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Abstract 
In this article we define and build the one method of description of stochastic evolu-
tion of a physical quantum system. For each quantum state UEω∈  we construct 

the probability measure ωµ  in the space ( ),UP S , where UP  is the space of the 

pure states of the quantum system, S  the Borel σ -algebra in UP . Farther, for any 

Hermit’s positive element with norm 1u = , in the C∗ -algebra of observables U , 

we define the probability measure uµ  on the set of states UE . If strongly conti-

nuous group { }tα  of ∗  automorphisms on U  describes the evolution of struc-

ture of observables, according to this, we have a picture of evolution of distribution 
of states of quantum system relatively to each observable u .  
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1. Introduction 

As known [1] a quantum physical system can be represented by a couple ( ),U ℑ , 
where U  is some C∗ -algebra which are hermit’s elements that are called observables 
and some set ℑ  of positive functional with norm one, called the quantum states of 
this physical system [2]. 

We say what the functional 1ω  majorizes functional 2ω  if 1 2ω ω−  is a positive 
functional [2]. 

The state ω  quantum physical system is called the pure state if it majorizes only 
functional type ,0 1λω λ≤ ≤  [2]. Denote the set of all pure states on C∗ -algebra U  
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by UP . 
In the set of all linear continuous functional on C∗ -algebra U  we have topological 

structure, called as ∗  weakly topological structure [2] and defined by pre-basis: 

( ) ( ) ( ){ }1 2, , , , , 1, 2, ,n i iV u u u U u u i nω ω ω ω ε∗′ ′= ∈ − < =  , 

where , , iU u Uω ω ∗′∈ ∈ ; according to this in the set UP  we have the topological 
structure induced from this topological structure. 

It is very known if U  commutative C∗ -algebra, then every positive linear func-
tional defines complex valued measure on the ,UP  which is separable and locally 
compact space of pure states under the * weekly topological structure. This measure is  
defined by corresponding Fµ ↔ , ( ) ( )d

UP

F f f x µ= ∫ , for all Uf P∈  continuous  

function. In non-commutative case we cannot define the measure on UP  in this way. 
In the work [3] for each linear functional, with norm one, we define the probability 
measure UP  for commutative and non-commutative cases in other ways. It gives us 
the opportunity to present a quantum physical system as a statistical structure [4]. Re-
presentation of quantum physical system in this form, in our opinion, is more com-
fortable for the solution of problem of quantum system, for example for testing hypo-
theses [4]. In this paper, using this representation, we have tried to consider the dy-
namic of quantum physical system as a random process. 

2. Quantum Physical System as a Statistical Structure 

Denote by ℜ  the set of Hermit’s elements of U  C∗ -algebra. 
Easy to show that every linear functional on the U  C∗ -algebra uniquely will be de-

fined by its values on Banach subspace of Hermit’s elements,as it’s known [2] that every 
element u  of C∗ -algebra U  uniquely represented as 1 2u iu+ , where 1u  and 2u  
are Hermit’s.  

Every a Hermit’s element u∈ℜ  in the C∗ -algebra U  any can be represented by 
integral  

d uu pλλ
∞

−∞

= ∫ , 

where { }u

R
pλ λ∈

 ( )2u up pλ λ=  projectors and represents the partition of unityof Her-
mit’s element u∈ℜ  [5].  

Correspond to projector 2p p Uα α= ∈  the family { }p

R
p α
λ λ∈

 of elements of the C∗ - 
algebra U  which has the condition: 0pp α

λ = , if 1λ < , pp pα
λ α= , if 1λ =  and 

pp Eα
λ = , if 1λ > , where E  is the unit element in the algebra U . It is clear that. 

d pp p α
α λλ

∞

−∞

= ∫ . 

If u U∈ , then 1 2u u iu= + , where 1u  and 2u  are Hermit’s elements. The repre-
sentation such u  will be  
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1 1
1 2 d du uu u iu p i pλ λλ λ

∞ ∞

−∞ −∞

= + = +∫ ∫ , 

Obviously, if ω  some linear continuous functional on C∗ -algebra U , then from 
the last equality we will have 

( ) ( ) ( ) ( )1 2 1 2
1 2 d d d du u u uu u iu p p p i pλ λ λ λω ω ω λ ω λ λ ω λ ω

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

   
= + = + = +   

   
∫ ∫ ∫ ∫ , 

where 1u  and 2u  are Hermit’s elements. 
Let, { }pα  be the set of all one dimensional projectors on C∗ -algebra U  and ω  

pure state, then the last equality follows that this state has the non zero meaning only 
on some projector { }p pα α∈  and the meaning 0 on the other one dimensional pro-
jectors. Otherwise, we can always construct such functional which will not have the 
type ,0 1λω λ≤ ≤  and well majorized by the pure state ω . So how, if functional ω  
is a pure state, then ( )2 0uω ≥  for all Hermit’s elements u . 

Let, ( ) 0pαω ′ ≠  and αω ′  such functional, which has the non zero meaning ε  
only on some projector { }p pα α′ ∈  and the meaning 0 on the other one dimensional 
projectors. It is clear, if we take ε  sufficiently small, thenwe can achieve, that for every 
u∈ℜ  will have place inequality  

( )( ) ( )( )2 2d 0uu pα α λω ω λ ω ω
∞

′ ′
−∞

− = − ≥∫ . 

It means, that the pure state ω  majorize the functional αω ′  which does not have 
the type ,0 1λω λ≤ ≤ , but this is impossible. It follows that the pure states are sach 
functional which satisfy the condition ( )p αβ

α βω δ= . 
An integral representation of Hermit’s elements follows that for the pure states αω  

has a place of equality ( ) uuα αω λ= , where u
αλ  is some element of spectrum of Hermit 

element u∈ℜ . It gives opportunity to identify every pre state with the set of number 

{ }u

uαλ ∈ℜ
, where ( ) up uα αλ= .  

Consider the Tikhonov’s product uu
σ

∈ℜ
Σ = ⊗ , where u Rσ ⊂  spectrum of element 

u∈ℜ . 
It is clear, UP ⊂ Σ , because UP  the set of such elements in product uu

σ
∈ℜ

Σ = ⊗  
which represents linear continue maps with respect to the topological structure in ℜ  
which is defined by the norm:  

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2: | ,u
U u

u
P u k u k u k u k uα α α α α αω σ ω λ ω ω ω

∈ℜ

 
= ℜ→ = + = + 
 



. 

Consequently in the set UP  we have uu
σ

∈ℜ
Σ = ⊗ , induced from Tikhonov’s product 

uu
σ

∈ℜ
Σ = ⊗  topological structure. This topological structure coincide with theinduced 
topological structure from ∗  weakly topological structure on set of functionals on C∗  
algebra U . 

We can also identify the set UP  with the set of one dimensional projectors { }pα . 
We call UP  as physical space of quantum system.  

In the work [3] we have proved: 
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Theorem 1. Every state ω∈ℑ  in space UP  with ∗  weakly topological structure, 
defined on the Borel σ -algebra of a probability measure ωµ . 

This measure constructed as: for the subset { }p
βα

 of UP , measure { }( )p
βω αµ  is 

norm of positive functional ν , 1ν ≤ , if this exists, which values on the elements of 
this subset are coincide to corresponding to values of the state ω . i.e. { }( )p

βω αµ ν= . 
Every measure ωµ  describes distribution elementary particle in physical space of 

quantum system UP  in the state ω . 
If C∗ -algebra U  has a unit, then in the space U ∗  with ∗  weakly topological 

structure the set of all state ℑ  is convex compact set and represent convex linear 
combination of pure states 1 2, , , nζ ζ ζ  from the set UP : 

1 1 2 2
1

, 0, 1
n

n n i i
i

k k k k kω ζ ζ ζ
=

= + + + ≥ =∑

 
or limit of sequence 1 2, , , ,lω ω ω  , where  

1 1 2 2
1

, 0, 1
l

l l

n
l l l l l l l l

l n n i i
i

k k k k kω ζ ζ ζ
=

= + + + ≥ =∑  [2]. 

This means, that elements of set UP  are the extreme points of set [2]. 
Because each state uω∈ℑ  defines a probability measure ωµ  on couple ( ),UP S , 

where S  is borel C∗ -algebra therefore it is easy to show, that every ωµ  represent 
convex linear combination  

1 1
, 0, 1

i

n n

i i i
i i

k k kω ςµ µ
= =

= ≥ =∑ ∑
 

of Dirak measures 
iς

µ  where , 1, 2, ,i UP i nξ ∈ =   or limit of sequense { }n n Nωµ ∈
, 

where 
1 2

1 2
1

, 0, 1n n nn ll l

l
n n n n n

n l i
i

k k k k kω ς ς ς
µ µ µ µ

=

= + + + ≥ =∑  [2]. 

For every state ω∈ℑ  we have ( )d 1uEλω
∞

−∞

=∫  therefore it is easy that the value of  

quantum state on observable u∈ℜ  is the middle value of this observable. The value 
( )u Rω ∈  is called the middle value of observable u∈ℜ  of quantum physical system 

in the state ω∈ℑ .  
All told above follows that a quantum physical system is an object, so-called statistic-

al structure [4]:  

{ }( ), , , , ,UU P S ωµ ωℑ ∈ℑ , 

where U  some C∗ -algebra, Hermit element of which are called observables of this 
system, UP  is the space of quantum system, S  Borel σ -algebra in UP , ωµ  the 
probability measure defined by state ω∈ℑ  and which describes distribution elemen-
tary particle in physical space of quantum system UP  in the state ω . 

3. A Stochastic Dynamics of Quantum System 

Theorem 2. Every Hermit’s element u , 1u =  in σ -algebra U  defines probabili-
ty measure on the set of states UE . 
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Proof: It is well-known that the map :U Uπ ∗∗→  defined by formula  
( )( ) ( ) ( )uu F uπ ω ω ω= =  is isometric embedding U  as Banach space in the double 

conjugate space U ∗∗  [3]. If ω  is a state then ( ) 0u uω ∗ ≥  [2]; it follows that if 
u U∈  is positive element, then ,u v v v U∗= ∈  and ( ) 0uω ≥ . 

Thus if u U∈  is positive element then ( ) 0uF ω ≥  for each state on U . Because 
π  is isometric, and therefore uF u= .  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u v u v u vF F F F u v u v Fω ω ω ω ω ω ω++ = + = + = + = . 

If u  is hermit’s element d uu pλλ
∞

−∞

= ∫ , because, for such elements d uu p
F F

λ
λ

∞

−∞

= ∫  

and 

( ) ( ) ( )d du
u

u p
F f F p

λ
λλ ω λ ω

∞ ∞

−∞ −∞

= =∫ ∫ . 

Let u , 1u =  be hermit’s positive element in U , then spectrum [ ]0,1uσ ⊂ . Let 

UE  be the set of all states on U , if UO E⊂  is a set of states; we assume the measure 
( )u Oµ  of this set is λ , if O  consists for all such element ω  for which ( ) ,uω λ≤   

,uλ σ∈  ( ){ }sup .u
ω

ω λ=  Since [ ]0,1uσ ⊂ , 0 and 1 are elements of uσ  [5], and  

therefore ( ) 1u UEµ = . It is clear that, if 1 2 1 2, ,uλ λ σ λ λ∈ <  then  

( ){ } ( ){ }1 2| |f u uω λ ω ω λ≤ ⊂ ≤ . 

If we assume ( ){ } ( ){ }( )2 1 2 1| \ |u u uµ ω ω λ ω ω λ λ λ≤ ≤ = − , then we get a measure 
on UE . 

The sets for which we define measure, make σ -algebra in UE . This is not a Borel’s 
σ -algebra in space UE  whit the ∗  weekly topology. Denote it by uS∗ . Thus, we define 
on ( ),U uE S∗  probability measure. The theorem is proved.  

Consider the family of measures { }1, , ,U u uE S uµ∗ +∈ℜ  defined above, where 1
+ℜ  is 

the set of positive hermit’s elements whit norm 1, uS∗  is corresponding to hermit’s 
element 1u +∈ℜ , σ -algebra in UE .  

Let { }( ), , , , ,UU P S ωµ ωℑ ∈ℑ  statistical structure represent a quantum physical 
system, UEℑ⊂ . For each 1u +∈ℜ  we can define the measure uµℑ  on the set of states 
ℑ  of given quantum physical system such: 

( )u Oµ λℑ =  if O ⊂ ℑ , ( )1
uO µ λ−= ℑ∩ . 

Literally, we have defined measure uµℑ  on the set of measures { }ω ω
µ

∈ℑ
, of which 

each element ωµ  describes distribution elementary particles in physical space UP  of 
quantum system in the state ω . 

If { }t t R
a

∈
 is strongly one parametric group of maps of C∗ -algebra U  whit unity 

and ( )1 1ta =  for all t R∈ , then following conditions are equivalent [2]: 
1) All ta∗  automorphisms of U ; 
2) 1ta ≤  for all t R∈ ;  
3) ( )ta U U+ +⊂ , where U+  is the set of positive elements in U ; 
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4) ( )t U Ua E E∗ ⊂ , for all t R∈ .  
Each defined measure uµℑ  describes distribution of states in ℑ  relatively to middle 

value of observable u  over states in ℑ , or distribution of elementary particles in 
physical space UP  of quantum system in the states ω∈ℑ  relatively to middle value 
of observable u  over states in ℑ .  

It follows: If strongly continuous one parametric group of automorphisms { }t t R
a

∈
 

describes dynamic of structure of observables, according to this, we have a picture of 
evolution of distribution of states quantum system { }( ), , , , ,UU P S ωµ ωℑ ∈ℑ  relatively 
to each observable u . 

Such, the representation of quantum physical system as a statistical structure allows 
formalizing the dynamics of the quantum system as a random process. 
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