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Abstract 
In this paper, we analyze the queueing behaviour of wavelength division multiplex-
ing (WDM) Internet router employing partial buffer sharing (PBS) mechanism with 
self-similar traffic input. In view of WDM technology in networking, each output 
port of the router is modelled as multi-server queueing system. To guarantee the 
quality of service (QoS) in Broadband integrated services digital network (B-ISDN), 
PBS mechanism is a promising one. As Markov modulated Poisson process (MMPP) 
emulates self-similar Internet traffic, we can use MMPP as input process of queueing 
system to investigate queueing behaviour of the router. In general, as network traffic 
is asynchronous (unslotted) and of variable packet lengths, service times (packet 
lengths) are assumed to follow Erlang-k distribution. Since, the said distribution is 
relatively general compared to deterministic and exponential. Hence, specific output 
port of the router is modelled as MMPP/Ek/s/C queueing system. The long-term 
performance measures namely high priority and low priority packet loss probabilities 
and the short-term performance measures namely mean lengths of critical and non- 
critical periods against the system parameters and traffic parameters are computed 
by means of matrix-geometric methods and approximate Markovian model. This 
kind of analysis is useful in dimensioning the router under self-similar traffic input 
employing PBS mechanism to provide differentiated services (DiffServ) and QoS 
guarantee. 
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1. Introduction 

It is evident from seminal studies that Internet protocol (IP) traffic of both Ethernet 
traffic and wide area network (WAN) traffic exhibits self-similarity [1]-[3]. Markov 
modulated Poisson process (MMPP) is employed to emulate the self-similar traffic over 
the different time scales [4]-[6]. Naturally, high demand in Internet traffic leads to 
congestion problems. Congestion problems can be dealt with some space priority me-
chanisms. Buffer Access Control (BAC) mechanism is one of the space priority me-
chanisms. There are several strategies to implement this mechanism and one of such 
strategies is partial buffer sharing (PBS) mechanism. In this scheme [7]-[11], there is a 
limit (or threshold) in the buffer, and the part of buffer on or below the limit is shared 
by all arriving packets. When the buffer occupancy is above the limit, the arriving low 
priority packets will be dropped, and only high priority packets will be allowed. High 
priority packets will be lost only when buffer is full. If the limit is relatively low, then 
more low priority packets will be lost. If the limit is relatively high, then more high 
priority packets will be lost. The limit setting induces two time periods, namely, critical 
and non-critical periods. The critical period is the time period during which buffer oc-
cupancy of the queueing system is on or above limit level and the non-critical period is 
the time period during which buffer occupancy is below the limit level. This way, there 
is a trade-off relation between limit setting and packet loss. Hence, optimum level of 
limit is very important in dimensioning the network nodes such as switches or routers. 
Priority queue models are briefly discussed below. In paper [12], the queueing analysis 
of infinite buffer priority system with MMPP input is investigated with an assumption 
that the delay sensitive cells and non-delay sensitive cells arrive at two separate queues. 
This scheme is not realistic as the buffers consist of limited number of fiber delay lines 
(FDLs) with fixed granularity. The loss behaviour of finite buffer space priority queues 
with discrete batch Markovian arrival process (D-BMAP) has been analyzed [7] which 
is not the case, since the router under consideration is handling self-similar traffic 
which is modelled by continuous-time Markov process. 

Another issue of Internet traffic is to provide Quality of Service (QoS). Internet rou-
ter with wavelength division multiplexing (WDM) technology is promising one to 
guarantee QoS. In WDM router, there are N input fiber lines, N output fiber lines, and 
each fiber line has C wavelength channels and a wavelength converter pool of size s, 
( )0 s C≤ ≤  dedicated to each output fiber line. Hence, each output port of the router 
is to be modelled as multi-server queueing system [13] [14] [11]. In general, there are 
two types of networks: synchronous (slotted) and asynchronous (unslotted) [15]. In the 
case of first one, all the packets are of constant size [7] [13] [9] [12]. In asynchronous 
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networks, all the packets have variable lengths [8] [14] [16] [11]. Since IP packets are, in 
general, variable in length, the router is required to possess the ability to router the va-
riable length packets. Therefore, performance analysis of the router by means of 
MMPP/D/1/C queueing system wherein service time (packet length) is deterministic 
may not be appropriate [17]. Router with variable length packet traffic is modelled as 
MMPP/M/1/C queueing system wherein service time is exponential distribution [18]- 
[20]. In the papers [8] [13] [14] [11], the router is modelled as either single-server or 
multi-server priority based queueing system. However, the service times (packet lengths) 
distribution is assumed to be deterministic or exponential. It is appropriate that service 
time (packet length) follow more general distribution, namely, Erlang-k than the said 
distribution. There are many applications in a Broadband integrated services digital 
network (B-ISDN) communication services are to provide differentiated services (Diff-
Serv) and QoS. To the best of our knowledge, priority based WDM router with self- 
similar traffic input is not yet modelled by MMPP/Ek/s/C queueing system with PBS 
mechanism. 

The rest of the paper is organized as follows. In section 2, WDM asynchronous rou-
ter—multi-server queueing model MMPP/Ek/s/C employing PBS mechanism with Er-
lang-k service times is discussed. Computational complexity is briefed in section 3. In 
section 4, numerical results are presented graphically. Finally, conclusion is given in 
section 5. 

2. WDM Asynchronous Router—Multi-Server Queueing Model  
MMPP/Ek/s/C Employing Partial Buffer Sharing (PBS)  
Mechanism with Erlang-k Service Times 

We consider the WDM asynchronous N N×  router with each output fiber line con-
sisting of C wavelength channels and a wavelength converter pool of size s. Buffer 
depth then is C s− . Such a router with self-similar traffic input can be modelled as 
MMPP/Ek/s/C queueing system. The operation and multi-server queueing model of the 
router employing PBS mechanism is shown in Figure 1. For the simplicity, two priority 
traffics are considered. The threshold is set at the level 2 1C s b− − + , where b is a posi-
tive integer. The low priority packets can only access first 2C s b− −  buffer spaces and 
the high priority packets are for the whole buffer space. The threshold setting induces 
two time periods, namely, non-critical period and critical period [7] [8]. Non-critical 
period is the time period during which buffer occupancy is below the threshold level 
and critical period is the time period during which buffer occupancy is on or above 
threshold. Each priority traffic is self-similar and is modelled by MMPP process [6]. 
Assume that high priority (class 1) packets and low priority (class 2) packets arrive at 
the system according to MMPPs of the states 1m  and 2m , respectively, and are go-
verned by the matrices ( ) ( ){ }1 , 1Q Λ  and ( ) ( ){ }2 , 2Q Λ , respectively. Let the service 
time is generally and identically distributed with distribution function ( )H t . Let 

( ) ( ) { }, 0, 1, 2p
mA t m p≥ =  be the matrices whose ( ), thi j  element is the probability that 

given departure of class p at time 0, there is at least one packet left in the system and the  
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Figure 1. Operation and multi-server queueing model of a specific output port of the router em-
ploying partial buffer sharing mechanism with two different priority traffic input and Erlang-k 
service times. 

 
process is in state i, the next departure of class p occurs no later than time t with the 
process in state j, during the service time there are m packets. We consider the Markov 
chain ( ){ }, / 0n nL J n ≥  at the departure epochs of the queueing system on the state 
space ( )( ){ }1 2, , / 0 ,1 , 1 ,U d i j d C s i m j m= ≤ ≤ − ≤ ≤ ≤ ≤  where nL  denotes the buf-
fer occupancy and nJ  denotes the phase of superposed MMPP. For convenience, a 
queueing system is said to be at level d, if buffer occupancy is equal to d (excluding the 
ones in service). We ignore the time spent in a state and consider only the number of 
packets arrived during the sojourn time. Therefore, pertinent system is embedded 
Markov chain and has the following irreducible transition probability matrix P (with 
the dimension ( ) ( )1 2 1 21 1C s m m C s m m− + × − + ):  
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In Equations (2) and (3), the elements of row and column outside the matrices 1P  and 

2P  are state spaces of the Markov chain and the elements of first ( 1s + ) rows are iden-
tical. ( )1

iA  and ( )2 , 0iA i ≥  are the matrices of high priority and low priority packets, 
respectively. The overall input traffic is the superposition of high priority and low 
priority packets, which is also an MMPP with 
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Sojourn time is ignores the matrices of counting functions become independent of time 
t. The matrices ( )p

mA  satisfies the following equation [18]-[20], 
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If the service time distribution ( )H t  is Erlang with k phases in series of service and 
mean service time ( ) 1E H t µ=   , where µ  is the mean service rate. We have dropped 
the superscript “p” for convenience as the procedure holds good for both high priority 
and low priority packets. The matrices of counting function mA ’s can be computed 
following the procedure [18]-[21]. Then Equation (4) reduces to 
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where I is the unit matrix of appropriate dimension. For 0m =  in Equation (5), we 
have 
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In above equation, equating the coefficients of like powers of z, we obtain,  
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Equating the coefficients of nz  in the Equation (5), we get 
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The fundamental arrival rate of class p packets is ( ) ( ) ( )p p p eλ π= Λ , where ( )pπ  is 
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the steady state probability vector of ( )Q p . Then traffic intensity is  
( ) ( )( ) ( )1 2 E H t sρ λ λ= +    . Let ( )0 1, , , C sy y y y −=  , where  

( ) ( ) ( )( )1 2, 1,1 , 1,2 , ,, , ,v v v v m my y y y=  , for 0,1, ,v C s= − , when ( ), ,v l my  is the conditional 
probability that there are v packets in the system given that embedded Markov chain is 
in the ( ),l m  state. Therefore, we have , 1yP y ye= = , where e is the column vector 
consisting of all 1 [21]-[24]. Then, in the steady state, high priority packet loss proba-
bility hpP  and low priority packet loss probability lpP , respectively, are derived as 
follows [13] [7]. Let hpPL  denote the number of high priority packets lost due to the 
fact that buffer is full. Then the expected value of hpPL  is hpE PL    and is obtained 
by considering the last column of the ( ) ( )1 1C s C s− + × − +  block transition probabil-
ity matrix P as that column consists of matrices containing conditional probabilities 
that the buffer is full. Then high priority packet loss probability hpP  is given by 
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where ( ) ( )1 E H tλ     is the number of packet arrivals during the mean service time. Let 
lpPL  denote the number of low priority packets lost due to the fact that buffer occu-

pancy exceeds the threshold. Then expected value of lpPL  is lpE PL    and is obtained 
by considering the last ( )b s+  columns of the ( ) ( )1 1C s C s− + × − +  block transition 
probability matrix P as these columns consists of matrices containing conditional proba-
bilities that the buffer occupancy is greater than or equal to threshold. The low priority 
packet loss probability lpP  is given by 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( )

2 1
1 2

2 12 2
0 1 0

1
1 2 1 2

1
2 2 1 1 0

1

1
hp s C s b

lp
r j C s b j i

r i j

C s b C s b r

l i r j C s b r j i
l C s b r s i j

l
l

E PL
P iy A A

E H t E H t

A A e iy A A

A

λ λ

∞ − − +

− − + − +
= = =

∞ − − ∞ − − + −

− − + − − +
= − − + = + = =

=

      = = ⊗             

    + ⊗ + ⊗         

+

∑ ∑ ∑

∑ ∑ ∑ ∑

( ) ( ) ( )2 1 2

2 1 1 0
.

C s

i r l i
C s b r r C s b i l

A e iy A A e
∞ − ∞ ∞

− − + − = − − + = =

    ⊗ + ⊗    
    

∑ ∑ ∑ ∑

   (9) 

In the paper [7], the alternate methods to compute hpP  and lpP  are proposed, but 
the input process is assumed to be discrete batch Markovian arrival process (D-BMAP) 
and the pertinent queueing system is of single-server. On the same lines we have ex-
tended it to multi-server queueing system with continuous input process. In view of 
threshold setting we decompose the state space U into two subsets: 

( )( ){ }1 2, , / 0 2 , 1 , 1ncU d i j d C s b i m j m= ≤ ≤ − − ≤ ≤ ≤ ≤ ,          (10) 

and 

( )( ){ }1 2, , / 2 1 , 1 , 1cU d i j C s b d C s i m j m= − − + ≤ ≤ − ≤ ≤ ≤ ≤         (11) 
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This partition of U makes the transition probability matrix P decomposed as follows:  

,
*
,

nc nc c

c nc c

P P
P

P P
 

=  
 

.                         (12) 

The sub-matrices ncP , ,nc cP , *
,c ncP , and cP  are the left upper part, right upper part, 

left lower part, and right lower part of the matrix P with dimensions of  
( ) ( )1 2 1 22 1 2 1C s b m m C s b m m− − + × − − + , ( ) ( )1 2 1 22 1C s b m m b s m m− − + × + ,  
( ) ( )1 2 1 22 1b s m m C s b m m+ × − − +  and ( ) ( )1 2 1 2b s m m b s m m+ × + , respectively. These 
sub-matrices govern the transitions from ncU  into itself, from ncU  into cU , from 

cU  into ncU  and from cU  into itself, respectively. Next, we derive the mean length 
of non-critical and critical periods that occur alternately. For non-critical period, the 
transition probability matrix (TPM) of the absorbing Markov chain that has transient 
states ncU  and absorbing state cU  is given by 

,

0
nc nc cnc P P

P
I

 
=  
 

.                        (13) 

Similarly, in the case of critical period, the TPM of the absorbing Markov chain that has 
transient states cU  and absorbing states ncU  is given by 

,

0c

c nc c

I
P

P P
 

=  
 

,                         (14) 

where ,c ncP  is the last ( )1 2sm m  columns of the matrix *
,c ncP . This is followed from 

the fact that for a critical period it suffices to attain the buffer level 2 1C s b− − +  ra-
ther than all other below levels which is the starting point of non-critical period of each 
cycle except the first one. The absorbing probability vectors 2C s bα − −  and β  of the 
Markovian chain ncP  and cP  described in the paper [7] are given by, 

[ ]( )1
2 2 , , 2, 1C s b C s b nc nc c c c nc C s bS P I P P eα α α−

− − − − − −= − =            (15) 

and  

[ ]( )1
, , , 1c c nc nc nc cI P P S P eβ β β−= − = ,                 (16) 

where ncS  be the sub-matrix of [ ] 1
ncI P −−  which consists of the last ( )1 2sm m  rows 

in [ ] 1
ncI P −− . That is, absorbing probability vectors 2C s bα − −  and β  are steady state 

probability vectors of [ ] 1
, ,nc nc c c c ncS P I P P−−  and [ ] 1

, ,c c nc nc nc cI P P S P−− , respectively. 
The absorbing probability vectors are given by [ ]( ) 1

2 0,0, ,0,1C s b I Vα −
− − = −  and 

[ ]( ) 10,0, ,0,1 I Wβ −= − , respectively, where V is the ( ) ( )1 2 1 2sm m sm m×  stochastic 
matrix ( ) 1

, ,nc nc c c c ncS P I P P−−  in Equation (15) in which the last column is replaced by 
the column vector [ ]T1, 1, , 1,0− − −  and W is the ( ) ( )( )1 2 1 2b s m m b s m m+ × +  sto-
chastic matrix ( ) 1

, ,c c nc nc nc cI P P S P−−  in Equation (16) in which the last column is re-
placed by the column vector [ ]T1, 1, , 1,0− − − . Then the average length of non-critical 
and critical periods are [ ]ncE L  and [ ]cE L , respectively, given by  

[ ] 2nc C s b ncE L S eα − −= ,                       (17) 

and 
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[ ] [ ] 1
c cE L I P eβ −= − .                       (18) 

The average total number of high priority packets lost during a critical period is 
hpcE PL   ,  

( ) [ ] ( )1
2 ,

1 1

hpc hp hp
C s b nc nc c c c

l l
E PL S lP l e I P lP l eα β

∞ ∞
−

− −
= =

     = + −        
∑ ∑ .      (19) 

The average total number of low priority packets lost during a critical period is 
lpcE PL   ,  

( ) [ ] ( )1
2 ,

1 1

lpc lp lp
C s b nc nc c c c

l l
E PL S lP l e I P lP l eα β

∞ ∞
−

− −
= =

     = + −        
∑ ∑ ,      (20) 

where ,
hp

nc cP  and hp
cP  are the high priority packet loss during a critical period and 

,
lp

nc cP  and lp
cP  are the low priority packet loss during a critical period, and are given 

below, for 0l > ,  

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

0

1 2

0
,

1 2
1

0

1 2
2

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

C s l j
j

C s l j
jhp

nc c

C s l j
j

s b l j
j

A A

A A
P l

A A

A A

∞

− +
=

∞

− +
=
∞

− − +
=

∞

+ +
=

 ⊗ 
 
 
 

⊗ 
 =
 ⊗ 
 
 
 

⊗ 
 

∑

∑

∑

∑

 

      

 

 

      

 

,           (21) 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2
2 1

0

1 2

0

1 2
1

0

1 2

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

s b l j
j

s b l j
jhp

c

s b l j
j

s l j
j

A A

A A
P l

A A

A A

∞

+ − +
=

∞

+ +
=
∞

+ − +
=

∞

+
=

 ⊗ 
 
 
 

⊗ 
 =
 ⊗ 
 
 
 

⊗ 
 

∑

∑

∑

∑

 

      

 

 

      

 

,           (22) 

( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

2 1
1 2 1 2 1 2 1 2 1 2

2 1 2 2 2 1
0

2 1
1 2 1 2 1 1 2 1 2(2)

2 1 2 2 2 1
0

,
1 2

2
0

C s b

i C s b i l C s b l C s l C s l i l
i i C s

C s b

i C s b i l C s b l C s l C s l i l
i i C slp

nc c C

i C s b i l
i

A A A A A A A A A A

A A A A A A A A A A
P l

A A

− − + ∞

− − + − + − − + − − −
= = −

− − + ∞

− − + − + − − + − − −
= = −

− − − +
=

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗
=

⊗

∑ ∑

∑ ∑

 

      

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 2 1 1 2 1 2(2)

2 1 2 1 2
1

1
1 2 1 2 1 1 2 1 2(2)

1 2 2 1
0 2

s b

C s b l C s l C s l i l
i C s

s

i s i l s l s b l s b l i l
i i s b

A A A A A A A A

A A A A A A A A A A

− − ∞

− − + − − − −
= − −

+ ∞

+ − + + + + −
= = +

 
 
 
 
 
 
 
 
 ⊗ ⊗ ⊗ ⊗
 
 
 
 

⊗ ⊗ ⊗ ⊗ ⊗ 
 

∑ ∑

∑ ∑

 

      

 

,  (23) 
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and 

( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2 1 2
1 1 2 2

0 2 1

1
1 2 1 2 1 2 1 2 1 2

1 2 1
0

1 2 1 2 1 2 1 2 1 2
0 1 1 2

1

0 0

s

i s i l s l s b l s b l i l
i i s b

i i l l b l s b l i l
lp i i s b

c

l l b l s b l i l
i s b

A A A A A A A A A A

A A A A A A A A A A
P l

A A A A A A A A A A

A

∞

− + + + + + −
= = + −

∞

− + + −
= = +

∞

− + −
= + −

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗
=

⊗ ⊗ ⊗ ⊗ ⊗

∑ ∑

∑ ∑

∑

 

      

 

 

      



( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
0 1l s l i l

i s
A A A A A

∞

−
=

 
 
 
 
 
 
 
 
 
 
 
 ⊗ ⊗ ⊗
  

∑

.       (24) 

The high priority packet loss probability hpP  and low priority packet loss probability 
lpP  are  

( ) ( ) [ ] [ ]1

1
hpc

hp

nc c

E PL
P

E L E LE H tλ

    =
+     

,                 (25) 

and 

( ) ( ) [ ] [ ]2

1
lpc

lp

nc c

E PL
P

E L E LE H tλ

    =
+     

.                 (26) 

3. Computational Complexity 

In this section, first we compute the computational complexity of the long-term per-
formance measures, namely, high priority packet loss probability hpP  and low priority 
packet loss probability 

lpP  through the Equations (8)-(9). Next, we compute the 
short-term performance measures, namely, the mean length of non-critical periods 
[ ]ncE L  and critical periods [ ]cE L , and the long-term performance measures, name-

ly, high priority packet loss probability hpP  and low priority packet loss probability 
lpP  through the Equations (15)-(26) and analyze their computational complexity [7].  
In order to find the computational complexity of long-term hpP  and lpP  through 

the Equations ((8)-(9)), the transition probability matrix P in Equation (1) is not of the 
canonical / /1M G  type, using the Schur-Banachiewicz inversion formula, to compute 
the steady-state probability vector y of P (with dimension  
( ) ( )1 2 1 21 1C s m m C s m m− + × − + ) and we have , 1yP y ye= = . Let  

[ ]( ) 1
10,0, ,0,1y I P −= − , where 1P  is the matrix P in which the last column is re-

placed by the column vector [ ]T1, 1, , 1,0− − − . Let the permutation matrix M with 
dimension ( ) ( )1 2 1 21 1C s m m C s m m− + × − + , 

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

I
I

IM I
I

I

 
 
 
 =  
 
 
  

 

 

       

 

 

 

       

 

,                   (27) 
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where 0 and I are the zero and the identity matrices of dimension 1 2m m . Now, multip-
lying M to ( )1I P− , we have 

( )1

E F
M I P

G H
 

− =  
 

, (say).                    (28) 

The sub-matrices E, F, G, and H are of the dimensions  
( ) ( )1 2 1 22 1 2 1C s m m C s m m− + × − + , ( ) 1 2 1 22 1C s m m sm m− + × ,  

( )1 2 1 22 1sm m C s m m× − + , and 1 2 1 2sm m sm m×  , respectively. Then the steady state 
probability vector y is the last row of the matrix,  

( )1 1 1R X X GE− − − = −  .                      (29) 

By the Schur-Banachiewicz inversion formula, where 1X H GE F−= −  is the Schur 
complement of E in ( )1M I P−  with dimension 1 2 1 2sm m sm m× . But E is not a Toep-
litz matrix and can be further decomposed as 

11 12

220
E E

E
E

 
=  
 

,                          (30) 

where 11E  and 22E  are upper-triangular and Toeplitz matrices of dimensions 
 ( ) 1 22 1C s b m m− − +  and 1 2bm m , respectively. Thus  

1 1 1
1 11 11 12 22

1
220

E E E E
E

E

− − −
−

−

 −
=  
 

.                     (31) 

The sub-matrices 1
11E−  and 1

22E−  are also upper-triangular and Toeplitz matrices and 
the existence of 1

11
−E  and 1

22E−  is due to the existence of the inverses of 0A , ( )1
0A  and 

( )2A . The complexity to obtain 1E−  is of the order  
( )( )( )3 3

1 22 1 2 1O C s C s b bm m− + − − +  due to the matrix multiplication 1 1
11 12 22E E E− − , and 

the complexity to obtain the Schur complement X and the matrix R in (29) is of the or-
der ( )( )2 3 3

1 22 1O C s sm m− + . Thus the overall complexity to compute hpP  and lpP  
by Equations ((8)-(9)) is of the order ( )( )( )3 3

1 22 1 2 1O C s C s b bm m− + − − + . Note that 
as ( )2 1 2d C s→ − + , ( ) ( )( )3 3

1 22 1 ) 2 1O C s C s b bm m− + − − +  becomes  
( )( )3 3 3

1 22 1O C s m m− + , a complexity equal to the inversion of ( )1I P−  by a direct Gaus-
sian elimination. 

Now, we place the algorithmic steps needed for computing the performance meas-
ures [ ]ncE L , [ ]cE L , hpP , and lpP  and analyze their computational complexity [7]. 

Step 1. Compute ncS  (the last ( 1 2sm m ) rows of ( ) 1
ncI P −− ) and ( ) 1

cI P −− . 
Step 2. Compute 2C s bα − −  and β  by using [ ]( ) 1

2 0,0, ,0,1C s b I Vα −
− − = −  and 

[ ]( ) 10,0, ,0,1 ,I Wβ −= −  respectively, where V is the ( ) ( )1 2 1 2sm m sm m×  stochastic 
matrix ( ) 1

, ,nc nc c c c ncS P I P P−−  in Equation (15) in which the last column is replaced by 
the column vector [ ]T1, 1, , 1,0− − −  and W is the ( ) ( )( )1 2 1 2b s m m b s m m+ × +  sto-
chastic matrix ( ) 1

, ,c c nc nc nc cI P P S P−−  in Equation (16) in which the last column is re-
placed by the column vector [ ]T1, 1, , 1,0− − − . 

Step 3. Compute 2C s b ncSα − −  and ( ) 1
cI Pβ −− . 

Step 4. Compute ( ),
1

hp
nc c

l
lP l e

∞

=

 
 
 
∑ , ( )

1

hp
c

l
lP l e

∞

=

 
 
 
∑ , ( ),

1

lp
nc c

l
lP l e

∞

=

 
 
 
∑  and  
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( )
1

lp
c

l
lP l e

∞

=

 
 
 
∑ . 

Step 5. Compute [ ]ncE L  and [ ]cE L  by using Equations ((17) and (18)), respec-
tively. 

Step 6. Compute hpP  and lpP  by Equations ((25) and (26)), respectively. 
The computational complexity of the steps 5-6 in the above algorithm is of the order 
( )( )1 22 1O C s m m− +  due to the products of several pairs of row and column vectors. 

The computational complexity of the steps 3-4 is of the order ( )( )2 2
1 22 1O C s bm m− +  

due to the size of the matrix ,nc cP . The computational complexity of the 2nd step is of 
the order ( )3 3 3

1 2O b m m  due to the inversion of the ( ) ( )( )1 2 1 2b s m m b s m m+ × +  matrix 
( )I W− , and is also of the order ( )( )3 3

1 22 1O C s bsm m− +  due to the multiplication of 
the two matrices ncS  and ,nc cP  and the multiplication of the two matrices 
( )( )1

,c c ncI P P−−  and ( ),nc nc cS P .  
We next show that the computational complexity of the first step is of the order 
( )( )2 3 3

1 22 1O C s sm m− +  by subject to the existence of the inverses of 0A , ( )1
0A  and 

( )2A . Both ( )ncI P−  and ( )cI P−  are not in canonical / /1M G  type. Therefore, we 
will apply the Schur-Banachiewicz inversion formula for block matrices to obtain in-
verses. Now, multiplying M to ( )ncI P− , we have 

( )

0 1 3 3 1 2

0 3 1 3 2 1

0 1

0 1 3 3 1 2

0 1 3 3 1 2

0 1 3 3 1

0

0 0

C s b C s b C s b

C s b C s b C s b

s
nc

C s b C s b C s b

C s b C s b C s b

C s b C s b

A A A A A

A A A A

A A I A
M I P

I A A A A A

A I A A A A

A A A A

− − − − + − −

− − − − − − − −

− − − − + − −

− − − − + − −

− − − − +

− − − − −

− − − −

− − −
− =

− − − − −

− − − − −

− − − − −

 

 

      

 

 

 

      

  2

nc nc

nc nc

C s b

E F

G H

A − −

 
 
 
 
 
 
   
  =  
     
 
 
 
 
  

, (say). (32) 

The sub-matrices ncE , ncF , ncG , and ncH  are of the dimensions  

( ) ( )1 2 1 23 1 3 1C s b m m C s b m m− − + × − − + , ( ) 1 2 1 23 1C s b m m sm m− − + × ,  

( )1 2 1 23 1sm m C s b m m× − − + , and 1 2 1 2sm m sm m× , respectively. The inverse of  

( )ncI P−  is ( ) ( )( ) 11
nc ncI P M I P M

−−− = −  and ncS  is the last ( )1 2sm m  rows of 

( ) 1
ncI P −−  and we have 

( ) 11 1 1
nc nc nc nc ncS X X G E

−
− − − = −  ,                    (33) 

where 1
nc nc nc nc ncX H G E F−= −  is the Schur complement of the matrix ncE  in 

( )ncM I P− , with dimension ( )1 2 1 2sm m sm m× . Since ncE  is upper-triangular Toeplitz 
block matrix, the inverse is also upper-triangular Toeplitz block matrix. Thus the com-
putation complexity of obtaining ncS  in (33) is of the order  

( )( )2 3 3
1 23 1O C s b sm m− − +  due to the computation of the inverse of ncE  and the mul-

tiplication of the matrices ncG  and 1
ncE− . Similarly, we have 
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( ) c c
c

c c

E F
M I P

G H
 

− =  
 

, (say).                                                                  (34) 

The sub-matrices cE , cF , cG , and cH  are of the dimensions 1 2 1 2bm m bm m× , 

1 2 1 2bm m sm m× , 1 2 1 2sm m bm m× , and 1 2 1 2sm m sm m× , respectively. We have  

( )
( ) ( ) ( )

( )

1 1 1 1 1 1
1

1 1 1

c c c c c c c c c

c

c c c c

E F X E E F X G E
I P

X X G E

− − − − − −
−

− − −

 − +
 − =
 − 

,         (35) 

where 1
c c c c cX H G E F−= −  is the Schur complement of the matrix cE  in ( )cM I P− , 

with dimension ( )1 2 1 2sm m sm m× . Since cE  is upper-triangular Toeplitz block matrix, 
the inverse is also upper-triangular Toeplitz block matrix. The computation complexity 
of obtaining the inverse of ( )cI P−  in (35) is of the order ( )2 3 3

1 2O b sm m  due to the 
multiplication of the matrices ( )1

c cE F−  and ( )1 1
c c cX G E− − . In conclusion, the overall 

complexity of the algorithm is above for the computation of the performance measures 
[ ]ncE L , [ ]cE L , hpP , and lpP  is of the order ( )( )2 3 3

1 22 1O C s sm m− + .  

4. Numerical Results 

Using the Equations (15)-(26), the steady state packet loss probabilities and mean 
length of non-critical and critical periods are computed [7]. The generalized variance 
based Markovian fitting method proposed in [6] is employed to emulate the self-similar 
traffic for both priority packet traffics. The mean arrival rate ( λ ) and variance ( 2σ ) of 
the self-similar traffic is set to be 1 and 0.6, respectively [6], the interested time-scale 
range to emulate self-similarity is over 2 710 ,10    [2] [3]. In the papers [5] [6] it is 
shown that in order to emulate self-similar traffic well, the minimum number of states 
of the resultant MMPPs must be 16≥ . That is, both 1m  and 2m  must be 16≥ . So 
each class is here characterized by 16 16×  matrices. Such a high dimensional MMPP 
for both high priority and low priority traffic results in computational complexity. In 
order to reduce the computational complexity, we use approximate model [9], which is 
based on the papers [25] [26]. The resultant 16-state MMPP of low priority packets is 
approximated by a 2-state Markovian arrival process (MAP). By applying this approx-
imated model, the computational complexity is reduced by 38 512=  times [16]. The 
number of servers (s) is set to be 3, the number of phases in series of each server (k) is 
set to be 5, and the system capacity (C) is set to be 20, buffer depth of the router then is 
17. We consider two different self-similar traffic corresponding to the Hurst parameter 



R. K. Gudimalla, M. R. Perati 
 

1720 

values 0.7H =  and 0.8H = , and the results are presented in Figures 2-8. Figure 2, 
depict the high priority packet loss probability decrease and the low priority packet loss 
probability increase as threshold (b) increases. In order to find out the optimal level of 
the threshold, we illustrate a plot of the high priority packet loss probability against the 
low priority packet loss probability ones at various b in Figure 3. We could find out 
that the optimal level of the threshold is the one located nearest to the left lower corner  

 

 
Figure 2. Packet loss probabilities against threshold when C = 20, s = 3, k = 5, 
rho = 0.85, H = 0.7 and H = 0.8. 

 

 
Figure 3. High priority packet loss probability vs low priority packet loss 
probability when C = 20, s = 3, k = 5, rho = 0.85, H = 0.7 and H = 0.8. 
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Figure 4. Packet loss probabilities against traffic intensity when b = 7, C = 20, 
s = 3, k = 5, H = 0.7 and H = 0.8. 

 

 
Figure 5. Packet loss probabilities against buffer capacity when d = 7, s = 3, k 
= 5, rho = 0.85, H = 0.7 and H = 0.8. 

 
of the plot, which is around 7b = . Figure 4 & Figure 5 depict the variation of packet 
loss probability against traffic intensity (rho) and buffer capacity, respectively. It is clear 
that packet loss probability increase as traffic intensity increases (Figure 4). We observe 
that of high priority and low priority packet loss probabilities both decrease as buffer 
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capacity increases (Figure 5). From Figure 6, we observe that the mean lengths of 
non-critical periods (ELNC) and critical periods (ELC) are decreases as threshold in-
creases. Figure 7 & Figure 8 depict the variation of mean lengths at the optimum level 
of threshold against traffic intensity and buffer capacity, respectively. Figure 7 illu-
strates the mean lengths of non-critical periods decrease and critical periods increase 

 

 
Figure 6. Mean lengths of non-critical and critical periods against threshold 
when C = 20, s = 3, k = 5, rho = 0.85, H = 0.7 and H = 0.8. 

 

 
Figure 7. Mean lengths of non-critical and critical periods against traffic inten-
sity when b = 7, C = 20, s = 3, k = 5, H = 0.7 and H = 0.8. 
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Figure 8. Mean lengths of non-critical and critical periods against buffer capac-
ity when b = 7, rho = 0.85, s = 3, k = 5, H = 0.7 and H = 0.8. 

 
as traffic intensity increases. Figure 8 depict the mean lengths of non-critical and criti-
cal periods both increase as buffer capacity increases. 

5. Conclusion 

In this paper, we have investigated the performance of asynchronous router employing 
PBS mechanism to provide differentiated services under Markovian modelled self-similar 
traffic input. To reduce the computational complexity, the original high dimensional 
MMPP of the low priority packets is approximated by 2-state MAP. The long-term 
performance measures, namely, the steady state high priority and low priority packet 
loss probabilities, and the short-term performance measures, namely, average length of 
non-critical and critical periods, are computed and presented graphically. With this 
analysis, we can locate the optimal limit (threshold) position of buffer to obtain the 
greatest performance. 
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