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Abstract 
With the increased number of PMUs in the power grid, effective high speed, real- 
time methods to ascertain relevant data for situational awareness are needed. Several 
techniques have used data from PMUs in conjunction with state estimation to assess 
system stability and event detection. However, these techniques require system to-
pology and a large computational time. This paper presents a novel approach that 
uses real-time PMU data streams without the need of system connectivity or addi-
tional state estimation. The new development is based on the approximation of the 
eigenvalues related to the decoupled discreet-time power flow Jacobian matrix using 
direct openPDC data in real-time. Results are compared with other methods, such as 
Prony’s method, which can be too slow to handle big data. The newly developed 
Discreet-Time Jacobian Eigenvalue Approximation (DDJEA) method not only pro- 
ves its accuracy, but also shows its effectiveness with minimal computational time: an 
essential element when considering situational awareness. 
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1. Introduction 

The traditional power flow Jacobian matrix, utilized in Newton-Raphson method, can-
not be calculated given these constraints. Analyzing the load flow Jacobian matrix for 
singular values has been previously utilized to show system weak areas and assess sta-
bility [1]-[3]. Singular Value Decomposition is utilized in [3] and applied to the Jaco-
bian matrix to monitor trends toward singularity. A decoupled calculation of the Jaco-
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bian matrix yields highly accurate data while decreasing computational time dramati-
cally by looking at the partial derivative of real power by bus angle and the partial de-
rivative of reactive power with respect to voltage magnitude [4] [5]. In essence, analyz-
ing the decoupled Jacobian matrix for singular values has been shown to be computa-
tionally faster and accurate, so a continuation of the decoupled Jacobian matrix is ideal. 
The theory adjacent to why singularities in the power flow Jacobian matrix yield unsta-
ble conditions clarifies why instability will occur. The decoupled Jacobian matrix ap-
proximates the change in real power at a bus due to bus angle and the change in reac-
tive power at a bus due to bus voltage of all connected buses. If an eigenvalue of the Ja-
cobian matrix, decoupled or full, approaches a singularity, meaning zero or infinity, 
that mathematically means that any change to voltage or bus angle will yield no change 
or an infinite change. In the case of a zero eigenvalue, that means that bus voltages or 
bus angles would need to be changed by an infinite amount before the complex power 
would fluctuate. In the case of an infinite element, any change to the bus angle or bus 
voltage would theoretically yield an infinite change to complex power. Only when the 
system is unstable should these conditions happen, so monitoring eigenvalues ap-
proaching singularity gives indication of system weak areas before instability occurs. In 
[4] [5], the decoupled Jacobian matrix is used over several Newton Raphson iterations 
to provide state estimations due to changes in bus angle and voltage. A Jacobian matrix 
containing singularity can no longer be used for power flow. Prony Analysis has been 
used to identify the slowest dominant system modes and the corresponding damping 
ratio from the eigenvalues correspondent to that mode [6]. Prony analysis also has been 
used alongside Frequency Domain Decomposition and oscillatory monitoring system 
approaches as in [6] [7]. This analytical method has been used to determine unstable 
conditions in slow tie-line power flows [6] and inter-area oscillations [8]. In [9] Prony 
analysis was applied to ring down data in real-time for a 17 machine model, showing its 
applicability for larger systems. However, for very large scale systems, real-time appli-
cation becomes more difficult to implement. Utilizing Prony analysis on real power at 
each bus to monitor dominant system modes, eigenvalue poles, and associated damping 
ratios, gives valuable information in distinguishing a healthy system profile. 

For a large scale system with N-number of buses, extensive computational time is 
needed to perform power flow calculations. Since open PDC data lack system topology, 
model-free methods are necessary to utilize PMU data. Traditional power flow methods 
and state estimation require system connectivity and a long computational time to 
converge, rendering these approaches unsuitable for real-time open PDC data. This 
paper proposes a novel method, DDJEA that attempts to approximate the eigenvalues 
of the decoupled Jacobian matrix at each bus by measuring the difference between two 
neighboring measurements of real and reactive power with bus angle and voltage re-
spectively. DDJEA’s accuracy is analyzed to verify that it performs mathematically the 
same function as the full power flow Jacobian, while minimizing matrix size to incor-
porate only the number of PMUs. This reduction and simplification greatly decreases 
computation time. The DDJEA matrices are analyzed to ascertain parameters for stabil-
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ity and event detection. By looking at the elements of DDJEA as they approach a singu-
larity, accelerating toward zero or infinity, system weak points can be flagged to opera-
tors before system instability occurs. On average for real open PDC samples, the speed 
of the proposed algorithm converges and outputs situational awareness data for 60 
PMUs in 27 microseconds on a standard laptop. The DDJEA method is expanded in 
section 2.3 to ascertain divergent conditions and changes over time to monitor and flag 
both fast and slow unstable parameters. Prony analysis also is a powerful tool in identi-
fying slow system dynamics that may cause instability if unresolved. Furthermore, do-
minant mode positive eigenvalues can be used to indicate fast unstable conditions. By 
comparing the event detection and instability indicators of both methods, strengths of 
the proposed method standalone are discussed, as well as a combined methodology to 
enhance situational awareness and stability monitoring. 

2. Decoupled Discreet-Time Eigenvalue Approximation Accuracy 
2.1. Accuracy of Real Power State Prediction by Approximating ΔPi 

Over a short time period, assuming that the Jacobian matrix has not changed signifi-
cantly between two cycles, the decoupled Jacobian matrix can be used to calculate 
changes in real power with respect to changes in bus angle. When a fault occurs or a 
significant load change, the error will increase, but this is addressed later for aiding 
event detection. The below formal definition of the decoupled Jacobian matrix for ΔPi 
is presented below and derived to show how the DDJEA method simplifies calculations 
through direct computation. For any calculations, the total number of buses (N) and 
the total number of PMUs (n) are used.  

1
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δ

                          (1) 

Pi is the actual real power at a bus at a particular measurement for a specific bus (i). 
ΔPi expresses a change between the most recent measurement and the prior measure-
ment or iteration. Δδj represents the difference between the most recent bus angle 
measurement and prior bus angle measurement where δj is the bus angle at bus (j).  
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Yij denotes the Ybus value for the element relating to the p.u. connectivity between the 
buses (i) and (j). θij is the phase angle relative to Yij in radians. Vi and Vj are the relative 
p.u. voltages of the buses (i) and (j) respectively. 

When the time step between samples is decreased, the measured difference due to a 
bus angle in DDJEA will approach the value of the Jacobian element, as seen in Equa-
tion (3) and implemented in Equation (8). As the time step, Δt, is decreased, the effect 
on the power due to a particular bus angle more closely approximates the power flow 
Jacobian, similar to how numerical integration becomes more accurate with a smaller 
step size. For large time steps, this approximation method is highly inaccurate and in-
applicable. However, with a 30 Hz rate of new state information from open PDC PMU 
data, this method becomes very accurate since the Jacobian matrix is unlikely to change 
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almost instantaneously. Only a major change in load or event causes a significant shift 
in the values between cycles of the Jacobian. Since connectivity is not given in the open 
PDC format, the above equations cannot be applied per its formal definition. Therefore, 
the solution is simplified. 

It is probable that if 60 PMUs are placed in a 3200 bus system that almost none of 
those PMUs are directly connected, rendering all non-diagonal terms zero without 
connectivity. Furthermore, state estimation would need to be applied in order to use 
the full Jacobian, a very time-consuming, heavily computational process that would 
waste the speed of the PMU data in large power systems. The proposed method directly 
calculates the change in power at a bus due to the change in that particular bus’s angle 
for each diagonal element. Since other buses connected are not known, all other 
changes are approximated by incorporating all changes into the approximated eigen-
value as shown in Equation (8). By assuming this, significant errors in the DDJEA are 
expected when there is an event at a nearby connected bus that has no readings on it. 
However, soon after these errors decrease as the approximation accounts for the new 
parameters. The approximation of predicted real power for the next iteration is derived 
in Equation (4) with an expanded definition as presented in Equation (5). In Equation 
(4), the Jacobian of the previous system state is considered valid for one cycle. If time 
( + ∆t t ) is considered the current sample, then the new change in bus angle is used in 
order to calculate what the system state should be if the Jacobian has not changed sig-
nificantly. Power is calculated directly from the next system state. The following deriva-
tion shows the basis for DDJEA, keeping in mind that ( + ∆t t ) technically notates the 
present, or most recent, measurement. 
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The term ( )∆ + ∆iP t t  represents the change in power at bus (i) at the most current 
measurement. The term ( )iP t  is the real power of the last measurement. All calcula-
tions consider this notation. 

( ) ( ) ( )
acutalpredicted .∴ + ∆ = + ∆ + ∆i i iP t t P t P t t               (6) 
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The term V1i represents the positive sequence voltage at bus (i). Likewise, 
total1iI  

represents sum of the positive sequence current through bus (i).  
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Essentially, this method generalizes to approximating the eigenvalues of the actual 
decoupled Jacobian matrix for each bus that has a PMU. Since it was previously as-
sumed that most of the PMUs are not connected, all off diagonal terms are being calcu-
lated as zero. This leaves the DDJEA matrix in Equation (8) in eigenvalue form. Instead 
of needing to apply Singular Value Decomposition in order to determine singular val-
ues as done in [1]-[3], the DDJEA eigenvalues can be analyzed to assess if the matrix is 
approaching a singularity. In order to validate the proposed method, the percent error 
of DDJEA in Equation (9) with regard to predicting the next state is assessed in both 
simulation and in open PDC measurements. The IEEE 14 bus system is used for a 90 
second simulation, 2700 samples at 30 Hz. A three-phase fault is applied in the simu-
lated system at bus 4 for 0.1 seconds, which clears by a line removal. This is used as a 
case study for which to assess the accuracy of the decoupled Discreet-Time Jacobian 
Eigenvalue Approximation for both real and reactive power. Measurements acquired 
from industry through open PDCare also assessed for accuracy of the method over a 
147.5 second sample window, 4225 sample measurements. Equation (9) is used to de-
rive the errors as shown in Table 1. 

In Table 1, the mean perScent error for real power of the simulation is significantly 
higher than the median percent error. This is because during fault and during the line 
break, the DDJEA is highly inaccurate for a few measurements since particular DDJEA 
elements approach an infinite singularity during those immediate measurements, 
causing a significant error. These outliers can actually be used during event detection in 
the final algorithm to support that a major system event has occurred, as well as detect 
changes in system topology. The median percent error of simulation is practically 
non-existent. For the open PDC measurements of actual PMUs, the chaos in the system 
is significantly higher so the median percent error is higher. However, the mean per-
cent error on predicting the next system state is still well under 0.5%. Therefore, since 
the DDJEA method provides incredibly accurate measurements of the next system state 
utilizing the next iteration’s change in bus angle, it can be seen that although the system 
connectivity is not known and all system buses are not used, DDJEA provides similar 
results by just approximating the eigenvalues of the decoupled Jacobian at each pmu 
and predicting the next state.  

2.2. Accuracy of Reactive Power State Estimation by Approximating ΔQi 

The calculations for reactive power are very similar to the derivation for the decoupled  
 
Table 1. DDJEA accuracy for real power estimation. 

Calculation Source 
Percent Error of Real Power (Perr) for Measurements 

Mean Percent Error (Perr) Median Percent Error (Perr) 

IEEE 14 Bus Simulation 0.054% 9.51 × 10−6% 

Open PDC Measurements 0.1977% 0.1003% 
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method of estimating real power. In this case, ΔQi represents the change in reactive 
power from one measurement or iteration to the next. Qi is the reactive power at bus 
(i). Otherwise, all other notation in this section is the same as 2.1. 
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The following derivations present how the PMU data can be used to approximate 
Equations (10) and (11), similar to the derivations presented for real power. 
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DDJEA is used to approximate the next reactive power state for PMUs in the same 
IEEE 14 bus test system mentioned previously. Also the same 147.5 second open PDC 
measurements are used to ascertain DDJEA’s ΔQi accuracy in a real-world application. 
Table 2 uses Equation (17) to derive the error of each reactive power state prediction. 

In Table 2, the sample measurements yield that the mean percent error for predict-
ing the reactive power state is less accurate than applying DDJEA to estimate the real 
power. Since the goal of the power grid is to supply consistent real power at all times, 
fluctuation of reactive power makes sense since the added variability would add some 
degree of error. However, the mean and median percent errors of DDJEA to both the  
 
Table 2. DDJEA accuracy for reactive power estimation. 

Calculation Source 
Percent Error of Predicted and Actual Reactive Power State (Qerr) 

Mean Percent Error Median Percent Error 

IEEE 14 Bus Simulation 0.1884% 9.104 × 10−7% 

Open PDC Measurements 0.8916% 0.3342% 
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simulated and real open PDC PMU measurements are well under 1%. Therefore, the 
eigenvalue approximation for the change in reactive power due to the change in bus 
voltage is an effective estimate of the actual Jacobian’s eigenvalue at each bus. 

2.3. Applying DDJEA for Situational Awareness and Stability Analysis 

In the traditional power flow Jacobian, Singular Value Decomposition is used in order 
to identify system weak points as they approach singularity [3]. In the proposed DDJEA 
method, SVD is not necessary because the matrix is already in eigenvalue form. It can 
be used to separate the matrix into zones of different magnitude, especially during an 
event, but it is more effective to analyze each bus individually and identify if the DDJEA 
matrix is approaching a singularity. If a singularity occurs, then the algorithm is set to 
flag the zones affected. However, it is more practical to flag the zone long before the 
singularity actually occurs so that the system operators know the area that is going un-
stable and have time to isolate or fix the issue. Knowing which buses are most nega-
tively affected by a set of unstable parameters allows for more effective solutions by 
system operators, as well as knowing which buses or events are causing the problem. 
Instability due to non-convergent inter-area or tie line power flows can be solved by 
checking oscillations and changes in Jacobian eigenvalues, a problem which is also 
answered through Prony analysis. Monitoring the DDJEA gives an indication of how 
quickly the system parameters are changing and whether the system is converging or 
diverging due to power oscillations.  

In order to determine whether the DDJEA is approaching a singularity, the characte-
ristics of sequential DDJEA outputs are analyzed. A change in system topology or an 
event causes the DDJEA to change significantly, similar to how the power flow Jacobian 
changes frequently. If the DDJEA is increasing toward infinity or decreasing toward 
zero, it can be monitored. A consistent behavior that is sufficiently far from the mean 
value the either decoupled DDJEA matrix tends to take, accounting for standard devia-
tion, causes system operators to be flagged. However, an additional tool has to be de-
rived to ascertain when the DDJEA method is accelerating toward an instability point. 
After a significant system event such as a fault or line removal, system parameters that 
are quickly causing the system to go unstable need to be identified. Therefore, calcula-
tions to determine whether a bus’s conditions are increasing/decreasing in Equation 
(19) and accelerating /decelerating in Equation (20) are developed. For terminology, 
this is called the acceleration indicator, AI. 
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Similarly the same equations for reactive power can be derived. With these analytical 
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tools, acceleration toward either an infinite or null singularity can be assessed and pat-
terns can be determined long before a singularity is reached, resulting in voltage or an-
gular instability depending upon which section of the decoupled Jacobian is approach-
ing singularity. For situational awareness, the portion of the DDJEA approximating real 
power was most advantageous for showing events and fast system changes. The reactive 
power’s relation to voltage is better for static analysis and assessing voltage stability as 
the voltage magnitude plays a large role in calculating those elements. Assessing the 
determinate of the full DDJEA as it approaches 0 is the key to determining a static ap-
proach to voltage stability [1]. The same principles apply to the decoupled variation of 
the power flow Jacobian [4] [5]. The flowchart in Figure 1 generalizes how the DDJEA 
method is used to relay situational awareness. For the simulation, all major events are 
recognized by a magnitude change of order 2 or more from the previous system mea-
surement. When the DDJEA diverges from normal system operation and the absolute 
value begins to decrease to zero or increase toward infinity, indication of a slower in-
stability condition arises and if the trend continues, system operators are flagged. If the 
DDJEA method begins to show an acceleration increase, then the location and parame- 

 

 
Figure 1. DDJEA interpretation method for situational awareness. 
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ters are immediately sent to system operators since this means unstable conditions are 
approaching much faster than a slowly divergent system. By looking at the error of 
DDJEA, as well as how it changes, both event detection and a way to determine if an 
equilibrium point is being reached can be derived. The reactive portion of the de-
coupled Jacobian is a good way to check if an increase real power by bus angle is just 
the system reaching a new equilibrium point, resulting in no flags. Figure 1 also shows 
how the abundant data can be transformed through the DDJEA to give a fast indication 
of system weak points and unstable conditions. The next section will discuss how this 
approach, combined with Prony analysis, becomes an even more effective tool since 
both methods have their strengths. 

When looking at the DDJEA application, it is important to note that situations which 
are accelerating outside of the normal system value range are immediately flagged. 
Looking at both eigenvalues associated with the decoupled matrices yield more infor-
mation on event identification. However, this paper solely focuses on flagging unstable 
conditions and the most sensitive regions to changing parameters. 

The algorithm in Figure 1 is implemented on an IEEE 14 bus system with unstable 
parameters and a fault in order to show the system weak point, which in this case is at 
the bus with a PMU notated as PMU 4. Different system classifications are assigned to 
each data point and described in Table 3 in order to interpret Figure 2 which presents 
the output to system operators. Loads were changed after the fault, which is not directly 
near PMU 4, such that if the system operates as intended, it will go unstable. It is im-
portant to note that the weak point of the system was not the nearest to the fault. Table 
3 is used to decode the graph since each value means something different, and only 
specific values and thresholds should flag operators. In Figure 2, all prior measure-
ments not shown had no flags, and a code value of 0 is given in Table 3. 

 

 
Figure 2. DDJEA analysis on simulated PMU data with unstable case. 
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Table 3. DDJEA analysis code value meaning. 

Code  
Value 

Figure 2 Decode Table 

Interpretation of Value 

0 System is Fine/No action Necessary 

5 Bus Eigenvalue is converging to a new equilibrium point/No action Necessary 

10 Slightly Divergent Trends Detected in Eigenvalue/No action unless this pattern continues 

15 
Eigenvalue is Converging from Unstable Parameters/No action  

unless divergence occurs or after Event 

20 Bus Eigenvalue is Marginally Converging from Unstable Parameters/FLAG 

25 DDJEA Eigenvalue at Bus is Increasing toward Dynamic Instability/FLAG CRITICAL 

30 DDJEA Eigenvalue is Accelerating Toward Dynamic Instability/FLAG CRITICAL 

35 Dynamic and Voltage Instability Parameters Detected/FLAG CRITICAL 

40 Approaching Singularity/ System will go unstable soon without solution/FLAG CRITICAL 

50 Major System Event/FLAG HIGHEST PRIORITY 

 
When the fault is applied at the 1500th measurement, DDJEA detects it as a major 

event. All other system operations and load changes prior the event are not flagged, 
being sorted under normal system function. Essentially, any repeated value over 25 will 
eventually lead to instability if the system cannot converge, so any trend of 25 or over 
flags operators immediately. Changes in the DDJEA more indicative of dynamic insta-
bility and voltage collapse are flagged as a higher priority and the weak point(s) of the 
system are identified to help aiding situation system operators to avoid any abnormal 
situation. 

3. Prony Analysis and Case Study 

Prony analysis is another method which does not require system topology to yield via-
ble data. Ultimately the goal is to derive a damping ratio and a dominant frequency 
from the signal of interest. It has been used before on open PDC measurements to 
identify poorly damped modes [7] and tie line oscillations [6]. In this case, the real 
power at each bus is the signal of interest. The end result of Prony analysis is shown 
below with F(t) being the signal of interest. M is the approximate number of system 
modes. The final derivation is shown below for visualization in Equations (21) (22). 

( ) ( )
1

e cos 2π .
=

= ∗ ∗ +∑
M

t
j j j

j
F t f tσα φ                    (21) 

( )
1

e e .±

=

= ∑ i i
M

j t
i

i
F t φ λβ                        (22) 

For the code, the signal is transformed into a z-domain transfer function. Then that 
transfer function is converted over to state space. The eigenvalues of the A-matrix de-
termine the frequencies of each mode and associated damping ratios. As mentioned 
before, one primary novelty of Prony analysis is the ability to determine undamped 
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primary modes leading to such issues as inter-area and tie-line oscillation. On open 
PDC measurements, the method will determine the dominant mode, frequency aligned 
with that mode, and the damping ratio by looking at the real and imaginary compo-
nents of the eigenvalue. 

Figure 3 shows that for the real PMU data being received, the same dominant mode 
and similar damping ratios are repeatedly calculated for a healthy system. When Prony 
analysis is primarily used to calculate tie-line instability [6], the damping ratio is calcu-
lated from an eigenvalue that has a negative real part. The eigenvalue for this case is not 
in the unstable region. However for fast events, the eigenvalue will be reflected in the 
damping ratio as a negative number during the event where the pole is unstable and 
positive. In openPDC measurements received, no case where a tie-line oscillation caus-
ing instability has yet been observed. Prony analysis will be compared to the DDJEA on 
the same case in order to get some comparisons on faster characteristics. 

In Figure 4, early output of the graph shows a similar trend to Figure 3. Dominant 
modes and frequencies should change slowly over time. At the point labeled Flag 1, the 
dominant mode and frequency change significantly. This is an indication of change in 
major system topology, but it may not be an indication of unstable conditions. Flag 2 
alerts operators of an unstable pole, an indication of system instability and a solution 
needs to be found if the dominant frequency and damping ratio do not reach suitable 
values soon. At Flag 3, Prony analysis yields consistent positive eigenvalues, indicating 
fast system instability and immediate action being necessary. In Figure 5, implement-
ing the Prony analysis output for situational awareness is explained for general use. 
Low damping ratios repeated over longer periods of time will flag for oscillatory power 
flows likely to cause instability. Also, positive eigenvalues are flagged as direct markers 
of instability for faster events. For slow events, a counter keeps track of damping ratios 
less than five percent. When the system’s eigenvalues are consistently under five per- 

 

 
Figure 3. Prony analysis applied to open PDC. 
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Figure 4. Prony analysis applied to unstable simulation. 
 

 
Figure 5. Prony analysis application for situational awareness (complimented with DDJEA). 

 
cent, the system is not properly damped and some inter-area oscillation may be driving 
the system to instability. 

4. Comparison of Methods 

Although Prony analysis recognizes a change in system topology immediately, it 
doesn’t fully recognize unstable conditions, while the DDJEA method does. Also, Prony 
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analysis generates a high order pole transfer function from which results are derived. 
This is computationally intensive, whereas DDJEA can directly calculate values from 
PMU measurements. Data from 60 PMUs in openPDC for 147.5 seconds took the 
DDJEA method approximately 0.06 seconds to make all required calculations, easily 
qualifying it for real-time applications for very large systems. Depending on system 
dynamics, the computational time comparisons in Matlab placed the DDJEA method at 
around 6000 - 10,000 times faster than Prony analysis. Although Prony analysis re-
quires a window of 10 seconds of data before it can run, in a real system it is an online 
application: a 10 second startup is negligible. DDJEA instantaneously reads in and cal-
culates the next system state. 

Depending on the data set, Prony analysis can be run to a full order model of every 
PMU; since DDJEA is so computationally light, running it adjacently would not hinder 
the process because it converges so quickly to a solution. In large data sets, DDJEA can 
be run continuously and Prony analysis can be run at a frequency that allows the over-
all solution to converge in real-time. In this way, damping ratios could be monitored to 
avoid missing an unstable power flow case which DDJEA can verify by checking if the 
eigenvalues have been approaching singularity, even if this change is very slow. Despite 
its computational expense, Prony analysis is a perfect tool for approximating system 
poles and modes. Due to the variability that a real power flow Jacobian can experience 
over time, also experienced by DDJEA methods, occasional Prony analysis iterations 
would be ideal as an adjacent tool to catch a slow poorly damped tie-line/inter-are os-
cillation. DDJEA is computationally faster algorithm that gives accurate estimates of the 
Jacobian eigenvalues without any system topology. Due to the speed at which the pro-
posed algorithm can converge, there is plenty of room for more expansion of what the 
DDJEA algorithm can do and other methods that it could be coupled with. Table 4 
makes some major comparisons between the two methods. 
 
Table 4. DDJEA versus prony analysis. 

Topic of Interest 
Comparison of Methods 

DDJEA Prony Analysis 

Real-time 
Applicability 

Yes, the method converges for  
large systems before the next iteration. 

Yes and No 
The method can be a real-time application  

if the number of signals inputted  
is reduced to converge in real-time. 

It cannot converge for very large systems  
unless the system order is reduced,  

adding inaccuracy to the results. 

Immediate Event 
Detection 

Yes May take a few cycles 

Slow Unstable  
Power Oscillation 

Detection 

It can detect eigenvalues increasing  
toward singularity but may fail to flag as 

immediately as Prony if matrices  
appear to be approaching an  
equilibrium point early on. 

Yes, this method excels  
at this type of detection. 
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5. Conclusion 

This paper presented an approximate method to be used for the purpose of situational 
awareness and assessing weak areas of the system without using system topology. The 
proposed DDJEA method used synchrophasor data to approximate the change in the 
system by observing the change in the diagonal terms of the DDJEA matrix, the ap-
proximation of the eigenvalues for the Jacobian matrix used in the Newton-Raphson 
power flow method. The accuracy of this novel approach was compared to what the 
power flow Jacobian matrix would yield, and the percent errors were all under one per-
cent, showing the method as valid. In the case of an event, a comparison between the 
DDJEA method and the Newton-Raphson power flow calculations reached similar 
conclusions, giving indication of an unstable case and system weak areas in real time. 
The developed method was also compared with Prony analysis and results led to similar 
conclusions. However, the proposed method converged a lot faster and in a very short 
period after the event, which is a major factor when considering situational awareness. 
Future research will be extended to use of other techniques to enhance the proposed 
method by considering Gaussian distributions to give a better estimate of system con-
nectivity and expand the DDJEA method closer to the full power flow Jacobian. 
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