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Abstract 
The transition regimes of solitons in four-photon resonant processes in the case of two-photon 
absorption of the fundamental radiation are numerically investigated. The standard system of 
equations for the amplitudes of probability of finding the system in state with certain energy is used to 
derive the expression for the induced polarization in the nonlinear medium. As for the equations for the 
amplitudes of the optical pulses, the general case is considered in which both the amplitudes and phases 
are space-time dependent. We focus on the finite difference methods and the case of simultaneously 
propagating solitons at all frequencies of the interacting waves (simultons). The obtained results 
indicate that upon certain threshold conditions all interacting pulses become the solitons of Lorentzian 
shape. The numerical analysis has also shown that the soliton amplitudes significantly depend on the 
ratio between the nonlinear polarizability at the fundamental frequency 0ω  and that of combination of 

0ω  and the trigger-field frequency ( )2 +1 0 1ω ω ω . In the second part of the paper, we apply the method 
of phase planes to show that at typical values of parameters, the solitons are stable. 
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1. Introduction 
Solitons or self-reinforcing solitary waves can emerge spontaneously in a physical system in which some energy 
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is fed in, for instance as thermal energy or by an excitation with an electromagnetic wave, even if the excitation 
does not match exactly the soliton solution. Therefore, if a system possesses the necessary properties to allow 
the existence of solitons, it is highly likely that any large excitation will indeed lead to their formation [1]-[3]. 
The field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research 
and discoveries in nonlinear optics [4]-[7]. 

In our previous research [8], we established the possibility of the existence of simultons (simultaneously 
propagating solitons at different frequencies) in the case of nonstationary Raman scattering with excitation of 
polar optical phonons under the conditions of the interaction of ultrashort pulses of exciting and Stokes radiation 
in nonlinear crystals. The relevance of this study is connected both with the fact that one can extract additional 
information on the optical characteristics of matter, and with the possibility of obtaining of ultrashort pulses.  

The second topical problem in modern nonlinear optics is the production of coherent and frequency-tunable 
radiation in the far ultraviolet (UV) and infrared (IR). In these spectral areas, solid materials have broad absorp-
tion bands and this narrows down the application of nonlinear crystals for the generation of electromagnetic 
radiation. Possible ways of overcoming those difficulties are related with the utilization of nonlinear phenomena 
in gases and metal vapors. The resonant four-photon interaction (RFPI) in the case of two-photon resonance is 
one of them. Among the advantages of gases are the presence of narrow resonances and possibility of conti-
nuous variation of density, width of spectral line, length of the medium, etc. [9]-[11]. Ultrashort pulse propaga-
tion in the case of two-photon resonance was first examined in [12] where the two-photon self-induced transpa-
rency effect was predicted. This prediction was subsequently confirmed experimentally [13] and by numerical 
studies [14]. Third-harmonic generation (THG) in media exhibiting resonance behaviour has also attracted con-
siderable attention [15]-[21]. However, RFPIs that are not frequency degenerate are of no less interest; they can 
be used to transfer the tuning of radiation from one range to another [22] [23]. 

The present paper is devoted to the computer simulation of transition regimes of RFPI solitons in the case of 
two-photon resonance. The basic equations describing this process are given in Section 2 [12] [24]. The results 
of computer simulation are shown in Section 3. The stability of solitons is considered in Section 4. 

2. Fundamental Principle 
Let us assume that two optical pulses with frequencies 0,1ω  propagate in the nonlinear medium at the angles 

0,1θ  with respect to the z-axis. The value of 02ω  is close to the frequency of resonant transition between levels 
2 and 1 in the medium ( )21 02ω ω ω= − ∆ . The nonlinear interaction between 0,1ω  and the medium results in 
parametric generation of 2 0 12ω ω ω= +  and 3 0 12ω ω ω= − . The values of 0,1,2,3ω  are considered to be in the 
transparent range of frequencies. We also assume that all electromagnetic waves have the same polarizations. 

To find the system of equations that governs the processes of propagation of optical pulses with frequencies 
0,1,2,3ω  in the medium we take the standard system of equations for the amplitudes of probability ka  of finding 

the system in state with energy kE  [25] 
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klµ  is the dipole moment of the transition k l→ ; , , ,m m m mk Eω ϕ  are the frequencies, wave vectors, real 
“slowly-varying amplitudes”, and phases of the interacting waves, respectively. 

We next use (1) and the theory of perturbations [26] to find la  ( )1, 2l ≠  (the perturbation coefficient is of  
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To obtain the system of equations for 1,2a  we introduce the expression (3) into the Equation (1), which be-
comes 
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The expression for the polarization induced by the superposition of nonlinear waves is defined by  
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We introduce (3) into (7) and find that the expression for the induced polarization becomes 
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The system of Equations (4) and (5) can now be rewritten in terms of 1,2P  and n as follows 
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r  0A  is the maximum pulse amplitude; 0τ  is the pulse width. 

To make the system (8) - (10) complete we add Maxwell’s equations for the all real “slowly-varying ampli-
tudes” 0,1,2,3E�  and their phases 0,1,2,3ϕ . We obtain 
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0,1,2,3 0,1,2,3 0 ,cβ β τ=�  0,1,2,3 0,1,2,3 0 ,cγ γ τ=�  N is the number of molecules in cm3, 103 10 cm sc = × . 

3. Transition Regime  
We carried out the computer simulation of the system (8) - (10) and (11) - (18) for the following parameters of 
electromagnetic radiation and medium (gases): 15 110 s ,ω −=  19 310 cm ,N −=  4

0 10 esuA =  ( )11 210 W cm ,I =  
1810 esu,µ −=  24 310 cm ,r −=  and 11

0 10 sτ −=  [27]-[29]. The optical pulses on the pump and trigger fre-
quencies 0,1ω  were chosen to be of Gaussian shape. The accuracy of numerical results was based upon moni-
toring the conservation of energy of the system at every cross-sectional area in the medium. We considered the 
following trends: the phase locking and confinement; the length of medium needed for soliton formation; the 
distribution of energy during the transition regime; the energy limitations on solitons formation; the effect of 
slowing down of solitons in resonant systems; the relationship between the soliton speed and characteristics of 
incoming electromagnetic waves and nonlinear medium; the conditions leading to formation solitary wave at 
one frequency (instead of generation of sequence of them); the connection between the amplitude of soliton and 
parameters upon consideration. The space-time evolution of the normalized intensities ( ( )2 2

0 0,max,A E z t E= � ��� ,
( )2 2

1 1,max,B E z t E= � ��� , ( )2 2
2 2,max,C E z t E= � ��� , and ( )2 2

3 3,max,D E z t E= � ��� ) is shown in Figures 1-4. 

4. Stability  
To investigate the stability of solitons we perform the summation of the Equations (12) (14) (16) and (18) for 
phases 0,1,2,3ϕ  and transform them to the equations for 1,2∆ . We assume that both processes 2,3 0 12ω ω ω= ±  
occur at the conditions of synchronism, so that 7 7 7

3 0 12k k k≈ −  and 7 7 7
2 0 12k k k≈ + . This condition is usually sa-

tisfied in gases [29]. Moreover, we also suggest that the phase differences 1,2∆  are locked to 2πn  or 
( )2 1 πn +  due to the nonlinear effects [30]. In this case 1 0P =  ( 0 1τ∆Ω � ). Let 1,2∆  be 1,2 1,22πn∆ = + ∆�  or 

( )1,2 1,22 1 πn∆ = + + ∆� , where 1,2∆�  are some small phase fluctuations. Finally, the modified system of (12) (14) 
(16) and (18) can be written in terms of 1,2∆�  as follows 
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Figure 1. The formation of the soliton at frequency 0ω .                            

 

 
Figure 2. The formation of the soliton at frequency 1ω .                            
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The behaviour of the latter system is analyzed in terms of phase planes. As an example, Figure 5 shows the 
phase plane of the following system 
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Figure 3. The generation of the soliton at frequency 2ω .                            

 

 
Figure 4. The generation of the soliton at frequency 3ω .                            

 

( )2
1 2

d sin sin sin ,
dξ
∆
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�
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at 11 different initial conditions for 1,2∆� . 

5. Conclusion 
The space-time evolution of the optical pulses by using the computer simulation of transition regimes of four- 
photon resonant parametric processes in case of two-photon resonance is investigated. The computer simulation 
was based on application of the finite difference methods to the system of nonlinear equations modeling the 
foregoing interactions. It is shown that at certain boundary conditions (those result from the “area theorem” (see, 
e.g. [30])) the incoming laser pulses at frequencies 0,1ω  first generate new waves at 2,3ω , and then all become 
simultons of Lorentzian shape. It has also been shown that upon the conditions of phase locking ( 1,2 1,22πn∆ = + ∆�   
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Figure 5. The phase plane of the system (21) and (22) ( 1x = ∆�  and 

2y = ∆� ) for 11 consecutive initial conditions for 1,2∆� : 1,2∆�  = 2.0, 
2.0; 1.9, 1.9; 1.8, 1.8; 1.0, 1.0.                                          

 
or ( )1,2 1,22 1 πn∆ = + + ∆� ) and synchronism ( 7 7 7

3 0 12k k k≈ −  and 7 7 7
2 0 12k k k≈ + ) in wide range of typical values 

of polarizabilities, the simultons are stable. These results could be useful for the applications related with de-
signing the lossless communication systems using the tunable frequencies ranging from IR ( 0ω ) to UV 
( 0 12ω ω÷ ). 
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