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Abstract 
This paper deals with mathematical modelling of impulse waveforms and impulse 
switching functions used in electrical engineering. Impulse switching functions are 
later investigated using direct and inverse z-transformation. The results make possi-
ble to present those functions as infinite series expressed in pure numerical, expo-
nential or trigonometric forms. The main advantage of used approach is the possibil-
ity to calculate investigated variables directly in any instant of time; dynamic state 
can be solved with the step of sequences (T/6, T/12) that means very fast. Theoreti-
cally derived waveforms are compared with simulation worked-out results as well as 
results of circuit emulator LT spice which are given in the paper. 
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1. Introduction 

It is known that periodical non-harmonic discontinuous function is possible to portray 
in compact closed form using Fourier infinite series [1] [2]. One of the lesser known 
methods is using of Fischer-Turbar definition of 0arc tan  for the main value  

π π;
2 2

− +  based on a standardization of trigonometric function modulo π [3]-[5]. So,  

increasing saw-tooth function with angular frequency ω  can be expressed in closed 
form  

( ) ( )
( )saw

sin2 arctan .
π 1 cos

t
f t

t
ω
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 
=  
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It is also possible to express the rectangular waveform using Laplace or Laplace- 
Carson transform but inverse transform is not easy calculation, particularly for higher 
order systems. Classical solution leads to results in Fourier series form, otherwise the 
Heaviside calculus is to be used [2], [6]. 

Assuming finite switch-on and switch-off times of real-time waveforms the norma-
lized derivative impulse function for given waveforms can be created [7], Figure 1. 

Further, based on zero order hold function and unipolar modulation [8]-[10], the 
switch-off impulses will be substituted by zero points, and result waveforms can be 
presented as follow from, Figure 2. 

The impulse switching functions as in Figure 2 can be easily described in Z-domain 
using basic definitions and rules of Z-transformation. 

2. Description of Impulse Switching Functions in Z-Domain 

Using basic definition of Z-transform-taking into account z-images of constant and al-
ternating series and based on the rules of the Z-transform it can be written [10]. 
 

 
Figure 1. Normalized derivative impulse function of: rectangular waveform with half- 
width-pulse. 

 

 
Figure 2. Impulse switching functions with unipolar control of: rectangular waveform 
with half width. 
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The sum of that geometric series with quotient 1z−  is  

( ) ( )rect1
1 ;

1 11
z zF z F z

z zz−
= = → =

+ ++
                (3) 

where root of the denominator is 1z = − .  
For inverse Z-transform ( ) { }nF z f↔  one can use different methods [11]: 

Cauchy integral residua theorem [12] 
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where 1, , ; 0,1, 2, ,k N n∈ = ∞  ; N is number of poles of denominator and B′  is 
derivative of denominator 
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d k
B z

z z
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=                        (5) 

Taking example 
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                    (6) 
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Applying inverse Z-transform for converter output phase voltages in Z-domain one 
can create impulse switching functions. Residua theorem described above can be used 
for inverse Z-transform ( ) { }nF z f↔ . 

Let’s consider following different discontinuous type of waveforms: 

2.1. Impulse Functions of Rectangular Half Width Waveform 

Using theorem for displacement in the Z-transformation [10] [11] 

( ) ;
1

N

N
zF z

z
=

+
                            (8) 

the Z-image of the 1/2-pulse length rectangular waveform will be: 

( )
2

1 2 2 1res
zF z

z
=

+
                           (9) 

where roots of the denominator 1,2z j= ±  are placed on boundary of stability in unit 
circle [1], [10], Figure 3(a). 

Applying inverse Z-transform one can write 
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(a)                             (b)                           (c) 

Figure 3. Pole placements of denominator polynomials of (a) ( )1 2resF z ; (b) ( )3 _p pwmF z  and (c) 

( )3_phF z . 

 
This result can be expressed in different forms: purely numerical-, exponential-, and 

trigonometric ones 

( ) ( ) ( )21 2

π π
2 2

1 1 1 1
2
1 e e
2

π1cos .
2

n n
res

jn jn

f n

n

−

 = − + − 

  = + 
  
 =  
 

                    (11) 

The all poles of denominator polynomials are placed on boundary of stability of unit 
circle and can be used for further analytic solution. 

2.2. Pulse Modulated Waveforms 
2.2.1. Three-Pulse Modulated Waveform 
Above given approach can also be used for rectangular waveform with half-width of the 
pulse. Graphical interpretation of this switching function is shown in the Figure 4(a). 

Z-transform image ( )F z  of that function will be: 

( )
( )2 4 26 4 2

3 _ 6 6 6 6

2 12 .
1 1 1 1p pwm

z z zz z zF z
z z z z

 + +   = + + = + + + +    
          (12) 

Formula for voltage impulse sequence { }nf  can also be worked-out by inverse 
z-transform using the lema for residua.  

( ){ } { } ( )
( )

( ) ( )

2 4 26
1

3 6
1

4 26 6
2 4

5
1 1

2 1

d 1

d

2 1 1 1 2 ,
66

pwm

k

k

n
p n

k

z z

n n
k k k

k k
z z

z z z
f n f z

z
z

z z z
z z z z

z

−

=

=

− −

= =
=

+ +
≡ =

+

+ +
= = + +

∑

∑ ∑

      (13) 

where roots of the polynomial 6 1z +  are  
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(a) 

 
(b) 

Figure 4. Impulse switching function worked-out using 3 _
π
6p pwmf n 

 
 

 (a) and 3 _
π
3phf n 

 
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 (b). 
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see Figure 3(b). 
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Proof within the frame of one half period: 

( )0
0

π π 1 10 : sin 0 1 sin 0 1.
6 6 2 2

n f    = = + + − + = + =   
   

 

( )11
π π π π 3 31: sin 1 sin 0.
6 6 6 6 2 2

n f    = = + + − + = − =   
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( )2
2

π π π π2 : sin 1 sin 1 1 2.
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( )3
3
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( )4
4

2π π 2π π 1 14 : sin 1 sin 1.
3 6 3 6 2 2

n f    = = + + − + = + =   
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( )5
5

5π π 5π π5 : sin 1 sin 0 0 0.
6 6 6 6
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So, { } 1;0; 2;0;1;0,nf =   q.e.d. 

2.2.2. Three-Phase Impulse Waveform 
The Z-image for three-phase system with discontinuous waveform, Figure 4(b), is 

( )
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    (15) 

where roots of the denominator are 
π
3

1 2,31; e
j

z z
±

= − = , Figure 3(c). 

Applying inverse Z-transform for this three-phase system 
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After adapting 
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Formula (17) can be expressed in exponential form 
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3 3 3 3

3 e e e e ,
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− − 
= + 
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and also in trigonometric one 
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      = + = +            

         (18) 

Proof within the frame of one time period: 

0
π0 : sin 0 1.
6

n f  = = + = 
 

 

1
π π1: sin 2.
3 6

n f  = = + = 
 

 

2
2π π2 : sin 1.
3 6

n f  = = + = 
 

 

3
π3 : sin π 1.
6

n f  = = + = − 
 

 

4
4π π4 : sin 2.
3 6

n f  = = + = − 
 

 

5
5π π5 : sin 1.
3 6

n f  = = + = − 
 

 

So, { } 1; 2;1; 1; 2; 1,nf = − − −   q.e.d. 
Presented in figure worked-out sequences express impulse nature and represent the 

impulse switching functions which can be easily described in Z-domain using basic de-
finitions and rules of Z-transformation. From the Figure 4(c) and pole displacement of 
three-phase impulse system 3_ phF , Figure 3(c) implies that it will feature by 2N-mul- 
tiple symmetry and therefore analysis can be done within one T/6-th of time period 
[13]. 

3. Modelling and Simulation of 2nd Order System with  
Non-Harmonic Periodical Exciting Functions Based on ISF 

Dynamical state model of the systems include exciting functions ( )u t  as an input 
vector. The models can be expressed in a continuous form: 

( ) ( ) ( )d
d
x t

x t u t
t

= ⋅ + ⋅A B                     (19) 

or discrete form, respectively 

{ }1k k ku+ = +x Fx G                        (20) 

where k is order of computation step (not the step of sequence). 
Discrete form of state space model of the investigated system with the step of impulse 

switching function can be obtained directly from the impulse switching functions gen-
erated above:  
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( )( ) ( ) ( )step step1 step step step , 0,1, 2, , ,n n u n n+ ⋅ = ⋅ + ⋅ = ∞x A x B        (21) 

where the step is equal to the step or period, respectively to the impulse sequences pT  
of switching functions. So, when step is equal e.g. π/6 i.e. T/12 (see Equation (17)) 
then 

{ }1 12 12n T n T nx u+ = +x F G                     (22) 

where { } ( )nu u n≡  by Chap. 2, Figure 3(a) and it is 

( ) ( )π π π πsin 1 sin .
6 6 6 6

nu n n n   = + + − +   
   

              (23) 

Determining 12TF  and 12TG  matrix coefficients one can calculate the vector of 
system state variable 1n+x  in discrete time instants, i.e. in the multiple of 12T . 

3.1. Calculation of TF 12 , TG 12  Matrix Coefficients  

These can be calculated using analytical method (suitable for systems of low orders); 
numerical method:  

{ } ( ) ( )1 12 12, ,k k k T Tx x u f f+ ∆ ∆ ∆ ∆= + → = =F G F F G G          (24) 

where ,∆ ∆F G  should be determined either analytically or numerically or experimen-
tally in very small time instant ∆ ; discrete method using Z-transform  

( ) ( )12 12,T Tf f∆ ∆→ = =F F G G  and ,∆ ∆F G  can be determined as above; experi-
mental method by measuring of state-variable at the time instant 12T . 

Describing discrete determination method using Z-transform-by iterative process. 
As mentioned, recursive formula 

1 ,k n kx x U+ ∆ ∆= +F G                         (25) 

with 0 0 0,kx X= = =  where ∆F  a ∆G  are discrete impulse responses of state-va- 
riables gained by any of computation (above) or identification method [14], ∆  is cal-
culation step, works with discretized time  

.t k= ⋅ ∆                              (26) 

Calculation step ∆  should be short enough e.g. 360T  or step of the sequence 
( )π 6 30 . Usually, ∆  equal 1 - 2 el. Decomposing the state Equation (16) into two 
scalar equations yields 

( ) ( )1 11 12 1 11 12

2 21 22 2 21 22

d
,

d
x a a x b bt

u t
x a a x b bt

       
= ⋅ + ⋅       

       
          (27) 

where under understanding electrical L-C//R circuitry with parameters Figure 5: 
3

20.1 H, 5 10 F, 1, 0, 0.01L C R r g−= = × = = = : 

11 12
10.1; 10;ra a

L L
= − = − = − = −  

21 22
2

1 1 1 1200; 202;a a g
C R C RC

 
= = = − + = − = − 

 
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Figure 5. Schematics of L-C//R circuitry. 

 

11 12 21 22
1 10; 0.b b b b
L

= = = = =  

Time discretization using Euler explicit method: 

{ }1 1 11 12 1 11

2 2 21 22 21 0 k
k k k

x x a a x b
u

x x a a x
+

∆ ⋅        
= + ∆ +        

       
 

{ }1 11 12 1 11

2 21 22 21

1
,

1 0 k
k k

x a a x b
u

x a a x
+

+ ∆ ∆ ∆ ⋅      
= +      ∆ + ∆      

           (28) 

where ∆  is calculation (integration) step. 
Then, taking 2, , , andL C R r g  as above one gets for 11 22f f−  

11 111 1 0.1f a= + ∆ ⋅ = − ∆  

12 12 10f a= ∆ ⋅ = − ∆  

21 21 200f a= ∆ = ∆  

22 221 1 202f a= + ∆ ⋅ = − ∆  

and  

11 2110 ; 0g g= ∆ = . 

Taking ∆  equal to 0.0001 sec the coefficients 11 22f f−  and 11 21,g g  are, respec-
tively 

11 1 0.1 0.0001 1 0.00001 0.99999;f = − × = − =  

12 0.001f = −  

21 0.0200f =  

22 1 202 0.0001 1 0.0202 0.9798f = − × = − =  

11 0.001g =  

21 0.g =  

So, in matrix form 

1 11 12 1 11

2 21 22 21 0 k
k k

x f f x g
u

x f f x
∆+ ∆

       
= +       

      
 

1 .k k kx u+ ∆ ∆= +x F G                           (29) 

Regarding to { }ku : 
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Replacing n in Equation (23) by  

fix 12n k
T
∆ =  

 
 one gets { } ( )ku u k≡                 (30) 

( ) ( )π π π πsin fix 12 1 sin fix 12
6 6 6 6

nu k k k
T T

 ∆   ∆    = + + − +            
       (31) 

where “fix” is notation for rounding of numbers to zero [15]. 
Based on total mathematical induction it can be derived with the help from [16],  

{ }
1

0
0

,
k

k l
k k

l
u

−

∆ ∆ ∆
=

= +∑x F x F G                      (32) 

derivation of this formula see below. Then 

12 12 0 12 .T T T nu= +x F x G                        (33) 

Using Equation (28) the determination of 12 12;T TF G  will be possible using 
;∆ ∆F G , see Figure 6(a) and Figure 6(b). 

After choosing 360T∆ = , k will be the in the range of 0 - 30, thus 
30

12 30 29T ∆ ∆= = =F x F F F                       (34) 

 

 
(a) 

 
(b) 

Figure 6. To determination of 12TF  (a); 12TG  (b). 



B. Dobrucký et al. 
 

3961 

and 
29

12 29
0

.k
T

k
∆ ∆ ∆

=

= = ∑G G G F G                       (35) 

Then 
30 29

11 12 11 12 11
12 12

021 22 21 22 0

k

T T
k

f f f f g
f f f f=

     
= = = ×     

    
∑F G           (36) 

30

12

0.99999 0.00100 0.9924 0.0226
.

0.02000 0.97980 0.4519 0.5361T

− −   
= =   
   

F          (37) 

Finally the values are 

11 120.9924, 0.0226F F= = −  

21 220.4519, 0.5361F F= =  

29

12
0

0.99999 0.001 0.001
0.0200 0.9798 0

29.9245 0.3626 0.001 0.0299 0
.

7.7224 22.6034 0 0.0077 0

k

T
k=

−   
=    

   
−    

= =    
    

∑G
           (38) 

3.2. Calculation of State Variable Values 

Since ( ) ( )π π π πsin 1 sin .
6 6 6 6

nu n n n   = + + − +   
   

 

Thus 

( )1 11 12 1 11

2 21 22 2 211

π π π πsin 1 sin
6 6 6 6

n

n n

x F F x G
n n

x F F x G
+

           = + + + − +                     
   (39) 

( )

1 1

2 21

0.9924 0.0226
0.4519 0.5361

0.0299 0 π π π πsin 1 sin .
0.0077 0 6 6 6 6

n n

n

x x
x x

n n

+

−    
=    
    

      + + + − +           

      (40) 

Calculated sequences { }1;nx  and { }2;nx  of 1x , 2x  state variables are given in Ta-
ble 1. The values of state-variables 1x , 2x  in the frame of one half period are pre-
sented in detail in Table 2. 

The sequences { }1;nx  and { }2;nx  of 1x , 2x  state variables are also depicted in 
Figure 7, interconnected by polynomial of the 1st order because of continuous quanti-
ties. 

Let’s note that values of state variables ( )Li n  and ( )Cu n  calculated with step 12T  
can be presented as sequences (a) or time waveforms, with bonding points by linear in-
terpolation (b); verificated by LT Spice emulator (c). 

3.3. Alternative Way of TF 12 , TG 12  Matrix Coefficients  
Calculation and State Variable Values Calculation 

The same result can be obtained by numerical solution using explicit or implicit Euler  
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(a) 

 
(b) 

 
(c) 

Figure 7. Waveforms of sequences of { }1;nx , { }2;nx  (a) and state variables 1x , 2x  (b) and ve-

rification (c). 
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Table 1. State variable values during the first period after switching the load on. 

n u 1,nx  2,nx  

0 1 0.0000 0.0000 

1 0 0.0299 0.0077 

2 2 0.0291 0.0176 

3 0 0.0878 0.0380 

4 1 0.0858 0.0601 

5 0 0.1133 0.0787 

6 −1 0.1103 0.0934 

7 0 0.0775 0.0922 

8 −2 0.0750 0.0844 

9 0 0.0132 0.0637 

10 −1 0.0122 0.0401 

11 0 -0.0183 0.0193 

12 1 -0.0022 0.0182 

 
Table 2. Proof within the frame of one half period. 

k uk x1,k x2,k 

0 1 0.0000 0.0000 

30 0 0.0299 0.0076 

60 2 0.0295 0.0176 

90 0 0.0886 0.0381 

120 1 0.0881 0.0605 

150 0 0.1150 0.0795 

180 -1 0.1113 0.0946 

 
method for the second order system with integration step ∆  and taking in account 
the same time instants:  

So, sequences { } { }1; 2;,n nx x  are similarly the same as calculated using Equation (39) 
q.e.d.  

The sequences { }1;nx  and { }2;nx  can also be worked-out using Z-transform of 
Equation (22) 

{ }1 12 12n T n T nu+ = +x F x G  

( )1 1
12 12

2 2
T T

X X
z U z

X X
   

= +   
   

F G                   (41) 

where 

( )
( )2 4 2

6

2 1
.

1

z z z
U z U

z

+ +
=

+
                     (42) 
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By adapting 

( )2 4 2
1 11 12

12 6
2 21 22

2 1
inv .

1T

z z zX z F F
U

X F z F z

+ +−   
= +   − +   

G           (43) 

Or, by decomposition of 1nx +  into two scalar equations 

( ) ( ) ( ) ( )1 11 1 12 2 111x n F x n F x n G u n+ = + +               (44) 

( ) ( ) ( ) ( )2 21 1 22 2 211x n F x n F x n G u n+ = + +               (45) 

where 12 0g =  and  

( ) ( )π π π πsin 1 sin .
6 6 6 6

nu n U n n   = ⋅ + + − +   
   

            (46) 

And applying Z-transform 

( ) ( ) ( ) ( )1 11 1 12 2 11zX z F X z F X z G U z= + +               (47) 

( ) ( ) ( ) ( )2 21 1 22 2 21zX z F X z F X z G U z= + +               (48) 

where ( )U z  is the same as above. 
So, ( )1X z  and ( )2X z  can be derived and separated:  
Since it flows from Equation (47), (48) 

( ) ( )
1

12 21 12 21 11
1

11 22 11 22 11

1 F F F G GX z U z
z F z F z F z F z F

−
   

= − +   − − − − −   
        (49) 

and 

( ) ( )
1

12 21 12 21 21
2

11 22 11 22 22

1 .
F F F G GX z U z

z F z F z F z F z F

−
   

= − +   − − − − −   
        (50) 

Executing an inverse Z-transform of Equations (32), (33) or (29) one obtains 

{ } ( ) ( ) ( ) ( )
8 8

1 1
1; 1 1 1

1 1
res lim

ml

n n
n l l lz zz zl l

x x n X z z z z X z z− −

→== =

≡ = = −∑ ∑          (51) 

where n is a number of roots of the polynomial of denominator of ( )1X z , i.e. 1 6z −  of 
( )U z , and 7,8z  are roots of the of equation ( ) ( )11 22 12 21 0.z F z F F F− − − =  
Similarly 

{ } ( ) ( ) ( ) ( )
8 8

1 1
2; 2 2 2

1 1
res lim

ll

n n
n l m lz zz zl l

x x n X z z z z X z z− −

→== =

≡ = = −∑ ∑         (52) 

with the same roots mz  as of ( )1X z  above. Those lead to sequences { }1;nx  and 

{ }2;nx  worked-out and given in Table 1 or Figure 6, respectively. 
But, it can be seen, that this method using residua theorem is rather arduous because 

of need of evaluation of denominator of ( ) ( )1 2,X z X z . 

3.4. Behaviour of the System 

System behaviour during transient for longer time-practically up to the steady state can 
be describe using Equation (18), (10) and theory given in [15] with computation step 

12T : 
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{ }1 12 12 .n T n T nx u+ = +x F G  

For  

360T∆ = , 30k = , { } { }1k
ku = , 12

30
T∆ =F F  

be valid 
0

12
30 1

.l
T

l
∆ ∆

= −

=∑ F G G                          (53) 

By graduated calculation and using mathematical induction the general relation can 
be derived 

( ) ( ) ( ){ }
0

12 0 12 12 1
1

n l

n T T T n l
l n

x u − +
= −

= + ∑x F G F               (54) 

where 

{ } ( ) ( )π π π πsin 1 sin .
6 6 6 6

n
nu u n n n   ≡ = + + − +   

   
          (55) 

Behaviour of the system under load switched-on during 8 periods, i.e. 96 of T/12 is 
shown in Figure 8. 

Another way using computation step Δ leads to 

1k k kx u∆ ∆+ = +x F G                        (56) 

and using above approach  

( ){ }
0

0 1
1

k k l
l k

k lx u∆ +
−

∆ −
=

∆= + ∑x F G F                  (57) 

where 

{ } ( ) ( )fix 12π π π πsin fix 12 1 sin fix 12 .
6 6 6 6

k
Tku u k k k

T T

∆ 
 
 

      ≡ = + + − +   
∆ ∆

         
   (58) 

 

 
Figure 8. Transient of the 2nd order system under impulse exciting function with the step of 
T/12. 
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Behaviour of the system under load switched-on during 8 periods, i.e. 2880 of k is 
shown in Figure 9. 

Let’s note that values of state variables ( )Li k  and ( )Cu k  are drawn with computa-
tion step 360T∆ =  connected by linear interpolation, too. 

Confirmation of transient behavior using the fundamental harmonic method:  
Analytical calculation of Fourier coefficient 1b  [2], [11]: 

( ) ( ) ( )0

0
1 1max

2 sin d .
x T

x
b U f x x x

T
+

≡ = ∫                  (59) 

Taking in account symmetry of impulse waveform the magnitude of fundamental 
harmonic 1maxU  will be 

( ) ( ) ( ) ( )
π π
4 2

1max
π 5π

12 12

4 sin d 2 sin d
π

4 π π 5π πcos cos 2 cos cos
π 12 4 12 2
0.9885 .

U U t t t t

U

U

ω ω ω ω
 
 = =  
  

           = − + −                      
=

∫ ∫

       (60) 

This is the same value as can be obtained using Equation (34), [17] 

max

πsin
2 1 2 ,

ππ sin
2

dc
NU U

N

ν

νγ

νν

 
 
 =
 
 
 

                    (61) 

where 
ν —is order of harmonics;  
2N—number of pulses in period; 
γ —relative pulse width 0 - 1; 

dcU —supply voltage of the 3-phase inverter. 
 

 
Figure 9. Transient of the 2nd order system under impulse exciting function with the step of 
T/360. 
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For 1; 0.5; 2 6; 3dcN U Uν γ= = = = : 

1max

πsin 0.5
6 6 0.9885

ππ sin
6

U U U

 
 
 = =
 
 
 

                   (62) 

what indicates equality of both calculations. 
Now, one can use the harmonic voltage with magnitude 1maxU  as exciting function 

applied to system (19). 
( ) ( )1max sinu t U tω=                         (63) 

Behaviour of the system under load switched-on during 8 periods, i.e. 0 8t T∈< − ×  
is shown in Figure 10. 

Let’s note that values of state variables ( )Li k , ( )Cu k  and also ( )1u k  are drawn 
with computation step 360T∆ =  under method of fundamental harmonics while 
impulse waveform of supply voltage was substituted by its fundamental harmonic.  

Verification of transient behavior using circuit emulator LT Spice:  
Verification of transient behavior was done using circuit LT Spice emulator. The 

scheme of electronic circuitry is shown in Figure 11. Schematics of R-L-C load is being 
shown in Figure 5. 

The result is shown in Figure 12. 
Let’s note that values of state variables ( )Li k , ( )Cu k  and also ( )1u k  have been 

obtained from circuit emulator with the same sampling as computation step ∆  used 
above.  

By comparing Figures 8-10 and Figure 12 one can conclude that behaviour of the 
system-step switching-on of impulse discontinuous exciting function-calculated by dif-
ferent methods is practically the same. Transient waveforms show that the over-shoot 
during the first period is around multiple 2, and settling time of the transient is about 
10 periods. 
 

 
Figure 10. Transient under harmonic supplying voltage using fundamental harmonic method 
with the step of T/360. 
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Figure 11. Schematics of generating modulated impulse voltage in LT spice environment. 
 

 
Figure 12. Transient of the 2nd order system under impulse exciting function verificated by LT 
spice. 

4. Conclusion 

The method given in the paper demonstrated how is possible to write impulse switch-
ing functions which can be describable by z-transformation by application of unipolar 
modulation and zero order function. Results presented in paper demonstrated excep-
tionality of the formulated method—calculation of variable quantities of investigated 
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linear dynamical system at any time, without knowing the values of foregoing time(s). 
This is not possible in case of pure numerical computing. Moreover, dynamical state can 
be solved very fast using step of calculation equal step of sequences (T/6, T/12). Com-
paring results worked-out by four different methods one can see that they reached wave-
form practically the same. Presented techniques are suitable for analysis of both tran-
sient and steady-state behaviour of investigated system mainly in electrical engineering. 
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