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Abstract

The main purpose of this survey paper is to point out some very recent developments
on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept
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of strongly extended s-convex function is introduced. Next a new identity is also es-
http://dx.doi.org/10.4236/apm.2016.611060

tablished. Finally, by this identity and Ho6lder’s inequality, some new Simpson type
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1. Introduction

Convex function is a kind of important function and has wide applications in pure and
applied mathematics [1]. Since convex analysis appeared in 1960s, there has been tre-
mendous interest in generalizing convex function [2]. In recent years, the generalized
convex function and its application have been hot issues. The main purpose of this
survey paper is to point out some very recent developments on Simpson’s inequality for
strongly extended s-convex function.

First, some definitions concerning various convex functions are listed.

Definition 1.1. A function f:lcR= (—oo,oo) — R is said to be convex if
f(AX+(1-A)y)<Af(x)+(1-2)f(y)

holds forall x,yel and A€ [0,1] .

The s-convex function was defined in [3] as follows.
Definition 1.2. A function f:1 cR—R;=[0,00) is said to be s-convex if

f(Ax+(1-2)y)<A*f(x)+(1-2) f(y) (1.1)
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for some se(0,1], where x,yel,2€[01].

If s=1, the s-convex function becomes a convex function on R,.

In [4], the authors introduced the class of real functions of extended s-convex, de-
fined as follows.

Definition 1.3. ([4]). A function f:| c R — R, is said to be extended s-convex if
f(AX+(1-2)y)<A°f (x)+(1-2) f(y) (1.2)

for some Se [—1,1] ,where Xx,yel,le (O,l).

In [5] the concept of strongly convex functions below was innovated.

Definition 1.4. ([5]) A function f :[a,b] > R is said to be strongly convex with
modulus ¢ >0, if

f(Ax+(1-2)y)<Af(x)+(1-2) f (y)-cA(1-2)(x—y)’ (1.3)

isvalid forall X,y e [a, b] , Ae [0,1] .
In [6] the concept of strongly s-convex functions was introduced as follows.
Definition 1.5. A function f:l c R— R, issaid to be strongly s-convex with mo-
dulus ¢>0,and some se(0,1] if

f(Ax+(1-2)y)<A°F (x)+(1-2) f(y)-cA(1-2)(x—y)’ (1.4)

isvalidall x,ye [a, b] , Ae [0,1] .

The following inequalities of Hermite-Hadamard type were established for some of
the above convex functions.

Theorem 1.1. ([7]). Let f:1I° <R — R be differentiable on 1°, a,bel’ with
a<b.

(1) If | f '| is convex function on [a, b] , then

_G-a)(r )] o)

[f(a)+f(b) 1
- f d 1.5
2 p_ale [ () 8 (-9
@ If |f’|p/(p71) is convex function on [a,b], p>1, then
[f(a)+f(b) 1
f d
| 2 b—aj‘al (x)dx
_ o \(p-L)/p (1.6)
b—a |f,(a)|p/(p 1)+|f,(b)|p/(p 1)
T 2(p+1)”? 2 '

Theorem 1.2. ([8]). Let f:l cR— R be differentiable on 1°, a,bel® with
a<b. If |f’|q is s-convex function on [a, b] for some fixed Se(O,l] and q>1,
then

[f(a)+f(b) 1 [ (x)an

| 2 b-a-2

() e eer)
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Theorem 1.3. ([9]). Let f:l cR, > R be differentiable on 1°, a,bel’ with
a<b, and f'el[ab]. If |f'| is s-convex function on [a,b] for some fixed
Se (0,1] , then

%{f(a)n(b) 4f(a;bﬂ—ﬁ " (x)dx

S—4)6°" +2x5"7 —2x3"% +2 . ,
L(s=4) &7 (s+1)(5+2) b—a)(|f'(a)]+|f'(b)])-

(1.8)

In [6], Ju Hua et al. established the following theorem.

Theorem 1.4. Let f :1 c Ry — R, be differentiable mapping on |° and a,bel
with a<b. If f"e(L[a,b]) and [f’]' is strongly s-convex on [a,b] for q=1,
Se (0,1] , then

%{f (a)+2f (Za—;bj+2f (a+32bj+ f (b)}—ﬁj: f (x)dx
6" (b—a)’ {{(5_3)3%2 +(s+7)2°2 I (a)f

324 3 (s+1)(s+2)(s+3)

,oa c(b-a) v
’ s+2)(s+3)| OF =% }

s-1)2°? +s+5 .
[35 s+1; s+2)(s+3) (|f (a)|q

t'(a)
(s -3)3 +(s+7)2°"

q_c(b—a)2 v
T 00:20+3) O T } }

In this paper, the authors introduce the concept of strongly extended s-convex func-

Yq (1.9)
, 11c(b-a)’
+f (b)|q)_ (270 | ]

l—l
|_\

3S s+2 s+3

tion and establish a new identity. By this identity and Holder’s inequality, some new
Simpson type for the product of strongly extended s-convex function and discussed and

some results are obtained.

2. Definition and Integral Identities

Now the concept of strongly extended s-convex function is introduced.
Definition 2.1. A function f :[a,b] > R is said to be strongly extended s-convex
with modulus ¢ >0, if

f(x+(1-t)y) <t f (x)+(1-1) f(y)-ct(1-t)(x—y)’ (2.1)
is valid for all x,ye[a,b] and te(O,l),some Se[—l,l].

For establishing new integral inequalities of Simpson type involving the strongly ex-
tended s-convex function, the following identity is needed:

Lemma 2.1. Let f:l =R — R be differentiable on |1° and where a,bel with
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a<b.If f'eL([ab]), then the following identity holds:

ﬂf(apf(za;b}f(a*;bjm(b)}i " £ (x)dx

b—a-a
_b-a
9

1 3),, 2a+b
jo(t—zjf((l—t)aﬂ 3 jdt
(2.2)
A P L I
o 4 3

3
+j:(t—%j f’((l—t) atfb +tb)dt}.

Proof. By straightforward computation, the result is followed. The proof is com-
pleted.

Lemma 2.2. ([4]). Let f:l R — R be differentiable on |I° and a,bel with
a<b.If f'eL([ab]),then

f(%bj—ﬁ £ (x)dx
:(b—a)(foitf ‘(ta+(1-t)b)dt+ [:(1-t) f'(ta+(1—t)b)dtj.

(2.3)

3. Some Integral Inequalities of Simpson Type

Theorem 3.1. Let f:l1 c R— R, be differentiable mapping on |1° and a,bel with

a<b.If f'el([a,b]) and |f/]" isstrongly extended s-convex on [a,b] for q=1,
se(-1, 1] , then

Hf (a)+f [Za;b} f (a?b} f (b)}—ﬁj: f (x)dx

b-a |Liyg|3x2%"s+2%% 41 g
<——————<57
9X16H/q{ {225*3(s+1)(s+2)| (@)

f,(2a+bj
3
[ s+l
ST : 241 f,(2a+bj
2" (s+1)(s+2) 3
_3S+2_225+2+223+ls f,(a+2bj
3

227 (s+1)(s+2)
2 Va
+3><225*ls+225*2+1 ¢ 7ic(b-a) ] }

3S+2 _ 228+2 + 225+ls
T (511)(s 4 2)

13824

,(a+2bj
+| f
3

4 ~ 71c(b- a)2 Tq

q

3.1
. _c(b—a)z ve  (3.1)
288

q
+5+Ya

223 (s +1)(s+2) O 32

Proof Using Lemma 2.1 and by Hélder’s inequality, the followings can be obtained:
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Hf (a)+ f (2a3+bj+ f (afb} f (b)}—ﬁﬁ f (x)dx
< bga{ t—%Hf’((l—t)aH Za;bj‘dt

t_sz ((1 p2ath, ta+2b]‘
4 3 3

t__Hf,( a+2b ]‘dt}
1-4/q (3.2)
t—é‘dt 1t—§‘ f (1 t)a+ t2a+bj dt
4 o| "2
t_EHf'((l t Za+b 2 jd]
4
q
t_EHf'[(l—t)aJFZb tbj d] }
4 3

k
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where,
Ilt—é‘dtzi, 1t(1—t)‘t—§‘dt:l, lt—g‘dtzi,
of 4] 16’0 4 1536'70| 4 (33)
71 '
tL-n)jt-Jldt= [t dt=—2 t(1-t)ft—=|dt = ——.
j ( )‘ ‘ 32’ 4‘ I ‘ 4‘ 1536
Again |f']" is strongly extended s-convex on [a,b], so
1t—§‘ £/ ((1 t)a+t2a+bj dt
of 4 3
il 3 Slerpand L es|eo( 224D
< Ot—z[(l—t) [t(a)) +t°|f [Tj‘ ]dt
c(b—a)2 1 3
_Tj'ot(l—t)‘t—z‘dt (3.4)
_3><22S+15+225+2+1 q
- 225*3(s+1)(s+2)| (2)
R S f,(2a+qu_7lc(b—a)2
22 (s+1)(s+2) 3 13824
q
jlt_g‘f,((l_t)2a+b+ta+2bj it
0 4 3 3
q q
< 1t—g‘((1—t)s f'(2a+b) +t f’(—a+2b] ]dt
0 4 3 3
(o—a) (3.5)
c(b—a) 1 2
—Tjot(l—t)‘t—z‘dt
s f,(2a+b)q+ f,(a+2qu _c(b-a)
S 2 (s+1)(s+2) 3 3 288
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q

dt

jlt—EHf'((l—t)aJr—%ﬂbj
of 2 3

< I;t—%‘[(l—t)s f'("”Tijr +°|f "(b)|qut

c(b-a) 1
_Tfot(l—t)‘t—z‘dt (3.6)

B 35+2_225+2+22S+IS f;(a+2bj
3

C 259 (s+1)(s+2)
+3x225ﬂs+225+2+1| ( )|q_71c(b—a)2
227 (s+1)(s+2) 13824

q

Substituting the above (3.3)-(3.6) into the inequality (3.2) results in the inequality
(3.1).
Theorem 3.1 is proved.

Corollary 3.2. Under conditions of Theorem 3.1, if =1, then

1 2a+b a+2b 1

—| f(a)+f +f + f(b) |———| f(x)dx
{0 (B2 (2 ] s
b—a{3x225+13+225+2+1 ,

5 |7 el )

3S+2 +225+3 _ 225+2 + 25+2 + 225+1S
227 (s+1)(s+2)

35+2+225+3 _ 225+2 + 25+2 + 225+1S
227 (s+1)(s+2)

f,(2a+bj‘
3
f,(a+2bj‘
3
3x 22542242 41 95¢(b-a)’
RS |f (b)|_# :
257 (s+1)(s+2) 6912

Theorem 3.3. Let f:l cR— R, be differentiable mapping on |° and a,bel
with a<b. If f'e L([a,b]) and |f'| is strongly extended s-convex on [a,b] for
g=>1, s=-1, then

f (agbj—ﬁ 't (x)dx‘
< b_aﬂh'(a)r +(2n2-1)|f'(b)" 5c(b-a)’ r

~ gt 2 192

(3.7)

2 192

+[(2In2—1)|f’(a)|q +|f'(b)] 5c(b-a)’ r |

Proof. Since |f’|q is strongly extended s-convex on [a,b], using Lemma 2.2 and

by Hoélder’s inequality, the followings can be obtained:
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‘f (a%bj—rlajb £ (x)dx
g(b—a)[jo”q f ’(ta+(1—t)b)|dt+.[;2(1—t)|f’(ta+(1—t)b)|dt}

< (b—a){(ﬁztdt)l_yq (onzt| f '(ta+(1—t)b)|th)]/q
Yq

o jlz(l—t)dt)l_]/q (sz(l-t)l f '(ta+(l—t)b)|th)

y

< b_a{[ﬂ/zt(tﬂ f '(a)|q +(1_t)‘l| f '(b)|q —ct(l—t)(b—a)z)dt}]/q

~ gt

+[Lj2(1—t)(t*|f’(a)|q +(@-t)|f(b)[ —ct(l—t)(b—a)z)dt}l/q}

gt 2 192

q q 2 va
_b_a{[|f’(a)| +(2n2-1)|'(b)" 5c(b-a) ]

2 192

+[(2In2—1)|f’(a)|q+|f’(b)|q _5c(b_a)2r |

Theorem 3.3 is proved.
Theorem 3.4. Let f:l c R— R, be differentiable mapping on |I° and a,bel

with a<b.If f'e L([a,b]) and |f’|q is strongly extended s-convex on [a,b] for

q>1, s e(—l,l] , then

Hf (a)+f [2a+b)+ f (a?b} f (b)}—ﬁj: f (x)dx

3
b-a( q-1 )" (143200 )
=73 ( gq_lj PEEUCEY

q ) 1/q
f,[2a+bj‘ _c(b-a) ] 49)

1
s+1

3 54

1 q
—|f'(a)" +
><[s+l ( )|
1 1 ],,(2a+b\" 1. (a+2b
+= f + f
21 s+1 3 s+1 3

143200 Y fr a+2b ' 1 £'(b)" c(b-a) "
| e L Gy v LG B '

s+1
Proof. By the Lemma 2.1 and using Holder’s inequality, the followings can be ob-

* ¢(b-a)’ N
4

5

tained:
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{f(a)+f(za;b)+f(322bj+f(b)}—ﬁ £ (x)dx

a/(a-1)
dt

N

3
4

N——
=
a
7\
—
S
—
7\
—~
[N
|
—
~
QD
+
—
N
QD
+
o
N

f,((1_t)2a3+b it a+32bj

g \Yd
dt]

1-Yq 1/q
T i, a+2b ‘
+[jot—Z dt| | [|f ((1 )= tbj dt| |,
where,

gy g (143 g o)

Lit=51  dt=[t- A=

0 4 0 4 4(2a-1)/(@ (2q—1)

2" a1

of 4 2/ (2q-1)

Since |f" is strongly extended s-convex on [a,b], so

q
[l f’((l—t)a+t2a+b) dt
0
q _ 2
Si“,(a)'q_'_ 1 f,(2a+bJ _C(b a),
s+1 s+1 3 54
q
jlf'[(l—t)2a+b+ta+2b) it
0
1 f,(2a+qu+ 1 f,(a+2qu_c(b—a)2
Ts+1 3 s+1 3 54 '
q
[0 f'((l—t)a+2b+tbj dt
0 3
q _ 2
< 1 f,£a+2b) n 1 |f,(b)|q_C(b a) .
s+1 3 s+1 54

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Substituting (3.10)-(3.13) into the inequality (3.9) yields (3.8). Theorem 3.4 is proved.

4. Conclusion

In this paper, the authors introduce the concept of strongly extended s-convex function
and establish a new identity. Then by this identity and Holder’s inequality, some new

Simpson type for the product of strongly extended s-convex function are obtained.
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