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1. Introduction 

One of major hallmarks of Alzheimer’s disease (AD) is the formation of senile plaques, 
mainly consisting of amyloid beta protein (Aβ), in the brains of patients [1] [2]. Under 
physiological conditions, Aβ are produced by the partial digestions of amyloid precur-
sor proteins; most Aβs consist of 40 amino acids (Aβ40), though approximately 10% are 
42 amino acids in length (Aβ42) [3]. Aβ42 has higher hydrophobicity, and thus a higher 
tendency to aggregate compared to Aβ40; therefore, Aβ42 appears to be the more toxic 
variant [4]. Aβ42 forms two distinct aggregates known as fibrillar and amorphous forms. 
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The fibrillar form has an antiparallel β-sheet structure, and is the main component of 
senile plaques [5]. The fibril formation is formed from the conversion of monomers to 
oligomers and subsequently to protofibrils and fibrils [6]. The amorphous aggregates 
are less structured and lack the ability to form fibrils. They are found in diffuse plaques 
[7] and senile plaques in the brains of AD patients [8]. Various sizes of amorphous ag-
gregates have been reported ranging from trimers to sub-micrometer orders [9]-[11]. 
Large oval aggregates (LOA), which are amorphous aggregates greater than 200 nm in 
their minor axis, are generated by the addition of peptide Aβ16-20 [12]. Aβ16-20 includes 
the region essential for the fibril formation in Aβ but prevents fibril formation to pro-
duce LOAs. As previously described [13], soluble aggregates are prepared by dissolving 
Aβ42 in 1,1,1,3,3,3-hexafluoro-2-propanol in the absence of Aβ16-20. The soluble aggre-
gates include various sizes of amorphous aggregates ranging from 20 to 400 nm. Metal 
ions such as Cu2+ bind to Aβ affecting the formation of aggregates. Many reports show 
that Cu2+ binding changes the surface charge of Aβ and enhances amorphous aggregate 
formation by preventing fibril formation [14]-[18]. Aβ42 in cerebrospinal fluid (CSF) is 
a clinical biomarker for AD [19] [20]. In AD patients, the concentration of Aβ42 de-
creases, as it is incorporated into senile plaques, whereas the concentration of Aβ40 is 
unchanged. The average concentration of Aβ42 in spinal fluid is less than 200 Pm [19]. 
Therefore, highly sensitive detection of Aβ42 is desirable for AD diagnosis. Our previous 
reports identified various monoclonal antibodies with reactivity against Aβ aggregates, 
but with little reactivity against the fibril and monomer forms [8] [12] [13] [21]. 
Among them, antibody 37-11 was determined to react with LOA [12], and antibody 
77-3 could react with both LOA and soluble aggregates [13]. Sandwich ELISA using 
these two antibodies resulted in the highly sensitive detection of soluble aggregates. In 
this report, the reactivity of the sandwich ELISA was shown to increase through the ad-
dition of 50 μM Cu2+; however, the addition had only a small effect on the reactivity of 
each antibody. Cu2+ could gather aggregates to form large aggregates with two distinct 
epitopes that were specifically recognized by antibodies 77-3 and 37-11. 

2. Materials and Methods 
2.1. Preparation of the Soluble Aggregates 

Soluble amorphous aggregates were prepared as previously described [21]. Briefly, 0.11 
mM Aβ42 (Peptide Institute Inc., Osaka, Japan) was dissolved in 1,1,1,3,3,3-hexafluo- 
ro-2-propanol, and incubated at 4˚C for 16 h followed by 37˚C for 3 h, after which the 
solution was lyophilized. The steps including dissolution and lyophilization were re-
peated twice, and lyophilized Aβ42 was dissolved in deionized water. The concentration 
of Aβ42 in the solution was determined by its absorbance at 280 nm using the molar ex-
tinction coefficient of 1450 M−1cm−1 of Aβ42, which has one tyrosine residue and no 
tryptophan residues.  

2.2. Enzyme-Linked Immunosorbent Assay (ELISA) 

Direct ELISA was performed as previously described [12]. The soluble aggregates (100 
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μl) were used as solid-phase antigens, and were stained on 96-well plates (F96 
MAXISORP NUNC-IMMUNO PLATE; Thermo Fisher Scientific Inc., Rochester, NY, 
USA). The monoclonal antibody 37-11 or 77-3, previously conjugated to HRP using a 
Peroxidase Labeling Kit-SH (Dojindo Molecular Technologies Inc., Kumamoto, Japan), 
was used as a primary antibody. The substrate SIGMAFAST OPD (Sigma-Aldrich, St. 
Louis, MO) was used for color development according to the manufacturer’s instruc-
tions. For sandwich ELISA, the antibody 77-3 was used as the primary antibody, and 
HRP-conjugated antibody 37-11 was used as the secondary antibody as described pre-
viously [13].  

2.3. Atomic Force Microscopy 

The sizes and shapes of the aggregates were observed by atomic force microscopy 
(AFM, JSPM-5200, JEOL Ltd, Tokyo, Japan) as previously described [12]. The aggre-
gates (10 μl) were dropped on fresh mica and dried by desiccation, and measured using 
the altering current mode at room temperature, with a frequency of approximately 190 
kHz, typical of resonances with a 4.5 N/m spring constant. 

3. Results and Discussion 
3.1. Cu2+ Increases Signal Intensity of Soluble Aggregates  

during Sandwich ELISA 

Metal ions are known to bind to Aβ and induce the formation of the amorphous ag-
gregates. Metal ions were hypothesized to change the conformation of the epitopes, 
recognized by antibodies 37-11 and 77-3, and used for the highly sensitive detection of 
soluble aggregates. Various metal ions (50 μM MnCl2, FeCl2, NiCl2, CuCl2, or ZnCl2) 
were added to the soluble aggregates and signal intensities were observed after sand-
wich ELISA using the two antibodies. The addition of CuSO4 increased the signal in-
tensity approximately 9.1-fold; however, the effect of other metal ions had little effect 
on signal intensities (data not shown). This result is consistent with the previous re-
ports suggesting that binding of Cu2+ to Aβ is stronger than that of other metal ions. 
Thus, the increased signal intensity was considered to be caused by Cu2+ binding to Aβ 
The effect of different concentrations of CuSO4 on the signal intensity of soluble aggre-
gates in the sandwich ELISA is shown in Figure 1. The signal increased in the presence 
of 10 μM CuSO4, and reached a maximum in the presence of CuSO4 ranging in concen-
tration from 25 to 75 μM. These concentrations of Cu2+ were much higher than those of 
Aβ (130 nM in 100 μl), used for the ELISA, and may have induced the formation of 
amorphous aggregates. Some studies have shown that Cu2+ at sub-equimolar metal 
ion/Aβ42 ratios induces the formation of fibrils, whereas supra-molar ratios induce the 
formation of non-fibrillar forms [15]. In addition, the Cu2+ concentrations in this re-
port were similar to those found in the serum (7 - 41 μM) [22]. Figure 2 shows the ef-
fects of CuSO4 and CuCl2 on the signal intensities of the sandwich ELISA. The effect of 
CuCl2 was greater than that of CuSO4 suggesting that the counter anion also affects 
signal intensity.  
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Figure 1. Effect of CuSO4 concentrations on the signal intensity of the sandwich ELISA. Sand-
wich ELISA was performed using the antibody 77-3 as a primary antibody and HRP-conjugated 
antibody 37-11 as a secondary antibody. The reactivity of the soluble aggregates (13 pmol), in the 
presence and absence of various concentrations of Cu2+, was determined. 

 

 
Figure 2. Effect of CuSO4 and CuCl2 on the signal intensity of the sandwich ELISA. Sandwich 
ELISA using the antibodies 37-11 and 77-3 was performed in the absence (circles) and presence 
of 50 μM CuSO4 (triangles) or CuCl2 (squares).  

3.2. Cu2+ Has Little Effect on the Signal Intensity of the Soluble  
Aggregates from Direct ELISA 

It is possible that the epitopes, recognized by antibodies 37-11 and 77-3, are formed on 
the surface of soluble aggregates in the presence of Cu2+. To evaluate the formation of 
new epitopes, direct ELISA was performed. Figure 3 shows the effect of 50 μM CuCl2 
on signal intensities. Unlike the results of the sandwich ELISA (Figure 2), Cu2+ only 
minimally enhanced the signal intensity. These results suggest that Cu2+ increases the 
intensity by gathering distinct aggregates with two distinct epitopes recognized by an-
tibodies 37-11 and 77-3, rather than generating these epitopes. The AFM images 
(Figure 4), showing the formation of larger aggregates through the addition of Cu2+, were  
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(a)                                               (b) 

Figure 3. Effect of CuCl2 on the signal intensity of the direct ELISA. Direct ELISA using 
HRP-conjugated antibody 37-11 (a) or 77-3 (b) was performed in the absence (open squares) and 
the presence of 50 μM CuCl2 (closed circles). 
 

 
(a)                                            (b) 

Figure 4. AFM images of soluble aggregates. Soluble aggregates in the absence (a) and presence 
(b) of 50 μM CuCl2 are shown. 
 
consistent with this theory. Based on this hypothesis, the epitopes recognized by anti-
bodies 37-11 and 77-3 might be separately located on the surface of distinct aggregates, 
and few aggregates have both epitopes on their surface.  

This report shows that the addition of Cu2+ increases the reactivity of the sandwich 
ELISA for soluble aggregates. This finding could contribute to the development of a 
precise and highly sensitive ELISA for Aβ aggregates by enhancing the reactivity of the 
antibodies. 
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