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Abstract 
The grazing-incidence hard X-ray retro-reflector (GIRR) is a novel optical element, 
which completely suppresses the conventional mirror beam in the retro-reflection 
mode, and, at the same time, totally reflects the primary grazing incident X-radiation 
backwards to its source in strictly anti-parallel direction with minimal scattering. The 
GIRR is a good alternative to hard X-ray normal-incidence Bragg mirror, and has a 
high potential for applications in various X-ray optical devices and techniques, such 
as, hard X-ray optical noise (or background) filters, high-quality hard X-ray wave-
guides, low-gain hard X-ray free electron laser resonators (XFELRs), X-ray hologra-
phy, coherent X-ray diffraction imaging, phase-contrast imaging, as well as in hard 
X-ray optical data storage devices and deep space hard X-ray communications. The 
proposed optical element consists of single-crystal wafer covered by a thin, non-diff- 
racting layer of low-absorbing material. 
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1. Introduction 

The development of high quality hard X-ray retro-reflectors is important, since the lat-
er they can be used in solving of various challenges facing modern advanced hard X-ray 
optical engineering. 
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During the last two decades, there has been an essential progress in the design, mod-
elling, fabrication and applications of optical retro-reflectors [1]-[5], especially, in the 
sphere of the evolving technology and applications in optical wireless communications 
(OWC) from short to long distances [6]-[9]. 

However, the direct extension for existing technologies from optical region to shorter 
X-ray wavelengths is not possible. The retro-reflection techniques developed for visible 
light don’t work for hard X-ray wavelengths because the refractive index of X-rays is 
slightly less than the unity for most substances. A common way to overcome this prob-
lem is through the application of various X-ray diffraction methods [10]-[13]. 

Consider the well-known technique of normal-incidence hard X-ray Bragg reflection 
[14]-[18] which is utilized in, for example, simple two-crystal plate cavity [19]-[24], as 
well as in multi-cavity [25] [26] Fabry-Perot (FP) resonators when the magnitude of 
Bragg angle Bθ  is close to 90˚. The cavities are separated by the crystal plates with 
specific thickness ratios and, basically, have a common monolithic crystal base. These 
plates act as a normal-incidence backward reflecting Bragg mirrors. However, such re-
sonators require a stringent temperature control, since the crystal plates themselves are 
affected by thermal expansion, which, in its turn, leads to a problem of non-stability in 
lattice parameter of the diffracting planes ( )hkl . The overall uncertainty in modern 
measurements of, for example, the Si lattice parameter is 82.2 10−×  and thermal ex-
pansion at 22.5˚C is ( ) 6 12.581 2 10 Kρ − −= × . Therefore, it is desirable to know the 
crystal temperature well enough, and have it controlled precise enough, to keep the Si 
lattice constant Sia  unchanged within 82.2 10Si Sia a −∆ = ×  accuracy. According to 
above conditions, the temperature accuracy T∆  should not exceed the following val-
ue of ( ) 8.5 mKSi SiT a a ρ∆ = ∆ ≈  [27]-[29]. 

The absorption, and, consequently, the crystal plate heating problem are partially 
solved in [23], where, instead of a conventional cavity with normal incidence, the au-
thors of paper [23] use an inclined incident beam along one of the multiple diffraction 
directions to generate back diffraction in a resonator cavity. To address to change in the 
angle of incidence, authors remove the absorption in the first crystal, in contradiction 
to conventional normal-incidence one-cavity FR resonators setup.  

2. Total Retro-Reflection of Grazing Incident X-Rays 

In this paper, the authors propose and investigate the grazing-incidence hard X-ray 
backward reflector or retro-reflector (GIRR), which totally reflects the primary grazing 
incident X-radiation backwards to its source in strictly anti-parallel direction with mi-
nimal scattering. 

The authors overcome the retro-reflector’s thermal expansion problem by using the 
X-ray grazing-incidence diffraction scheme, based on the fact that the X-ray penetra-
tion depths in a crystal are at least in three orders smaller than in the case of a nor-
mal-incidence Bragg mirror. The equations and corresponding graphs of the depths of 
penetration of hard X-rays in single-crystal are presented in [30]. Also, the energy dis-
tribution of the primary beam along the crystal entrance surface is, at least, two orders 
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of magnitude smaller in the case of grazing-incidence diffraction than the energy dis-
tribution for the same primary beam in the case of normal-incidence Bragg reflectors. 
These two circumstances clearly satisfy the requirement of keeping the crystal temper-
ature precisely at a predefined level. 

2.1. Coplanar Grazing-Incidence X-Ray Backscattering Diffraction  
(GIXB) 

First, let’s consider the following two reflection schemes from a variety of wave reflec-
tivity models. The fist scheme is a conventional reflection scheme of the plane electro-
magnetic wave from planar mirror (see Figure 1). According to Figure 1, the equation 

i r= −θ θ  holds, where the angles iθ  and rθ  are the angles of incidence and reflec-
tance, respectively. The wave vectors of incident iK  and reflected rK  beams lie in 
this figure on the different sides of the normal line to the interface between two media. 
The vectors î , ĵ  and k̂  are unit vectors along positive directions of Ox-, Oy-, and 
Oz-axis, respectively. 

The second scheme is a retro-reflection scheme of the plane electromagnetic wave 
(see Figure 2). According to Figure 2, the equation i rr=θ θ  holds, where the angles 

iθ  and rrθ  are the angles of incidence and retro-reflectance, respectively. The wave 
vectors of the incident iK  and retro-reflected rrK  beams lie on the same side of the 
normal line to the interface between two media. These two reflection schemes pre-
sented in Figure 1 and Figure 2 are indistinguishable in the case of normal incidence 
when 0i =θ . 

One may note that the coplanar geometry of the grazing-incidence hard X-ray back-
scattering diffraction (GIXB, see the scheme in Figure 3 and translations [30] [31] of 
our original papers) contains both coplanar reflection schemes presented in Figure 1 
and Figure 2. The GIXB technique is a dynamical Bragg diffraction, which holds under  

 

 
Figure 1. A scheme of conventional reflection from planar mirror. 
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Figure 2. A scheme of grazing-incidence retro-reflection from planar mirror. 

 

 
Figure 3. A scheme of coplanar grazing-incidence hard X-ray backscattering diffrac-
tion (GIXB) by the diffracting single-crystal wafer. iθ , rθ  and rrθ  are the angles of 
incidence, reflectance and retro-reflectance, respectively. hklq  is the reciprocal space 
vector of diffracting lattice planes (hkl). See text in subsection 2.1 for more details and 
explanation. 

 
the conditions of total external reflection, and is extremely sensitive to variations of the 
spacing period h k ld  of diffracting lattice planes ( )hkl , as well as to variations of the 
wavelength λ  of incident X-radiation and the angle of incidence iθ  of the primary 
beam. Paper [32] contains the review of the theory and applications of GIXB technique 
in non-coplanar mode. Particularly, the specular beam suppression and enhancement 
phenomena are investigated in [32] for the case of non-coplanar GIXB by the crystal 
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with a stacking fault. 
The plane 1z z=  presented in Figure 3 is the X-ray entrance surface of the sin-

gle-crystal wafer. Ox-axis is normal and Oy-axis is parallel to sample diffracting lattice 
planes ( )hkl . The GIXB setup performs when the magnitude of Bragg angle Bθ  is 
close to 90˚, which leads to fulfillment of the following condition 2 2hkl hkldλ ≈ = q , 
where hklq  is a reciprocal lattice vector normal to real space diffracting lattice planes 
( )hkl , as it is shown in Figure 3. The reciprocal space vector 1hkl hkld=q  satisfies the 
orthogonality conditions: ˆ ˆ 0hkl hkl⋅ = ⋅ ≡q j q k , where ĵ  and k̂  are the unit vectors 
along the positive direction of Oy-axis and Oz-axis, respectively, hkld  is a spacing of 
the diffracting lattice planes ( )hkl  of wafer, which are normal to the X-ray entrance 
surface. Let θ∆  and ϕ∆  are the angles of the wafer rotation around Oy and Oz 
coordinate axes, respectively: 

i
Bθ θ θ∆ = − ,                              (1) 

( )1 ˆcos hkl hklϕ −  ∆ = ⋅ i q q ,                        (2) 

( )1sin 2B hkldθ λ−  =   ,                         (3) 

where Bθ  is the first-order kinematic Bragg angle, and î  is a unit vector along the 
positive directions of Ox-axis. If the exact condition of coplanar GIXB hold for region 

1z z< , and the angle of incidence iθ  of X-ray beam satisfies the first-order Bragg dif-
fraction by lattice planes ( )hkl , then 

0=−=∆ B
i θθθ ,                           (4a) 

0.ϕ∆ =                               (4b) 

Equation (4b) is the exact condition for the particular case of coplanar GIXB setup 
derived from general GIXB equations [29] [30]. In this case, the angle of incidence, at 
which proposed planar mirror reflects X-rays in reverse way, is close to right angle, un-
like the homogeneous planar optical mirror, which does this only if the mirror is exact-
ly perpendicular to the wave front, having a zero angle of incidence. The vector iK  
presented in Figure 3 is the wave vector of the incident X-ray beam, and the vectors 

1
rr r≡K K  and 2

r r≡K K  are the wave vectors of vacuum retro-reflected wave and 
specular (conventional reflected) wave, respectively. In this coplanar diffraction case 
the reciprocal space vector hklq , as well as the vacuum wave vectors iK , 1

rK , and 

2
rK , lie in the same plane which is parallel to x0z plane. The wave vector 2

rK  makes an 
angle 2 Bθ  with wave vector 1

rK  (see Figure 3). Consequently, there are no travelling 
waves along Oy-axis, so the mentioned wave vectors satisfy the following equations: 

( ) ( ) ( )1 2 0r r

y y y
= = =iK K K ,                      (5) 

where 

1 2 1r r K cλ ν= = ≡ = =iK K K ,                    (6) 

K  and ν  are the wave number and frequency of the incident plane wave, respective-
ly, and c is the speed of light in vacuum. 
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2.2. Grazing-Incidence Hard X-Ray Retro-Reflector (GIRR) 

Now, let’s clarify the performance criteria of the planar grazing-angle incidence hard 
X-ray retro-reflector (GIRR): 

1) A grazing-incidence planar retro-reflector is a mirror with a plane surface that to-
tally reflects (or diffracts) the electromagnetic wave back to its source, and, conse-
quently, the conventional mirror wave is completely suppressed (that is the reflectivity 
coefficient of conventional mirror wave is equal to zero, see Figure 2). 

2) The wave vectors of incident and retro-reflected (or backward diffracted) waves 
are strictly collinear (see Figure 2). 

Therefore, all the types of non-coplanar grazing-incidence hard X-ray diffraction 
geometries (for example, see [32]) are not applicable for the GIRR since they do not sa-
tisfy the requirement 2). Fortunately, it is possible to transform the coplanar GIXB 
scheme given in Figure 3 into the required GIRR scheme as given in Figure 2. 
• Thus, the main goal of presented theoretical research is the elaboration and estima-

tion of certain physical and technical solutions that can help to completely suppress 
a conventional mirror wave 2

rK  and, as a consequence, to increase the retro-ref- 
lectivity coefficient of the wave with wave vector 1

rK  (see Figure 3). 
We propose a solution to this problem through the coplanar GIXB that holds in a 

single-crystal wafer covered by an ultra-thin, non-diffracting layer of low-absorbing 
material (see Figure 4). The total retro-reflection can be achieved by ensuring that the  
 

 
Figure 4. A scheme of coplanar grazing-incidence hard X-ray back-
scattering diffraction (GIXB) by the diffracting single-crystal wafer 
covered with an ultra-thin non-diffracting layer of low-absorbing 
material. iθ , rθ  and rrθ  are the angles of incidence, reflectance 
and retro-reflectance, respectively. hklq  is the reciprocal space vec-
tor of diffracting lattice planes (hkl). See text in subsections 2.1 and 
2.2 for more details and explanation. 
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intensity of conventional mirror wave is reduced by destructive interference between 
the wave reflected from wafer and the wave reflected from cover layer. A scheme of 
proposed GIRR is presented in Figure 4, where the plane 1z z=  is the interface be-
tween single-crystal wafer and thin non-diffracting cover layer of thickness 2 1T z z= − , 
so the plane 2z z=  is the X-ray entrance surface. The other parameters, angles, and 
vectors are the same as in Figure 3 (see text in subsection 2.1 for the details). 

In a particular case of the specular beam suppression mode [32] [33], the scheme of 
coplanar grazing-incidence X-ray backscattering diffraction (GIXB) presented in Fig-
ure 4 corresponds to total retro-reflection. 

The mentioned above grazing-incidence retro-reflection from the proposed planar 
X-ray optical device is an X-ray analogue of the reflection phenomenon when a light 
beam is propagating in a photonic crystal, and is incident upon the plane interfaces 
between the crystal and a uniform dielectric [34]. The authors of paper [34] showed 
that neither the phase velocity nor the group velocity directions of reflected beam satis-
fies Snell’s law. The system exhibits remarkable and unusual reflection effects. In par-
ticular, total internal reflection is absent except at discrete angular values. The direction 
of the reflected beam can also be pinned along special crystal directions, independent of 
the orientation of the interface. At grazing incidences, strong backward reflection oc-
curs (see figure 4 in [34]). These effects may be important for creating integrated pho-
tonic circuits, and for on-chip image transfer [34]. 

3. Stationary X-Ray Wave Fields in the Vacuum 

All vacuum waves are traveling in the space region 2z z> , and the angle of incidence 
i

Bθ θ=  of primary X-ray beam satisfies the condition of first-order Bragg diffraction by 
diffracting lattice planes ( )hkl . In the coplanar diffraction geometry (see Condition (5) 
and Figure 4), the stationary components of electromagnetic field strength vector of the 
incident X-ray plane wave are given by the following equations: 

( ) ( ) 0i i
x z

   = =   r rΨ Ψ ,                        (7a) 

( ) ( ) ( ) ( ){ }0; exp 2π sin cos ,i i i
y B By

x z i K x zθ θ  ≡ Ψ = Ψ − +   rΨ         (7b) 

where 0
iΨ  is the amplitude of the incident wave field strength ( )i rΨ . ( );i

y x zΨ  is 
equal to either ( );i

yE x zσ  or ( );i
yH x zπ , where ( );i

yE x zσ  corresponds to electric 
field strength vector of the σ-polarized incident X-ray wave field, ( );i

yH x zπ  corres-
ponds to magnetic field strength vector of the π-polarized incident X-ray wave field. 

We seek a non-trivial y-component ( )r
y

  rΨ  of the stationary X-ray wave field 
strength vector ( )r rΨ  in vacuum ( 2z z> ) in the following Fourier integral form: 

( ) ( ) 0r r
x z

   = =   r rΨ Ψ ,                       (8a) 

( ) ( ) ( ) ( ) 22; exp 2π dr r r r r r r
y x x x xy

x z K i xK z K K K
∞

−∞

    ≡ Ψ = Ψ − − −      
∫rΨ ,   (8b) 

where ( )r r
xKΨ  is the unknown weight function. 
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4. Stationary X-Ray Wave Fields inside GIRR 

The considered model of GIRR extends over the volume 2z z≤ , and for this region we 
use the following set of well-known stationary material equations: 

( ) ( ) ( )0ε ε=D r r E r ,                         (9a) 

( ) ( )1 Eε χ= +r r ,                          (9b) 

( ) ( ) ( )0µ µ=B r r H r ,                        (10a) 

( ) ( )1 Hµ χ= +r r ,                         (10b) 

where ( )D r  is the electric displacement, ( )E r  is the electric field vector, 0ε  is the 
dielectric constant of the vacuum, ( )B r  is the magnetic induction, ( )H r  is the 
magnetic field vector, and 0µ  is the magnetic permeability of the vacuum. The con-
stants 0ε  and 0µ  are related with the speed of light in vacuum c and wave number K 
via: 

0 01c ε µ= ,                            (11) 

0 0K ν ε µ= .                            (12) 

In general, dielectric permittivity ( )ε r , electric susceptibility (polarizability) ( )Eχ r , 
magnetic permeability ( )µ r , and magnetic susceptibility ( )Hχ r  depend on the posi-
tion vector r . The polarizability ( )Eχ r  is negative for the X-ray wavelengths, and 
the permeability ( )Hχ r  is also negative for diamagnetic materials. We omit ( )Hχ r  
in further calculations since, on average it is at least an order of magnitude smaller than 

( )Eχ r  for the same diamagnetic material. 

4.1. Solution of the Problem Using a Method of Finding the Eigenvalues  
and Eigenfunctions 

The study of wave propagation in one-dimensional periodic media was pioneered by G. 
Floquet in 1883 [35]. This theory was extended for three-dimensional periodic media 
by F. Bloch in 1928 [36]. Bloch proved that waves in such a medium can propagate 
without scattering, their behaviour governed by a periodic envelope function multiplied 
by a plane wave. 

The same technique can be applied to electromagnetism by considering Maxwell’s 
equations as an eigenvalues and eigenfuctions problem by analogue with Schrödinger’s 
equation (see [30]-[33]). Using such approach, we treat the dynamical diffraction of 
X-rays by a set of diffracting lattice planes ( )hkl  of perfect crystal as the superposition 
of X-ray “Bloch waves” in a medium with harmonically varying dielectric susceptibility 
(polarizability) ( )hklχ r . Therefore, the problem of X-ray wave field propagation 
through an arbitrary set of diffracting lattice planes of periodic structure with the sym-
metry centre can be brought mathematically to an analogous problem of the solution of 
stationary Schrödinger equation with cosine-like coefficient [30]. Our method is based 
on eigenvalues and eigenfunctions problem solution technique. This technique is ap-
plicable for both media—the cover layer and crystalline wafer. The common hard X-ray 
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dynamical diffraction theories [10]-[13] did not use this advanced technique. We 
transform the Maxwell’s equations to the set of differential equations [30] involving the 
Mathieu or Hill equations [37]-[39]. 

4.2. Stationary X-Ray Wave Fields inside Non-Diffracting Cover Layer 

We seek a non-trivial y-component ( )L y
  rΨ  of the stationary X-ray wave field 

strength ( )L rΨ  inside thin non-diffracting cover layer in the following Fourier 
integral form: 

( ) ( ) 0L Lx z
= =      r rΨ Ψ ,                       (13a) 

( ) ( ) ( ) ( ){ }{ }2
2 2

,
1

, exp 2π 1 d ,mm
L L y L x x L x xy

m
x z k i xk z k k k

∞

−∞
=

 ≡ Ψ = Ψ − + − −     ∑ ∫rΨ  (13b) 

where 

1 E
L Lk K χ= + ,                             (14) 

( ), ,L y x zΨ  is equal to either ( ), ;L yE x zσ  or ( ), ;L yH x zπ , where ( ), ;L yE x zσ  cor-
responds to the electric field strength vector of the σ-polarized X-ray wave field inside a 
thin non-diffracting cover layer, ( ), ;L yH x zπ  corresponds to the magnetic field 
strength vector of the π-polarized X-ray wave field inside a thin non-diffracting cover 
layer. ( )m

L xkΨ  are the unknown weight functions. E
Lχ  is the value of polarizability 

averaged throughout cover layer. 

4.3. Stationary X-Ray Wave Fields inside the Single-Crystal Wafer 

If absorption is not taken into account, and crystalline wafer has a center of symmetry, 
then the following relations describe components of the stationary X-ray wave fields 

( )rΨ  inside the crystalline wafer [29] [30]: 

( ) ( ) 0
x z
= =      r rΨ Ψ ,                       (15a) 

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2
0

22

, , ,

exp 2π 2 d ,

yy

hkl

x z D q ce u q D q se u q

i z k a d

µ µ µ µ

µ µ

∞

−

 ≡ Ψ = +    

 × − −  

∫rΨ
        (15b) 

where 

( )0 hklu x x x dηπ= + + ,                        (16) 

00 hklx d≤ ≤ ,                            (17) 

( ) ( )12π hkl hklx dη η π−= − ,                       (18) 

( )0001 E

r
k K χ= − ,                        (19) 

( ) ( )22 E
hkl hkl r

q Kd χ= ,                       (20) 

( )2
0 0D q ≡ ,                            (21) 



H. J. Bezirganyan et al. 
 

1740 

( )000
E

r
χ  is the real part of the crystal polarizability averaged throughout the crystal 

lattice cell, ( )E
hkl r

χ  is the real part of the Fourier coefficient of the crystal polarizabil-
ity corresponding to a set of diffracting lattice planes ( )hkl . Functions ( );ce u qµ  and 

( );se u qµ  are the ordinary Mathieu functions of first kind to which eigenvalues aµ  
correspond [35]-[37]. ( )1D qµ  and ( )2D qµ  are the unknown weight functions which 
have to be determined from boundary conditions. 

5. Boundary Conditions and Extension of Results for the  
Absorbing Media 

We do not make any assumptions about the X-ray wave field strengths ( )r
y

  rΨ , 
( )L y

  rΨ  and ( ) y
  rΨ  with the exception of the requirement that the y-compo- 

nents of the wave fields (7b), (8b), (13b) and (15b) must satisfy the following boundary 
conditions:  

( ) ( ) ( )2 2 , 2, , , 0i r
y y L yx z x z x zΨ +Ψ −Ψ = ,                (22a) 

( ) ( ) ( )
2

,, , , 0i r
y y L y

z z

x z x z x z
z =

∂  Ψ + Ψ −Ψ =  ∂ 
,            (22b) 

( ) ( ), 1 1, , 0L y yx z x zΨ −Ψ = ,                     (22c) 

( ) ( )
1

, , , 0L y y
z z

x z x z
z =

∂  Ψ −Ψ =  ∂ 
.                 (22d) 

Using the orthogonality conditions of the functions involved in Equations (7b), (8b), 
(13b) and (15b), the unknown weight functions ( )r r

xKΨ , ( )m
L xkΨ , ( )1D qµ  and 

( )2D qµ , which satisfy the boundary conditions (22a-d), can now be determined. One 
obtains the required expressions of reflected and transmitted wave fields by the corres-
ponding substitution of the obtained weight functions into Equations (7b), (8b), (13b) 
and (15b). 

In our calculation, the absorption is taken into account by the following substitutions 
made in the obtained results: 

( ) ( ) ( )E E E
L L L

r r i
iχ χ χ→ + ,                   (23a) 

( ) ( ) ( )000 000 000
E E E

r r i
iχ χ χ→ + ,                 (23b) 

( ) ( ) ( )E E E
hkl hkl hklr r i

iχ χ χ→ + ,                 (23c) 

where ( )E
L i

χ , ( )000
E

i
χ  and ( )E

hkl i
χ  are the real values that describe a wave field 

energy loss through inelastic interactions of X-rays with atoms and molecules of the re-
tro-reflector [10]-[13]. 

6. The Advanced Technologies That Can Be Used for  
Manufacturing of Hard X-Ray GIRRs 

This paper further considers a total retro-reflection of grazing incident hard X-rays 
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from a germanium wafer covered by a thin beryllium layer. 

6.1. Choice of Germanium as a Diffracting Substrate for GIRR 

The choice of germanium single-crystal wafer for use in GIRR is stipulated by the fol-
lowing reason: 
• Germanium has relatively low melting point and was the first material that could be 

grown dislocation free. With the improvement of crystal growth, dislocation-free 
wafers became available and are nowadays the standard in the case of 200 and 400 
mm diameter germanium and silicon substrates [40]-[43]. 

6.2. Selection of Beryllium as a Cover Layer Material for GIRR 

The selection of beryllium as a base material for non-diffracting cover layer is stipulated 
by the following: 
• Beryllium is a metal that has low density and low atomic mass, and hence very low 

absorption level of X-rays, making beryllium the preferred choice for X-ray tube 
windows where the energy low absorption is desired. 

• The surface of beryllium metal, like the aluminum, is covered by a thin layer of 
oxide that helps protect the metal from attack by acids. Due to this coating, corro-
sion and oxidation in air is minimal up to temperatures of about 760˚C. Beryllium 
metal does not react with water or steam, even if the metal is heated to red heat. 

6.3. A Technique for Deposition of Thin Metallic Layers on  
Semiconductors 

The deposition of the beryllium thin layer can, for example, be realized via Atomic 
Layer Deposition (ALD) technology: 
• ALD technology allows semiconductor manufacturers to choose from a wide field of 

deposition precursors for the application of any thin film in use today on the surface 
of a large wafer with atomic layer precision. 

• ALD technology can also be used to construct complex, compound film structures 
with a level of control and conformity that was previously unavailable or impractic-
al. 

• ALD offers the opportunity to create precisely controlled ultra-thin films coating up 
to 300 mm diameter single-crystal wafers. 

• General ALD process benefits are the excellent process control with wafer-to-wafer 
repeatability with accuracy less than ±1%, up to 300 mm diameter wafer with typical 
uniformity accuracy less than ±2%, excellent step coverage even inside high aspect 
ratio structures, low film impurities, etc. (for example, see [44]). 

6.4. The Thermal Annealing of GIRR 

The improvement of tensile strain, crystal quality, and surface morphology of germa-
nium wafer after its covering with thin beryllium layer can be achieved by the thermal 
annealing. For example, the tensile strain and crystal surface quality, of 500 nm thick 
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Ge films were improved after rapid thermal annealing at 900˚C for a short period less 
than 20 s [45]. The films were grown on Si(001) substrates by ultra-high vacuum 
chemical vapour deposition. These improvements are attributed to relaxation and de-
fect annihilation in the Ge films. However, after prolonged more than 20 s rapid ther-
mal annealing, tensile strain and crystal quality degenerated. This phenomenon results 
from intensive Si-Ge mixing at high temperature. 

The solid solubility of beryllium in germanium is extremely small up to temperatures 
of about 900˚C, and, consequently, the mutual diffusion process of atoms between 
germanium wafer and beryllium layer has very low rate (see Fig. 15.11 in [46]). 
• This type of properties opens the opportunity of removing the interface tensile 

strain and improving the crystal quality and morphology of subsurface region of 
germanium wafer covered by thin beryllium layer through the application of a 
longer thermal annealing method at, for example, 700˚C practically without any ap-
preciable inter-diffusion between these two materials. The essential reduction of the 
tensile strain along the Be-Ge large interface will increase the survivability of the 
coverage layer. 

6.5. The Array of GIRRs 

The main problem of experimental research involving the grazing-incidence hard X-ray 
optics is the small collection efficiency due to the small critical angle, since the collec-
tion area of grazing incidence mirrors is the projection of the mirror surface onto the 
aperture plane.  

A Japanese optics company, JTEC Corporation, fabricates the mirrors for synchro-
trons and other X-ray laser research facilities [47] such as Japan’s Spring-8 Angstrom 
Compact Free-Electron Laser (SACLA) and the European X-ray Free-Electron Laser 
(EXFEL), located in Hamburg, Germany and due to come online in 2017. Recently, 
scientists installed new mirrors to improve the quality of the X-ray laser beam at the 
Department of Energy’s SLAC National Accelerator Laboratory. The meter-long mir-
rors are the ultimate in flatness, smooth to within the height of one atom or one-fifth of 
a nanometer [48]. Each mirror is made from an individual silicon crystal, artificially 
grown in a lab. After the mirror is polished with conventional techniques, the company 
uses a process called elastic emission machining, where a jet of ultra-pure water con-
taining fine particles removes any remaining imperfections atom by atom. The same 
advanced technology may be used for the GIRR manufacturing. 

An alternative method to long plane retro-reflectors is a nesting multiple GIRRs that 
also increases the collection area, and a thin metallic coating will further increase the 
critical angle and thus collection efficiency (see Figure 5). 

7. The Discussion of GIRR Reflectivity Coefficients 

We analyze below the solutions for vacuum stationary hard X-ray wave fields for the 
optimization of system design parameters and diffraction conditions that satisfy well 
the performance objectives of GIRR (see subsection 2.2). 
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Figure 5. A cascade of GIRRs. The extra-large-area retro-reflector is prepared 
using an array (or a mosaic) of individual large single-crystal wafers. Special 
processing techniques maintain the orientation of the individual crystals to very 
high accuracy. The angles iθ  and rrθ  are the angles of incidence and re-
tro-reflectance of the plane X-ray wave field, and the wave vectors of the incident 

iK  and retro-reflected rrK  beams lie on the same side of the normal line in 
respect to the interface between the two media. 

7.1. GIXB by Bulk Germanium Wafer without Cover Layer 

Let’s discuss a diffraction in case where the exact condition of coplanar GIXB holds in-
side bulk germanium wafer without cover layer, and the angle of incidence iθ  of X-ray 
primary beam satisfies the first-order Bragg diffraction by the lattice planes ( )422 : 

( ) ( ) 0E E
L L

r i
χ χ= ≡ ,                         (24) 

1 2z z→ .                              (25) 

The reflectivity coefficients ( )n BR θ  from a single-crystal wafer and visibility 
( )BV θ  of images obtained from subsurface non-diffracting regions of wafer are de-

scribed by the following formulas: 

( ) ( )
2

2
0 ,i r

n B y n
R E E x zσ σθ −  ≡   ,                   (26) 

( ) ( ) ( ) ( ) ( )0 2 0 2
i i

B B BV R R R Rθ θ θ θ θ ≡ − +  ,             (27) 

where n = 0, 1, 2, the function ( )0
iR θ  is the X-ray reflectivity coefficient of a sin-

gle-crystal wafer without a cover layer in the case when the Bragg condition is not satis-
fied, the functions ( )1 BR θ  and ( )2 BR θ  are the retro-reflectivity and reflectivity coef-
ficients, respectively [30] [31]. The graphs of reflectivity coefficients ( )n BR θ  and visi-
bility ( )BV θ  of images depending on Bragg angle Bθ  are presented in Figure 6. 

These graphs are computed using the values of the incidence angle iθ  taken from 
the angular region presented below:  
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Figure 6. The graphs of X-ray reflectivity coefficients and visibility of images depending 
on Bragg angle Bθ  while the coplanar GIXB by lattice planes (422) holds inside bulk 
germanium single-crystal wafer without a cover layer. The diffracting lattice planes (422) 
are normal to X-ray entrance plane surface. 

 

89.3 89.9i
Bθ θ≤ = ≤  .                       (28a) 

Equation (28a) can be rewritten in the following form using Equation (3): 

( ) ( )422 4222 sin 89.3 2 sin 89.9d dλ≤ ≤  ,                (28b) 

where 2 2 2
hkl Ged a h k l= + + , 0.56574 nmGea =  is the germanium lattice constant 

at the room temperature, and 422 0.11548nmd =  [49] [50]. 
The polarizability Fourier components ( )000

E

r
χ , ( )000

E

i
χ , ( )422

E

r
χ , and 

( )422
E

r
χ  are calculated based on the method of computer simulation of experimental 

results for the complex kinematic scattering parameters of X-rays [51]. The maximum 
value of the retro-reflectivity coefficient ( )1 89.672 0.5BR θ = ≈  corresponds to  

89.672Bθ =  , and the visibility function ( )89.672 0.58BV θ = ≈  (see Figure 6). Also, 
note that ( )2 89.672 0.3BR θ = ≈ , so the mirror wave field reflected from crystal wafer 
does not get completely suppressed. 

7.2. GIXB by Bulk Germanium Wafer Covered with Beryllium Layer 

One may write the following relation between σ  and π  polarization modes of elec-
tric wave field propagating inside the crystalline wafer [10]-[13]: 

( )
( ) ( ) ( )

( )

2 2
2

000 000

, , , ,
cos 2

, , , ,
hkl hkl

B
x z x z
x z x z

π σ

π σθ=   
E k E k
E k E k

.              (29) 
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Since GIXB setup performs only if the magnitude of Bragg angle Bθ  is close to 90˚, 
then the square of polarization factor ( ) 2

cos 2 1Bθ ≈   , and, according to (29), the in-
tensities of X-ray wave fields inside the crystalline wafer are practically the same for 
both σ  and π  polarization modes. 

The diffraction angles can be determined through the system of analyzer crystals 
with an accuracy of at least 0.0003±  , and can be obtained experimentally under the 
conditions of high diffraction intensity in grazing-angle incidence geometry, notwith-
standing the fact that the cap layer thickness is less than 5 nm [52]. Therefore, the 
presence of a thin cap layer may essentially change the reflectivity properties of single- 
crystal substrate when the GIXB holds inside. 

Here we analyze a particular case of coplanar GIXB by germanium single-crystal wa-
fer covered with thin non-diffracting beryllium layer. Our goal is to find an opportunity 
to reduce the common reflected wave and increase the retro-reflected one. 

The graphs of X-ray reflectivity coefficients ( )0 ,BR Tθ , ( )2 ,BR Tθ , as well as the re-
tro-reflectivity coefficient ( )1 ,BR Tθ  and visibility function ( ),BV Tθ , are presented 
in Figure 7. These graphs depend on the thickness T of beryllium cap layer while the 
coplanar GIXB by ( )422  lattice planes holds inside bulk germanium single-crystal 
wafer for the particular case of kinematic Bragg angle 89.672Bθ =  . 

 

 
Figure 7. The graphs of X-ray reflectivity coefficients and visibility of images depending on 
Bragg angle Bθ  while the coplanar GIXB by lattice planes (422) holds inside bulk germanium 
single-crystal wafer without a cover layer. The diffracting lattice planes (422) are normal to X-ray 
entrance plane surface. 
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Curves in Figure 7 correspond to the incident X-ray wavelength  

( )4222 sin 89.672 0.115483 nmdλ = =  and to absolute values of the electric suscepti-
bility coefficients for beryllium layer and germanium wafer presented below: 

( ) 52.36639 10E
L

r
χ −= × , ( ) 82.25158 10E

L
i

χ −= × , 

( ) 5
000 6.68359 10E

r
χ −= × , ( ) 6

000 3.54139 10E

i
χ −= × , 

( ) 5
422 2.55719 10E

r
χ −= × , ( ) 6

422 3.06642 10E

i
χ −= × . 

The coefficients ( )0 89.672 ,BR Tθ =  , ( )1 89.672 ,BR Tθ =  , ( )2 89.672 ,BR Tθ =  , 
and visibility ( )89.672 ,BV Tθ =   are oscillating functions with slowly damping am-
plitude (see Figure 7). Coefficients ( )1 89.672 ,BR Tθ =   and ( )2 89.672 ,BR Tθ =   
have the same period 36 nmT∆ ≈  and are mutually shifted for a half of a period 

2T∆ . The zeros of reflectivity coefficient ( )2 89.672 ,BR Tθ =   correspond to certain 
values of cover layer thicknesses 0jT T T j T= ≡ + ⋅ ∆ , where 0 30 nmT ≈ ,  

1 36 nmj jT T T+∆ = − ≈ , 0,1, 2,j =  . In this particular case when jT T= , the identity 

( )2 89.672 , 0B jR Tθ = ≡  holds because a complete suppression of the reflectivity coef-
ficient in the direction of conventional mirror wave happens due to destructive interfe-
rence between the X-ray wave reflected from crystal wafer and X-ray wave reflected 
from the cover layer. Also, in this particular case jT T= , the retro-reflectivity coeffi-
cient ( )1 89.672 ,B jR Tθ =   has local maximums, and visibility function is  

( )89.672 , 1B jV Tθ = ≈ . It can be noted that the following approximate relations hold 
for the neighbour extremal values since these coefficients have the slowly damping am-
plitudes: 

( ) ( )
( ) ( )

1 2

1 2

89.672 , 89.672 ,

89.672 , 2 89.672 , 2 .

B j B j

B j B j

R T R T

R T T R T T

θ θ

θ θ

= + =

≈ = ± ∆ + = ± ∆

 

 

        (30) 

The relation (30) can be rewritten in the following form: 

( ) ( )
( )

1 1

2

89.672 , 89.672 , 2

89.672 , 2 0.7.

B j B j

B j

R T R T T

R T T

θ θ

θ

= − = ± ∆

≈ = ± ∆ ≈

 



            (31) 

Hence, a small changes of the cover layer thickness equal to 2 18 nmT∆ ≈  leads to 
essential redistribution in magnitudes of reflectivity and retro-reflectivity coefficients. 
Fortunately, the advanced nano-technologies of the present day allow the layer deposi-
tion and the thickness control with less than 1 nm accuracy. The magnitudes of local 
maximums of the retro-reflectivity coefficient ( )1 89.672 ,B jR Tθ =   are greater than 
the magnitudes of the neighbour local maximums of reflectivity coefficients  

( )2 89.672 , 2B jR T Tθ = ± ∆ .  
The comparison of the corresponding graphs presented in Figure 6 and Figure 7 

brings to the following relations:  

( ) ( )1 189.672 0.3 89.672 , 0.8B B jR R Tθ θ= ≈ < = ≈  ,           (32a) 
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( ) ( )2 289.672 0.5 89.672 , 0B B jR R Tθ θ= ≈ > = ≡  ,           (32b) 

( ) ( )
( ) ( )

1 2

1 2

89.672 89.672

89.672 , 89.672 , 0.8,

B B

B j B j

R R

R T R T

θ θ

θ θ

= + =

≈ = + = ≈

 

 

           (32c) 

( ) ( )89.672 0.58 89.672 , 1B B jV V Tθ θ= ≈ < = ≈  .           (32d) 

The relation (32c) can be rewritten in the following form: 

( ) ( )1 189.672 , 89.672 0.5B j BR T Rθ θ= − = ≈  ,              (33) 

where j = 0, 1 (see Figure 7). The enhancement of retro-reflectivity coefficient of a sin-
gle crystal wafer happens if it has a thin non-diffracting cover layer (see Equation (33)). 
This phenomenon is caused by the constructive interference between the X-ray wave 
field retro-reflected from crystal wafer and the X-ray waves multiply reflected from the 
top and bottom surfaces of the cover layer. 

Now, let’s consider the X-ray reflectivity and retro-reflectivity coefficients and visi-
bility function depending on the Bragg angle Bθ . In this particular case, the coplanar 
GIXB by lattice planes ( )422  holds inside bulk germanium wafer covered with a thin 
non-diffracting beryllium layer of thickness 0 30 nmT T= = . The corresponding 
graphs are presented in Figure 8. It can be noted from Figure 8 that the extreme values  
 

 
Figure 8. The graphs of X-ray reflectivity coefficients and visibility of images depending on 
Bragg angle Bθ  while the coplanar GIXB by lattice planes (422) holds inside bulk germanium 
crystalline wafer covered with non-diffracting beryllium layer with the thickness T = 30 nm. The 
diffracting lattice planes (422) are normal to X-ray entrance plane surface. 
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of the reflectivity graphs ( )1 89.672 ,30 nm 0.8R ≈ , ( )2 89.672 ,30 nm 0R = , as well as 
of the visibility function graph ( )89.672 ,30 nm 1V ≈  correspond to the magnitude of 
Bragg angle 89.672Bθ =  . 

We present below three-dimensional graphs of the retro-reflectivity and reflectivity 
coefficients, as well as the visibility function depending on both variables Bθ  and T 
(see Figures 9-12). According to the graphs presented in Figures 9-12, the following 
limit equations hold: 

 

 
Figure 9. The retro-reflectivity coefficient. 

 

 
Figure 10. The reflectivity coefficient. 
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Figure 11. The reflectivity coefficient if the Bragg condition is not sa-
tisfied. 

 

 
Figure 12. The graph of visibility function. 

 

( ) ( )1
90 90

lim , lim , 0
B B

B BR T V T
θ θ

θ θ
→ →

= =
 

,                  (34a) 

( ) ( )0 2
90 90

lim , lim , 1
B B

B BR T R T
θ θ

θ θ
→ →

= =
 

,                  (34b) 

where T is an arbitrary value of the cover layer thickness. Note that the maximums on 
oscillating graphs of reflectivity and retro-reflectivity coefficients and of visibility func-
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tion correspond to kinematic Bragg angle 89.672Bθ =   (see Figures 9-12). 

7.3. Hard X-Ray Optical Noise and Background Filter 

The modern laboratory X-ray source has a high intensity X-ray beam close to 109 pho-
tons s−1 focused on the sample surface by using a Cu rotating anode X-ray generator 
operated at 40 kV - 30 mA (1.2 kW), according to paper [52]. The design, implementa-
tion, and performance of an X-ray monochromator with ultra-high energy resolution 
of 98 10E E −∆ ≈ ×  at 14.41 keV is given in [53]. 

The images of non-diffracting nano-sized subsurface inclusions, obtained by the 
hard X-rays scattering process, show a high-intensity background, so, besides a suffi-
cient intensity and energy resolution, the advanced hard X-ray image registration sys-
tem needs an all-optical filter that removes unwanted background or optical noise from 
the conventional specular wave and essentially increases the visibility of the informative 
signal. 

In the retro-reflection performance mode, a planar GIRR removes the primary radia-
tion from the common reflected beam propagating in the direction of the wave vector 

2
r r≡K K  (see Figure 4). Consequently, using the proposed experimental scheme, re-

searchers will be able to register weak signals scattered by non-diffracting inclusions 
located at wafer’s subsurface region (if there are any). 

Finally, we can conclude that single crystal wafer covered by a thin cover layer with a 
certain thickness performs like an X-ray optical noise (or background) filter. Moreover, 
simultaneously with the increase in the magnitude of the visibility function, a dimi-
nishing of certain effects occurs, for example, in the probability of data read-out errors 
and data read-out time during the digital data read-out procedure from X-ray optical 
data carrier preliminary covered by a thin non-diffracting protective layer [33]. 

8. Conclusions 

• Proposed grazing-incidence retro-reflector (GIRR) is a plane mirror that totally re-
flects (or diffracts) the grazing-incidence hard X-ray photons back to its source. 

• The planar GIRR (or a cascade of GIRRs, see the subsection 6.5) consists of sin-
gle-crystal wafer(s) covered by an ultra-thin, non-diffracting layer of low-absorbing 
material, and can be applied in hard X-ray optical noise (or background) filters, 
high-quality hard X-ray waveguides, low-gain hard X-ray free electron laser resona-
tors (XFELRs), X-ray holography, coherent X-ray diffraction imaging, phase-con- 
trast imaging, as well as in hard X-ray optical data storage devices [32] [33] and 
deep space hard X-ray communications [6]-[9]. 

• The authors justify in Section 6 of this paper the selection of a germanium and be-
ryllium material for the design of planar GIRR, as well as review the advanced na-
no-technologies of the present day through which the GIRR can be implemented. 

• Changes in thickness of cover layer bring to oscillations with slowly damping (rela-
tive to oscillations period) amplitude of the hard X-ray reflectivity and retro-reflec- 
tivity coefficients, as well as of the visibility function (see Figure 7 and Figures 
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9-12). 
• From the analysis of graphs presented in Figures 7-12, the authors conclude that 

the coplanar GIXB at a certain value of the Bragg angle 89.672Bθ =   by lattice 
planes (422) of germanium single-crystal wafer covered by the beryllium non-dif- 
fracting layer with a thickness 0jT T T j T= ≡ + ⋅ ∆  (where 0 30 nmT ≈ , 36 nmT∆ ≈ , 

0,1, 2,j =  , see the GIXB scheme presented in Figure 4) satisfies the both perfor-
mance criteria 1) and 2) for the planar GIRR defined in subsection 2.2. 

• The authors overcome a thermal expansion problem due to GIXB scheme, since the 
X-ray penetration depths in crystal wafer are at least in three orders smaller than in 
diffraction methods, which rely on normal-incidence Bragg reflectors. Also, the 
energy distribution of the primary beam along the crystal entrance surface is, at least, 
two orders of magnitude smaller in the case of grazing-incidence diffraction than 
the energy distribution for the same primary beam in the case of normal-incidence 
Bragg reflectors. These two circumstances clearly satisfy the requirement of keeping 
the crystal temperature precisely at a predefined level. 
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