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Abstract 
A new approximate metric representing the spacetime of a rotating deformed body is obtained by 
perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a 
simple form, because it is Kerr-like. Its Taylor expansion form coincides with second order qua-
drupole metrics with slow rotation already found. Moreover, it can be transformed to an improved 
Hartle-Thorne metric, which guarantees its validity to be useful in studying compact object, and it 
is possible to find an inner solution. 
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1. Introduction 
Nowadays, it is widely believed that the Kerr metric does not represent the spacetime of a rotating astrophysical 
object. It seems that there is no reasonable perfect fluid inner solution which serves as source of this spacetime 
[1]. Moreover, the relationship between its multipole moments and its angular momentum may not represent 
correctly the external field of any realistic stars [2]. 

The Ernst formalism [3] and the Hoenselaers-Kinnersley-Xanthopoulos (HKX) transformations [4] are very 
useful to find exact axial solutions of the Einstein field equations (EFE). These formalisms allow to include de-
sirable characteristics (rotation, multipole moments, magnetic dipole, etc.) to a given seed metrics. In this article, 
we develop a perturbative method by means of the Lewis metric [5] to find solutions with quadrupole moment, 
using the Kerr spacetime as seed metric. Our method consists in modifying four potential functions of the Lewis 
metric and maintaining the cross term potential function. This method was applied successfully in obtaining 
other approximative metrics [6]-[8]. 

To ensure the validity of a metric, the given metric is expanded to its post-linear form and compared with the 
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post-linear version of the Hartle-Thorne (HT) spacetime [9] [10]. The reason is that it is possible to find an inner 
solution corresponding to the HT metric [11]. This new approximation can be considered as an improvement of 
the HT spacetime, because it has spin octupole and the HT has not this one. There are several exact metrics [12] 
[13], but these ones are more appropriate for numerical works. This Kerr-like metric has a simple form and can 
be useful for theoretical works. For instance, it may used to investigate the influence of the mass quadrupole in 
the light propagation and the light cone structure of this Kerr-like spacetime [14]. 

This paper is organized as follows. Our perturbation method of the Kerr metric using the Lewis one is dis-
cussed in section 2. In section 3, it is shown that the application of this method leads to a new approximate solu-
tion to the EFE with rotation and quadrupole moment. It is checked by means of a REDUCE program that the 
resulting metric is a solution of the EFE [15], and this program is available upon request. In section 4, the exte-
rior HT metric is briefly explained and compared to our Kerr-like ones. We also compare it with the Erez-Rosen 
(ER) metric [5] without rotation. The comparison of our metric to the HT spacetime assures that our metric has 
astrophysical meaning. A comparison with other stationary metrics is given in section 5. A summary and discus-
sion of the results is presented in section 6. 

2. The Perturbing Method for the Kerr Metric 
First of all, we need a spacetime to work on. To this end, the Lewis metric is chosen and is given by [5] 

2 2 2 2 2d d 2 d d d d d ,s V t W t X Y z Zφ ρ φ= − + + + +                         (1) 

where the chosen canonical coordinates are 1x ρ=  and 2x z= . The potentials , ,V W Z , eX µ=  and eY ν=  
are functions of ρ  and z with 2 2VZ Wρ = + . Taking µ ν= , performing the following changes of potentials 

2 2, ,V f W f Z f fω ρ ω= = = −  and choosing e e fµ γ= , one get the Weyl-Papapetrou metric [5] 

( )
2

22 2 2 2ed d d d d d .s f t z
f f

γ ρω φ ρ φ = − − + + +                         (2) 

The Ernst formalism and HKX transformation are based on this metric. Here, these formalisms are not em-
ploy to generate a new one. Rather, a new method to find a Kerr-like metric with quadrupole is developed. To 
this goal, we use the known transformation that leads to the Kerr metric [5] 

( )sin and cos ,z r Mρ θ θ= ∆ = −                            (3) 

where 2 22r Mr a∆ = − +  (with M as the mass of the object and a as the rotation parameter). 
Now, one chooses the Lewis potentials as follows 
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                       (4) 

where J Ma= . The potentials , , , ,K K K KV W X Y Z  are the Lewis potentials for the Kerr spacetime, and 
2 2 2 2cos .r aρ θ= +  
The cross term potential W is unaltered to preserve the following metric form 
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The so chosen potentials guarantee that one gets the Kerr metric if 0ψ χ= = . The function ψ  and χ  will 
be determine approximatively from the EFE.  

3. The Approximative Kerr Metric with Quadrupole 
Now, we have to solve the EFE perturbatively 

0,
2ij ij ij
RG R g= − =                                    (6) 

where ijG  ( , 0,1, 2,3i j = ) are the Einstein tensor components, ijR  are the Ricci tensor components, and R is 
the curvature scalar. 

Terms such as 
2

2

2
2

~ 0, ~ 0,

~ 0, ~ 0

i i

i i

m m
x x

a a
x x

σ σ

σ σ

∂ ∂ 
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∂ ∂ 
 ∂ ∂ 

                                (7) 

(with ,σ ψ χ= ) are neglected. The terms corresponding to the Kerr metric of the Ricci tensor components are 
also eliminated (see Appendix). 

To solve the remaining terms of 0ijR = , let propose the following Ansatz 

( ) ( )
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                (8) 

where q represents the quadrupole parameter, and ( )2
2 3cos 1 2P θ= − . Substituting this Ansatz into the Ricci 

tensor components, we get a set of linear equations for these constants α , and nβ  ( 1, ,7n = 
). After solving 

these linear equations, the constants are 
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From (5), the metric components reads 
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It was checked by means of a REDUCE program that the proposed metric is valid up to the order  

( )2 2 2 2 3, , , , ,O aq a q Maq Mq M q q . 

4. Comparison to the Hartle-Thorne Metric 
In order to establish if our metric does really represent the gravitational field of an astrophysical object, we 
should show that it is possible to construct an interior solution, which can appropriately be matched with the ex-
terior solution. For this purpose, we employ the exterior HT spacetime [9] [12]. The HT metric describes the 
exterior of any slowly and rigidly rotating, stationary and axially symmetric body. It is an approximate solution 
of vacuum EFE. It has three parameters: mass M, spin J and quadrupole-moment Q. The accuracy of this space-
time is given with up to the second order terms in the body’s angular momentum, and first order in its quadru-
pole moment. The HT solution is given by 
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with metric components 
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where 
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The functions 1,2
2Q  are associated Legendre polynomials of the second kind 
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A Taylor expansion of the metric components (12) up to the second order of J, M and q leads to 
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where we have added the second order terms of the quadrupole moment obtained by Frutos and Soffel [16]. 
Now, let us expand in Taylor series the metric components (10) up to the second order of a, J, M and q, the 

result is 
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Comparing these results with the ones obtained by Frutos and Soffel [16] for the ER metric, we note that both 
metric are the same if one neglects rotation and changes 2 15q q→ . Our metric corresponds to a rotating ER 
spacetime at this level of approximation. 

To compare our spacetime with the HT metric, we have to find a transformation that converts our metric (14) 
into the HT one (13). The following transformation converts the Kerr-like truncated metric (14) into the im-
proved HT spacetime (13) changing 2q ma q→ − , at the same level of approximation. 
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where 
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The constant are given by 

1 1 9α = −     1 1 3η =   1 1 2γ = −  

2 4 9α = −    5/6=2 −η   2 1 2γ =  

3 5 9α =      3 0η =    3 1 2γ = −  

4 43 72α = −   4 0η =     4 1 2γ =  

5 0α =        5 1 3η =     5 1γ =  

6 1 3α = −    6 5 6η = −   6 3γ = −  

7 5 9α =               7 1 2γ = −  

8 1γ = −  

Since our expanded Kerr-like metric can be transformed to the improved HT spacetime, it is possible to con-
struct an interior metric that could be matched to our exterior spacetime. It can be considered as an improvement 
of the HT spacetime.  

5. Comparison to Other Stationary Metrics 
There are many other stationary metrics. We concentrate on the Quevedo-Mashhoon [12] [10] and the Man-
ko-Novikov [13] ones. At first glance, our metrics is not the same as these ones, because the rotational term W 
(4) has no quadrupole perturbation. To see if these metrics are the same, one has to compare the multipole 
structure. The Ernst potential for metric (5) is [3] 

,f i= + Ω                                      (17) 

where 2eKf V ψ−=  and Ω  is the twist scalar. To get this scalar, we have to solve the following equation 

,k β µ ν
α αβµνε ξ∂ Ω = ∇                                  (18) 

where k β  is the Killing vector, µ∇  is the contravariant derivative and 

gαβµν αβµνε = −                                     (19) 

Taking the Killing vector as in the Kerr metric ( )1,0,0,0k β = . The result of (18) is given by 

2
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Ω = −                                    (20) 

This twist is the same as for the Kerr spacetime. Now, the Ernst function is [3] 
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One can show that this Ernst function and its inverse are solutions of the Ernst equation 

( ) [ ]221 2 .ξξ ξ ξ ξ− ∇ = ∇                                 (22) 

For the sake of calculating the relativistic multipole moments, it is better to employ the inverse function [17]. 
Moreover, it is easier to calculate them using prolate spheroidal coordinates ( ), , ,t x y φ . The transformation to 
these coordinates is achieved by means of 

cos ,
x r M

y
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θ
= −

=
                                    (23) 

where 2 2 2M aσ = − . 
The potential KV , the twist scalar Ω  and the potential ψ  are 
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                             (24) 

where ( ) ( )2
2 3 1 2P y y= − . 

The procedure to get the relativistic multipole moments is the following [17]: 
1) employ the inverse Ernst potential 1ξ − ,  
2) set cos 1y θ= =  into 1ξ − ,  
3) change 1x zσ →  into 1ξ − ,  
4) expand in Taylor series of z the inverse Ernst potential, and finally,  
5) use the Fodor-Hoenselaers-Perjés (FHP) formulae [17].  

To obtain the multipole moment, we wrote a REDUCE program with the latter recipe. The first six mass and 
first five spin moments are 

0 M=  
1 J Ma= =  

2
2 Q Ma= −  

3
3 Ma= −  

4
4 Ma=  

5
5 Ma=  

6
6 Ma= −  

7
7 Ma= −  

8
8 Ma=  

9
9 Ma=  

8
10 .Ma= −  

A direct comparison of these multipole moments with the corresponding ones of QM [10] [18] and MN [13] 
gives that the octupole 3  is different. Then, all these spacetimes are non-isometric. Moreover, it is clear that 
the only difference with the Kerr metric is that our metric has another term in the quadrupole moment.  

6. Conclusions 
Our metric was obtained solving the EFE perturbatively. The Lewis metric with the modified potentials from the 
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Kerr spacetime was used. This metric has three parameters m, a and q representing the mass, the rotation para-
meter and the quadrupole, respectively. It is valid until including mq  and 2q  orders. This spacetime contains 
the Kerr metric, the expanded ER spacetime and an improvement of the HT metric, since as we have seen our 
expanded version correspond to a HT-like expanded spacetime until including mq , 2q , and 2J  orders. 

The form of our expanded metric suggests that it is possible to construct an interior solution, because it can be 
transformed to the improved HT spacetime. It is known that the approximate exterior HT metric is coupled to 
the interior HT one. This gives meaning to our results. Our spacetime may represent the approximative space-
time of a rotating deformed object. Moreover, we improved the HT metric including the second order of the qu-
adrupole moment accuracy. Furthermore, it seems that by means of our perturbation procedure, one could im-
prove our metric to include more terms to a desirable accuracy. 

Moreover, the relativistic multipole moments were calculated to show that our spacetime was not isometric 
with the QM and the MN metrics. Our metric has a simple form and its multipole structure is Kerr-like, the only 
difference is that it has mass quadrupole. 

This metric has potentially many applications because it could be employed as spacetime for real rotating as-
trophysical objects in a simple manner. Besides, it is easier to implement computer programs to apply this metric, 
because it maintains the simpleness of the Kerr metric. As an example of possible applications, the influence of 
the quadrupole moment in the light propagation and the light cone structure of this spacetime could be investi-
gated using this Kerr-like spacetime.  
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Appendix 
The non-null Ricci tensor components for the metric (5) (here , , , ,V W X Y Z  do not have the subscript K  and 

K
ijR  refers to the Ricci tensor components of the Kerr metric) are given by 
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