
Open Access Library Journal 

How to cite this paper: Alhagyan, M., Misiran, M. and Omar, Z. (2016) Geometric Fractional Brownian Motion Perturbed by 
Fractional Ornstein-Uhlenbeck Process and Application on KLCI Option Pricing. Open Access Library Journal, 3: e2863.  
http://dx.doi.org/10.4236/oalib.1102863   

 
 

Geometric Fractional Brownian Motion  
Perturbed by Fractional  
Ornstein-Uhlenbeck Process and  
Application on KLCI Option Pricing 
Mohammed Alhagyan1,2*, Masnita Misiran1, Zurni Omar1 
1Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia,  
Sintok, Kedah, Malaysia  
2Department of Mathematics, Community College in Al-Aflaj, Sattam University, Al Kharj, KSA  

  
 
Received 30 June 2016; accepted 16 August 2016; published 19 August 2016 

 
Copyright © 2016 by authors and OALib. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
This paper presents an enhanced model of geometric fractional Brownian motion where its vola-
tility is assumed to be stochastic volatility model that obeys fractional Ornstein-Uhlenbeck 
process. The method of estimation for all parameters (α, β, m, μ, H1, and H2) in this model is de-
rived. We calculated the value of European call option using the estimates based on the methods of 
Masnita [1] [2] and Kukush [3], traditional Black-Scholes European option price, in addition to 
proposed model in order to make comparison study. 
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1. Introduction 
One of the most important models in financial world is a geometric Brownian motion (GBM) introduced by 
Samuelson in 1964 [4]. This model is widely used as the underlying process of a risky market. Extension of this 
model includes the added long memory properties named geometric fractional Brownian motion (GFBM). 
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GFBM model includes important parameters that are used in fractional Black-Scholes model which is a natural 
improvement of standard Black-Scholes model widely used in options market.  

Based on the literature, early works on GBM assumed volatility to be a constant. However this assumption is 
rejected by most empirical studies [5]-[8] which led to some market crashes such as Black-Monday in 1987, the 
Asian crisis in 1989 and housing bubble and credit crisis 2007-2009. Thus, GBM is later studied with the as-
sumption that volatility is stochastic [9]-[14]. Moreover, researchers showed that time series data depending on 
this model exhibited the existence of memory (some trend-like behavior) which implied deducing the incorpora-
tion of the long memory parameter (H), thus leading to the introduction of geometric fractional Brownian mo-
tion (GFBM).  

GFBM model includes important parameters that are normally used in fractional Black-Scholes model which 
is a natural improvement of standard Black-Scholes model, widely accessible in options market. However, there 
are few contributions in the literature that estimate these parameters. The expressions of parameters in this mod-
el are too involved; in particular in covariance and its inversion of the likelihood function, thus hinder works of 
estimation. 

However, some ground works have been recently established. Kukushin [1] developed an incomplete maxi-
mum likelihood estimation approach for this model, where the Hurst index H (the long memory parameter) is 
estimated by some other heuristic methods, such as the variation analysis or R/S analysis. To extend further this 
work, complete maximum likelihood estimation (CMLE) method was introduced by Misiran et al. [1] and [2] 
that are able to simultaneously estimate all parameters involved in GFBM (μ, σ and H). However, in Misiran and 
Kukush’s works, the volatility is assumed constant for the simplicity of calculation. Such assumption was re-
jected by empirical studies as previously explained. Thus, in this article, we aim to extend the previous work by 
considering the stochastic volatility in the said model. 

Stochastic volatility (SV) can be referred to the volatility and common dependence between variables that are 
permitted to fluctuate over time, instead of remain constant. The main idea in stochastic volatility is that asset 
returns are well approximated by mixture distribution. This mixture reflects the level of new arrivals activity of 
data in the financial market. These models are able to overcome weaknesses in Black-Choles model.  

One of the most important continuous settings of stochastic volatility is the Ornstein-Uhlenbeck (OU) model, 
developed by Uhlenbeck and Ornstein in [15]. It is the analogue of the famous autoregressive moving average 
(ARMA) process in discrete time. The main property of this model is the mean-reverting property, i.e. the mean 
acts as an equilibrium level for the process. OU model is habitually applied to model exchange rates, stochastic 
volatility, and interest rate [16]-[20]. In this work, we replace constant volatility in GFBM model by stochastic 
volatility that obeys the fractional Ornstein-Uhlenbeck process to provide better accuracy in describing real 
market behavior. 

This article follows the sequence. First, a brief background on the GFBM and stochastic volatility are intro-
duced. Then, the model is derived and followed by the estimation method. The application study is conducted to 
compare the proposed method with other methods.  

2. Model Derivation 
We briefly introduce the derivation of the model as follows. For detail derivation, we refer readers to Appendix 
A. Let [ ]{ }; 0,tS t T∈  represent the stock price process with the dynamic assumed by: 

( ) ( )
1

d d dt t t t HS S t Y S B tµ σ= +                                 (1) 

where µ  is the mean of return, tY  is the stochastic process and ( )
1HB t  is fractional Brownian motion with 

Hurst index 1H , and ( )σ ⋅  is deterministic function. For simplicity of computations, in this work we choose 
( )t tY Yσ =  as in [21].  
Let the dynamics of the volatility tY  be described by fractional Ornstein-Uhlenbeck (FOU) process which is 

the solution of the following stochastic differential equation:  

( ) ( )
2

d d dt t HY m Y t B tα β= − +                               (2) 

where α, β and m are constant parameters that represent mean reverting of volatility, volatility of volatility, and 
mean of volatility, respectively. ( )

2HB t  is another fractional Brownian motion. We assume that ( )
1HB t  and 
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( )
2HB t  are independent, and 1 2 2

, 1H H > . 

We present the covariance functions involved in this derivation, as follows: 

( ) ( ) ( )2
0 0

1 ΔL L i j
Y i j

n t n i jηγ β α γ+

= =
= − + −∑ ∑

                         (3) 

( ) ( ) ( )( )2 2 22 2 21 1 Δ 1 Δ 2 Δ
2

H H Hn n t n t n tηγ = + + − −                      (4) 

( ) ( ) ( ) ( ) ( ){
( ) ( )}

2
20 0

2
2 2 2

1 cov , cov ,

cov , cov ,

i j
k k n k k n j k ni j

k i k k n k i k k n j k

X

n

n t m t m t

m t

γ α α ξ ξ α β ξ η ξ

α β η ξ ξ β η ξ η ξ

∞ ∞ +
− − + − −= =

+ − − + − − + − −

= − ∆ ∆ + ∆

+ ∆ +

∑ ∑

         (5) 

( ) ( ) ( )( )1 1 12 2 21 1 Δ 1 Δ 2 Δ
2

H H Hn n t n t n tξγ = + + − −                      (6) 

3. Method of Estimation 
To estimate the said parameters 1 2, , , , andm H Hα β µ  involved in (1) and (2), the likelihood function will be 
utilized. In general, likelihood functions for n random variables is given by: 

( )
( ) ( )( )

( ) ( )1
1 2 1 22

1 1, , , , , exp
22π det

TT
T

L m H H MX X Mα β µ − ′= − − Σ − 
 Σ

             (7) 

By maximizing (7), we are able to get the efficient estimator of all the parameters. However, it is complicated 
to analytically maximizing such log likelihood function that is too involved, in particular the expression for the 
covariance function and its inversion. Alternatively, the innovation algorithm will be applied. 

We use the definition of best linear prediction for stationary process from [22] as follows: 
Definition: Given data 1, , nX X

   the best linear predictor of n mX +
  for 1m ≥  is 0 1

nn
n m k kk

X Xα α+ =
= +∑   

and it can find by solving  

( ) 0, 0,1, ,n
n m n m kX nXE X k+ +

 − = = 
  

                            (8) 

where 0 1X =  for 0 , , nα α . 
(8) is called prediction equations, and are able to solve coefficients { }0 , , nα α . 
Suppose that { }1, , nX Xx = 

   is a stationary process and 

( ) ( )1 1 1
n
n n n nnMX X X M Mφ φ− = − + + − +



                           (9) 

By the definition of best linear predictors the coefficient { }1, ,n nnφ φ  satisfy  

( )1 1 11
0, 1, ,n

n nj n j n kj
X X XE k nφ+ + − + −=

 
 

−

= =∑  

  

( ) ( )1
, 1, ,n

njj X Xk j k k nφ γ γ
=

− = =∑  

                          (10) 

(A.10) can be written in matrix form as follows: 
,n n nφ γΓ =                                      (11) 

where ( ){ } , 1

n
n j k

k jγ
=

Γ = −  is n n×  matrix, ( )1, ,n n nnφ φ φ ′=   is an 1n×  vector, and ( ) ( )( )1 , ,n nγ γ γ ′=   

is an 1n×  vector. 
By (11), we get  

1
n n nφ γ−= Γ                                      (12) 

Let ( ) ( )( )1 1 , , 1n X Xnγ γ γ−
′= −

 


 , then  
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( )
1 1

1 0X

n n
n

n

γ
γ γ

− −

−

Γ 
Γ =  ′ 



 

                                 (13) 

Thus, 

( )( )

11 11 1 1
1 11

1 11 1 1

0 0
.

10 1 0 0X

nn n
n

n nn n n

II γ
γγ γ γ

−− −− − −
− −−

− −− − −

 Γ   −Γ  Γ =    ′− Γ ′− Γ     





 

               (14) 

Let  
1

1
.nn

n n n n nk kk
X X X Xε φ−

=
= − = −∑                                  (15) 

where ( )2~ 0,n nNε υ , nkφ  is an autoregressive parameter, and nυ  is standard deviation. 

(15) can be written in matrix form as follows: 

( ) ( ) ( )

1 1
11

2

1 1 1 2 1

2

( 1)

1
1

1
1

1 TT
T T T T

X M
X M

X M

ε φ
ε

ε φ φ φ− − − −

 
 −   −      −    =     
    

−     − − − 











                     (16) 

or 
AXε =                                        (17) 

where 1 ,, TX X XM M ′ = − − 
 


 and [ ]1, , Tε ε ε=  . Note that ( )2~ 0,T TNε υ , where 2

Tυ  is the mean 
square error, given by 

( )2 10T T T Tυ γ γ γ−
′= − Γ                                   (18) 

From (17), we have 
1 .X A ε−=                                       (19) 

So the autocovariance function is  

( ) ( ) ( ) ( )
( )

( )

( )

( )

1 1

2
1

2
1 12

2

0 0

Σ cov

0

0

,

0

0

T

T

X X E XX A E A

E

EA A

E

εε

ε

ε

ε

− −

− −

 
 
 
 
 
 


′′ ′= =



=

′=





  



                       (20) 

and 

2
1

21
2

2

1

1
Σ

1

0 0

0 0

0 0

T

T

A A

υ

υ

υ

−

 
 
 
 
 
 
 
 
 
  

′=





  



                               (21) 

The determinant is  
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( ) ( )2 2
1 1det Σ .T T

T i ii iE ε υ
= =

= =∏ ∏                             (22) 

The likelihood function is now transformed into the following optimization problem. 
Problem P 
Maximizes the cost function 
( ) ,L θ  where  

( )1 2, , , , , ,m H Hθ α β µ=                                 (23) 

subject to 

( )2
0E X µ− ≥                                     (24) 

2 0υ ≥                                         (25) 

From some calculations we obtained 

( ) ( )
2

XXE nµ γ− =


                                   (26) 

and 

( ) ( ){ } ( ) ( )2 11
2 2 222 2

1 1
1 1 .L Li i H HH

i i
t m t t t tυ α α α β +

= =
= − − ∆ ∆ ∆ − − ∆ ∆∑ ∑                (27) 

The constraints in this optimization problem are too involved with covariance functions, so the optimization is 
difficult to solve. In order to simplify this problem, we use the constraint transcription method described in [23] 

Maximizes the cost function: 

( )L θ                                         (28) 

subject to 

( ) 0, 1, 2,ig iθ ≤ =                                   (29) 

where ig  are the constraints in the original problem. Let this problem be referred to as Problem P. For each 
1,2,i =  we approximate ig  with ( ),iG ε θ , where 

( ) ( )2

,

,

, ,
4

0,

i i

i
i i

i

g g

g
G g

g

ε

ε

ε
θ ε ε

ε
ε

>


−= − < <


< −


                          (30) 

where ε  some small number. We now append the approximate functions 𝐺𝐺𝑖𝑖 ,𝜀𝜀  into the cost function ( )L θ  to 
an appended cost function given below. 

Problem Pε,γ 

( ) ( ) ( ),1
ˆ – ,m

jj
L L G εθ θ γ θ

=
= − ∑                              (31) 

where 0γ >  is a penalty parameter. This is an unconstraint optimization problem, which is referred to as 
Problem ,Pε γ . For any given 0ε > , there exists a ( )γ ε  such that for ( )γ γ ε> , the solution of Problem ,Pε γ  
will satisfy the constraint of Problem P. Let ( )γ̂ ε  be such a γ  for each 0ε > . Furthermore, the solution of 
Problem ˆ,Pε γ  converges to the solution of Problem P. 

4. Application to European Option Pricing 
To determine the value of option, there are some factors to be taken into account, such as intrinsic value, time of 
expiration, volatility, interest rate and cash dividends paid. There are a number of option pricing models that use 
these parameters to control the fair market value of the option. The Black-Scholes model is the most widely 
used. 
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4.1. Classical Black-Scholes Model for European Option Pricing 
Black-Scholes option pricing model constructed by Fischer Black and Myron Scholes in 1973. This model 
created for describing the market value of call option. Its formulated as: 

( ) ( )0 0 1 2e rTC S D K Dψ ψ−= −                                  (32) 

Here, 0C  is the price of a call option, 0S  is the current stock price, K is the exercise price, r is the risk-free 
interest rate, and T is the time to maturity. ( ).ψ  and ( ).ψ  are the cumulative distribution function of the 
standard normal distribution.  

0 2

1

ln
2

S r T
Kd

T

σ

σ

   + +  
  =                                   (33) 

and 

2 1d d Tσ= −                                        (34) 

where σ  is the standard deviation of the stock price. In this model, the price is assumed to follow a geometric 
Brownian motion.  

4.2. Fractional Black-Scholes Model for European Option Pricing 
FBS model is the accepted improvement of BS model. The price at time [ ]0,t T∈  of a European call option 
with the strike price K and maturity T is given by 

( ) ( ) ( ) ( )1 2, e r T tC t S S D K Dφ φ− −= −                             (35) 

where 

( ) ( )
2

2 2

1 2 2

ln
2

H H

H H

S r T t T t
KD

T t

σ

σ

  + − + − 
 =

−
                         (36) 

and 

( ) ( )
2

2 2

2 2 2

ln
2

H H

H H

S r T t T t
KD

T t

σ

σ

  + − − − 
 =

−
                        (37) 

where S is the underlying stock price at time t, r is the risk free interest rate, and ( )φ ⋅  is the cumulative func-
tion of a standard normal distribution [24]. 

4.3. Data 
Kuala Lumpur Composite Index (KLCI) is announced in 1986 in order to be a guideline of the actual perfor-
mance indicator for the economy in general and especially for the overall Malaysia stock market. It includes of 
more than one-handed multi-sector companies from the Main Board in Bursa Malaysia which previously named 
as Kuala Lumpur Stock Exchange (KLSE). 

We used a data set from KLCI which available online on http://www.econstats.com. The daily close price da-
ta set of KLCI from 3rd of January, 2005 to 29th of December, 2006 is studied; with total of observations of 494. 
The return series is then calculated in logarithm. The return is considered to avoid the high volatility in the data. 
The fluctuations in the price appear to be more practical as these fluctuations are stationary. In order to compute 
all parameters contained in fractional geometric Brownian motion and fractional Orenstein-Uhlenbeck, we ob-
tained log return of adjust closed, daily volatility of log return and daily volatility of adjust closed. Figure 1 and 
Figure 2 show the price and return series. 

The values of all parameters of the return series can be found in Table 1. 

http://dx.doi.org/10.4236/oalib.1102863
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Figure 1. Daily returns series of KLCI from 3rd of January 2005 to 29th of December 2006.                            

 

 
Figure 2. Daily close price series of KLCI from 3rd of January 2005 to 29th of December 2006.                          

 
Table 1. Summary of parameters.                                                                              

Parameter Value 

1H : Hurst index of adjust closed price 0.57497 

2H : Hurst index of daily volatility of adjust closed price 0.50981 

µ : Mean of log returns 0.000391 

β : Volatility of volatility 92.33 10−×  

m: Mean of daily volatility of log return 0.00002578 

α : Mean reverting of daily volatility of log return 2.219378 

4.4. Estimation Based on Proposed Method 
In this subsection we present the results of our study of modeling the data of KLCI, between the 3rd of January 
2005 and 29th of December 2006 using GFBM by the assumption of stochastic volatility based on daily return 
series. 

We used the parameters in Table 1 in order to compute the value of stochastic volatility. We depend on the 
equation ( )1 1Δk k k kY tY Ymα βη+ += + − +    to compute stochastic volatility for 100 times and then we compute  

the average. We adopt this average value to be the volatility. With respect to long memory parameters are esti-
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mated by already command in |Mathematica 10 software. Finally, we obtained the following results 1 0.5734H =  
and 2 52.578 10σ −×= . 

4.5. Calculating the Value of European Call Option 
With the purpose of calculate the value of European call option, we use several maturity times (days) for a 
traded option. According to with the actual Malaysia conventional interest rate on 29th of December, 2006, the 
risk-free interest rate is fixed at 3.5% per annum. We consider MYR1096.24, following the price on 29 Decem-
ber, 2006 as the underlying price. The volatility and Hurst exponent are estimated based on our method for the 
historical daily return data of KLCI, with estimates listed subsection 4.3 to compare our work with others, we 
calculated the value of European call option using the estimates based on the methods of Masnita [1], [2] and 
Kukush [3], in addition to the traditional Black-Scholes European option price. The results are listed in Table 2. 

From Table 2, it is clear that the longer time to expiry means the higher value of call price. The reader can 
observe that the call price of the proposed method of this work is closed to Masnita work and there is fairly dif-
ferent with Kukush et al. and traditional Black-Sholes. Call prices obtained by Kukush et al. with the R/S analy-
sis, presents the lowest values. While the highest value calculated by traditional Black-Sholes model where the 
long memory is not taken into account. The prices which valued by proposed method and Masnita method are 
between those valued by the method of Kukush et al. and traditional Black-Scholes. However the method of 
Masnita is based on theoretical reasoning, but the volatility is assumed to be constant which was rejected by 
empirical studies as previously explained in chapter one [5] [6] [8], whereas our model assumed that the volatil-
ity is stochastic and this is agree with empirical studies [9]-[14] [25] [26]. 

 
Table 2. Comparison of European call option prices using different methods with H in (.) and 2σ  in [.].                   

T − t K 
FBC-Hagyan (0.5734) 

[ 52.573 10−× ] 
FBC-Masnita (0.575) 

[ 52.576 10−× ] 
FBC-Kukush (0.6615) 

[ 52.59 10−× ] 
Classical BC (0.5) 

[ 52.589 10−× ] 

15 

1070 28.1256 28.1162 27.854 28.744 

1080 19.068 19.048 18.1328 20.233 

1090 11.3859 11.3525 10.0388 13.0495 

1100 5.7765 5.7395 4.2417 7.5811 

1110 2.4117 2.3826 1.2854 3.9081 

30 

1070 30.8044 30.78.24 30.0116 31.9587 

1080 22.5347 22.5021 21.2564 24.1353 

1090 15.4517 15.4105 13.758 17.3926 

1100 9.8296 9.7583 7.9795 11.8935 

1110 5.74902 5.7082 4.0753 7.6799 

45 

1070 33.5933 33.5642 32.4808 35.0049 

1080 25.7466 25.7087 24.2271 27.518 

1090 18.9178 18.8732 17.0777 20.9548 

1100 13.2623 13.2147 11.2814 15.4134 

1110 8.83295 8.7870 6.9319 10.9238 

60 

1070 36.3218 36.2886 335.0267 37.8585 

1080 28.7365 28.6958 27.1004 30.5724 

1090 20.0468 22.0004 20.1482 24.1036 

1100 16.3567 16.3076 14.3287 18.5210 

1110 11.7060 11.6575 9.7079 13.8486 
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5. Summary 
We presented a new model which is a GFBM providing that the volatility is assumed stochastic that obeys frac-
tional Orenstein-Uhlenbeck process. To estimate the parameters involved in this model, we have to maximize 
the likelihood function. Regrettably, the analytic solution of likelihood function is very hard, since the cova-
riance function is very expensive. According to this we used innovation algorithm to simplify the problem. This 
leads to converting the likelihood function to constrained problem with some constrains. These constrains are 
appended to cost function using constraints transcription method which obtain unconstrained optimization prob-
lem. Finally, we solved the unconstrained optimization problem. 

In order to know the performance of the proposed model with respect to other methods we calculated the val-
ue of European call option using the estimates based on the methods of Masnita [1] [2], Kukush et al. [3], tradi-
tional Black-Scholes European option price in addition to the proposed method. The results show that the call 
price of the proposed method of this work is closed to Masnita work and it is fairly different with Kukush et al. 
and traditional Black-Sholes. 
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Appendix A: Simplification of the Model 
Let [ ]{ }; 0,tS t T∈  represent the stock price process with the dynamic assumed by: 

( ) ( )
1

d d dt t t t HS S t Y S B tµ σ= +                                (A.1) 

Let the dynamics of the volatility tY  be described by fractional Ornstein-Uhlenbeck (FOU) process which is 
the solution of the following stochastic differential equation:  

( ) ( )
2

d d dt t HY m Y t B tα β= − +                               (A.2) 

By using Euler’s discretization scheme for (A.2) we have: 

( ) ( ) ( )( ) ( ) ( )
2 2

Δ Δ H HY t t Y t m Y t t B t t B tα β  + = + − + + ∆ −                    (A.3) 

Let Δt k t=  then (A.3) covert to:  

( )( ) ( ) ( )( ) ( )( ) ( )
2

1 Δ Δ Δ 1 Δ ΔHY k t Y k t m Y t t B k t t kα β  + = + − + + −              (A.4) 

Assume ( )( )1 1 ΔkY Y k t+ = +  and ( )( ) ( )
2 21 1 Δ Δk H HB k t B t kη + = + − , then (A.4) can be written as: 

( )1 1Δk k k kY Y m Y tα βη+ += + − +                                (A.5) 

Following the iteration process and Cauchy criterion (A.5) can be restated as: 

( ) ( )1 10
1 Δ Δi

k k ii
Y t m tα α βη∞

+ + −=
= − +∑                          (A.6) 

Based on (A.6) the covariance of Y  can be expressed as: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
0 0

0
2

0

cov ,

cov 1 Δ Δ , 1 Δ

1 Δ cov ,

k k nY

i j
k i k n j

i j

i
k i kj

j
n ji

n Y Y

t m t m m t

t

γ

α α βη α α βη

β α η η

−

∞ ∞

− −

=

−
= =

∞ ∞ +
− − −=

=

  = − + − + 
  

= −∑

∑ ∑

∑



 

           (A.7) 

By sufficiently large L, (A.7) can be writing as: 

( ) ( ) ( )2
0 0

1 ΔL L

i j

i j
Y n t n i jηγ β α γ

=

+

=
= − + −∑ ∑

                     (A.8) 

where, 

( ) ( ) ( ) ( )( )2 2 22 2 21cov , 1 Δ 1 Δ 2 Δ
2

H H H
k k nn n t n t n tηγ η η −= = + + − −               (A.9) 

Now, return to equation (A.1), again by Euler’s discretization scheme, we get: 

( ) ( ) ( ) ( ) ( ) ( )
1 1

Δ Δ Δt H HS t t S t S t t S t Y B t t B tµ  + = + + + −                (A.10) 

Let ( ) ( )
( )

S t t
X t t

S t
+ ∆

+ ∆ = , then we get 

( ) ( ) ( )
1 1

1 t H HX t t t Y B t t B tµ  + ∆ = + ∆ + + ∆ −                     (A.11) 

Let Δt k t=  , then we have  

( )( ) ( )( ) ( )
1 1

1 Δ 1 Δ 1 Δt H HX k t t Y B k t B tµ  + = + + + − ∆                 (A.12) 

Assume that ( )( )1 1 ΔkX X k t+ = +  and ( )( ) ( )
1 11 1 Δ Δk H HB k t B tξ + = + −  then (A.12) become: 

1 1 11 Δk k kX t Yµ ξ+ + += + +                              (A.13) 

By (A.13) the covariance of X  can be expressed as: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 1
0 0

2 1
0 0

0

cov , cov 1 Δ ,1 Δ cov ,

cov 1 , 1

1 cov ,

k k n k k k n k n k k k n k nX

i i
k k i k n k n j

i j

i j
k k i k k n k n j k n

i j

i j

n X X t Y t Y Y Y

t m t t m t

t m t m t

γ µ ξ µ ξ ξ ξ

ξ α α βη ξ α α βη

α α ξ βη ξ α ξ βη ξ

− − − − −

∞ ∞

+ − − − + −
= =

∞ ∞
+

+ − − − + − −
= =

∞

=

= = + + + + =

  = − ∆ ∆ + − ∆ ∆ + 
  

= − ∆ ∆ + ∆ +

=

∑ ∑

∑∑

∑



 

( ) ( ) ( ) ( ){
( ) ( )}

2
2

0

2
2 2 2

1 cov , cov ,

cov , cov ,

i j
k k n k k n j k n

k i k k n k i k k n j k n

t m t m t

m t

α α ξ ξ α β ξ η ξ

α β η ξ ξ β η ξ η ξ

∞
+

− − + − −
=

+ − − + − − + − −

− ∆ ∆ + ∆

+ ∆ +

∑

       (A.14) 

Now we will compute every covariance function involved in (A.14)  

( ) ( )cov ,k k n n i jξξ ξ γ− = + −                              (A.15) 

where 

( ) ( ) ( )( )1 1 12 2 21 1 Δ 1 Δ 2 Δ
2

H H Hn n t n t n tξγ = + + − −                  (A.16) 

( ) ( )( ) ( )( )2 2 2cov ,k k n j k n k k k n j k n k n j k nE E Eξ η ξ ξ ξ η ξ η ξ− + − − − + − − − + − −
 = − −             (A.17) 

But ( ) 0kE ξ =  since ( )1~ 0,Δ H
k N tξ  and ( )2 0k n j k nE η ξ− + − − =  since 2k n jη − + −  and k nξ −  are independent. 

So (A.17) become  

( ) [ ]2 2 2cov , 0.k k n j k n k k n j k n k k n k n jE E Eξ η ξ ξ η ξ ξ ξ η− + − − − + − − − − + − = = =             (A.18) 

Similarly,  

( )2cov , 0.k i k k nη ξ ξ+ − − =                                (A.19) 

With respect of the last term 

( )
( )( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2 2

2 2 2 2

2 2

cov ,

cov cov

k i k k n j k n

k i k k i k k n j k n k n j k n

k n k k n j k i k n k k n j k i

k n k k i k n j

E E E

E E E

n n i jξ η

η ξ η ξ

η ξ η ξ η ξ η ξ

ξ ξ η η ξ ξ η η

ξ ξ η η γ γ

+ − − + − −

+ − + − − + − − − + − −

− − + − + − − − + − + −

− + − − + −

= − −

= =

= = ⋅ + −

               (A.20) 

Finally,  

( ) ( ) ( ) ( ) ( ) ( )2

0 0
1 i j

X Y
i j

n n n m t t n i jξ ξγ γ γ α α γ
∞ ∞

+

= =

= ⋅ + ∆ − ∆ + −∑∑ 

               (A.21) 

For sufficiently large L (A.21) con be written as  

( ) ( ) ( ) ( ) ( ) ( )2

0 0
1  

L L
i j

X Y
i j

n n n m t t n i jξ ξγ γ γ α α γ+

= =

= ⋅ + ∆ − ∆ + −∑∑ 

              (A.22) 
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