errors to not be amplified during the simulation, a stability restric-
tion is then defined 

2
,nG K K≤ ∈ . According to this condition, the only way to 

keep the errors limited and prevent their propagation and amplification is fulfilling 
the condition established in Equation (53), ensuring the existence of K. 

( )
2

, 1nG K n Gρ≤ →∞⇔ ≤                      (53) 

where ( )Gρ  is the spectral radius of the amplification matrix. Hence, a one-step 
finite difference scheme approximating a PDE is a convergent scheme if and only if 
it renders the exact solution of the original PDE, expressed mathematically in Equ-
ation (54), 

( ) 00
0

lim , 0, , , .m t
n xx

t

u x t u m n x n x t m t∆ +
∆∆ →

∆ →

 − = ∀ ∈ ∧ = ∆ = ∆  
          (54) 

These three concepts can be summarized in the following theorem: Given a 
properly posed initial-value problem and a finite difference approximation to it, 
that satisfies the consistency criterion, stability is the necessary and sufficient con-
dition for convergence. This theorem, known as the “Lax-Richtmyer equivalence 
theorem” or Fundamental Theorem of Numerical Analysis (Figure 12), is quite 
important since it shows that consistency, stability and convergence are strictly  
 

 
Figure 12. Scheme of the Lax-Richtmyer equivalence theorem. 
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related. In general, proving that the numerical scheme adopted is stable will vali-
date that the discretized equations represent the PDE as well as the numerical er-
rors in the simulation are bounded at all times [102]. 

4. Conclusions 

Reservoir simulation is a branch of engineering that emerged in recent years since 
oil companies needed to justify and evaluate E&P investments. The former is not 
related to only one discipline, but includes the assistance and collaboration of vari-
ous specialists so as to characterize a reservoir, estimate its profitability and give the 
“green light” to the project development phase. Oil reservoirs are geological traps 
where oil migrated and remained for long periods of time. An accurate determina-
tion of their physical characteristics has not yet been developed and statistical tools 
are used along with complex field tests to extrapolate these properties. In addition, 
oil is not a homogeneous, pure fluid but is composed by a large group of different 
components which may alter its properties. Hence, a set of variables must be pre-
viously evaluated and studied in order to get feasible results. The research and de-
velopment of new exploration technologies to reduce the model uncertainties are 
deemed essential. These, along with production studies at reservoir scale on pilot 
wells will allow performing accurate history matching analysis. Due to the current 
oil reserve conditions and future production estimates, these new technologies 
should also consider their applicability also in non-conventional oil reservoirs (e.g. 
oil sands, tight oil, shale oil), or in geographical areas with harsh conditions (e.g. 
off-shore platforms). 

Fluid flow simulations are performed using two different approaches: the Navier- 
Stokes equations throughout a complex network of microchannels in the porous 
medium; or the assumption of a continuum with averaged properties using Darcy’s 
equation, rendering a system independent of the geometry at a microscopic scale. 
The first is only circumscribed to specific laboratory tests and has limited applica-
tion in field studies. This is due to several factors, among them the uncertainties 
associated with the poral geometry in the field as well as high computational costs 
required to solve the system of equations. However, this approach might be useful 
in the design of new chemicals while being evaluated at a microscopic level. These 
studies should then be supplemented with scale reservoir simulations and field tests 
using Darcy’s equation. 

Subsequently, the mathematical tools for reservoir simulation using Finite Dif-
ference Methods (FDM) were presented. The errors introduced by these schemes as 
well as possible solutions to tackle these problems have been addressed. The nu-
merical convergence of a system of PDE’s is a critical aspect that must be taken into 
account in order to limit numerical errors. In addition, the continuous increase in 
the complexity of numerical models has demanded a proportional increase of 
computational power to obtain results in a reasonable time frame. The develop-
ment of new schemes of higher orders of accuracy as well as models dealing with 
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the non-linearities present in the simulation could reduce either the computational 
requirements or the numerical errors produced. Besides the FDM’s discussed in 
this review, other numerical schemes of higher complexity are used and offer cer-
tain advantages, such as the capability of dealing with complex geometries or geo-
logical faults. These techniques are, among others: Finite Element Methods (FEM), 
Finite Volume Methods (FVM), Immersed Boundary (IB), hybrid methods, etc. 
However, these advantages are related to the degree of certainty in the definition of 
the physical boundaries and properties of the reservoir. Then, the development of 
the aforementioned technologies and the application of these methods are strongly 
connected and will allow increasing the computational efficiency and reliability of 
reservoir simulations. 
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