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Abstract

We present algorithms for computing the differential geometry properties of Frenet apparatus (t,n,b,«,1)

and higher-order derivatives of intersection curves of implicit and parametric surfaces in R® for transversal
and tangential intersection. This work is considered as a continuation to Ye and Maekawa [1]. We obtain a
classification of the singularities on the intersection curve. Some examples are given and plotted.
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1. Introduction

The intersection problem is a fundamental process needed
in modeling complex shapes in CAD/CAM system. It is
useful in the representation of the design of complex ob-
jects, in computer animation and in NC machining for
trimming off the region bounded by the self-intersection
curves of offset surfaces. It is also essential to Boolean
operations necessary in the creation of boundary repre-
sentation in solid modeling [1]. The numerical marching
method is the most widely used method for computing
intersection curves in R’. The Marching method in-
volves generation of sequences of points of an intersec-
tion curve in the direction prescribed by the local differ-
ential geometry [2,3]. Willmore [4] described how to ob-
tain the unit tangent, the unit principal normal, the unit
binormal, the curvature and the torsion of the transversal
intersection curve of two implicit surfaces [5]. Kruppa [6]
explained that the tangential direction of the intersection
curve at a tangential intersection point corresponds to the
direction from the intersection point towards the intersec-
tion of the Dupin indicatrices of the two surfaces. Hart-
mann [7] provided formulas for computing the curvature
of the transversal intersection curves for all types of in-
tersection problems in Euclidean 2-space. Kriezis ef al. [8]
determined the marching direction for tangential intersec-
tion curves based on the fact that the determinant of the
Hessian matrix of the oriented distance function is zero.
Luo et al. [9] presented a method to trace such tangential
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intersection curves for parametric-parametric surfaces
employing the marching method. The marching direction
is obtained by solving an undetermined system based on
the equilibrium of the differentiation of the two normal
vectors and the projection of the Taylor expansion of the
two surfaces onto the normal vector at the intersection
point. Ye and Maekawa [1] presented algorithms for
computing all the differential geometry properties of both
transversal and tangentially intersection curves of two
parametric surfaces. They described how to obtain these
properties for two implicit surfaces or parametric-implicit
surfaces. They also gave algorithms to evaluate the
higher-order derivative of the intersection curves. Aléssio
[10] studied the differential geometry properties of inter-
section curves of three implicit surfaces in R* for trans-
versal intersection, using the implicit function theorem.

In this study, we present algorithms for computing the
deferential geometry properties of both transversal and
tangentially intersection curves of implicit and Paramet-
ric surfaces in R® as an extension to the works of [1].

This paper is organized as follows: Section 2 briefly
introduces some notations, definitions and reviews of
differential geometry properties of curves and surfaces in
R?. Section 3 derives the formulas to compute the prop-
erties for the transversal intersection. Section 4 derives
the formulas to compute the properties for the tangential
intersection. Some examples of transversal and tangen-
tially intersection are given and plotted in Section 5. Fi-
nally, conclusion is given in Section 6.
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2. Geometric Preliminaries [1, 11-13]

Let us first introduce some notation and definitions. The
scalar product and cross product of two vectors a and ¢
are expressed as <a,c> and axec, respectively. The

length of the vector a is ||a|| =, /(a,a).

2.1. Differential Geometry of the Curvesin R®

Let a:1—> R’ be aregular curve in R® with arc-length
parameterization,

a(s)= (% (s).x, (). x5 (5)) @.1)
The notation for the differentiation of the curve o in

2
relation to the arc length s is a'(s) = js—a, a'(s)= ((113_?’

3
a”(s)= js—? . Then from elementary differential geometry,

we have
a'(s)=t 2.2)
a”(s) =kKn (2.3)
K (s)=(a",a") 2.4)

where ¢ is the unit tangent vector field and a” is the
curvature vector. The factor x is the curvature and n is
the unit principal normal vector. The unit binormal vector
b is defined as

b(s) =txn (2.5
The vectors ¢,n,b, are called collectively the Frenet-

Serret frame. The Frenet-Serret formulas along a are
given by

t'(s)=rxn,
n'(s)=—xt+1b, (2.6)
b'(s)=—n.
where 7 is the torsion which is given by
7= M 2.7
K

provided that the curvature does not vanish.

2.2. Differential Geometry of the Parametric
Surfacesin R®

Assume that R(u,,v,) is a regular parametric surface. In
R

other words R xR, #0, where R :aa—(r =12) de-
u

”

note to partial derivatives of the surface R . The unit sur-

Copyright © 2011 SciRes.

face normal vector field of the surface R is given by
R xR,

N=_—1""2
||R1 XRZH

2.8)

The first fundamental form coefficients of the surface
R are given by

€00 :<Rp,Rq>; p.g=12 2.9)

The second fundamental form coefficients of the surface
R are given by

L,=(R,,N),L,=(R,,N), L, =(R,,,N) (2.10)

Let u,(s), r=12 inthe uu,-plane defines a curve
on the surface R which can be written as

a(s) = R(u1 (s),u2 (s))
Then the three derivatives of the curve @ are given by
(2.12)

2.11)

a'=Ru +Ru,
a" =Ry, ()" +2R,ulu + R,y (u}) + Rul'+ Ryu!
(2.13)
a" = Rul"+ Rul+ R, () + Ry, ()
+3( Ryyujuf + Ry, (ufuy +ufu)) + Ryusul)  (2.14)
+3R,, (u]) ) + 3R (1))

The projection of the curvature vector «” onto the unit
normal vector field of the surface R is given by

” R R 4 "u! ,
<a ’"RR;—RZ"> =1L, (”1 )2 +2Luu, + Ly, (”2 )2
1 2
(2.15)

2.3. Differential Geometry of the Implicit
Surfacesin R?®

Assume that f(x,,x,,x,)=0 is a regular implicit sur-
face. In other words Vf =0, where Vf =(f,, /., f;) is
o

the gradient vector of the surface f, f, = ot then the
X
p

unit surface normal vector field of the surface f is given
by

N vf

S/ (2.16)
[vrl
Let
a(s)=(x(s),x(s).x(s)) (2.17)
be a curve on the surface f with constraint
S (x,%,,x,)=0 then we have
AM
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a' :(x,',xz',xé),
a" = (xl",x;',x;'), (2.18)
a" = (xl"i Xy, x3’”).
d ! ’ ’
Ef=f,xl + %+ £, =0 (2.19)
d2 ’ r ’
ds_{ =Jn (x, )2 + /o (x2 )2 + /s (x3 )2
+ 2(f,2x1'x§ + fi3X/x; + f23x;x3') (2.20)

+ fix/+ fLx5 + f1x, =0

The projection of the curvature vector a” onto the unit
normal vector field of the surface f is given by

2.21)

<an’ Vf >= -
VA e e
where
n=rf (xl')z + /2 (xé )2 + /5 (x3' )2

+2 (.f{Z‘xl’x; + fisX1X5 + f2300%5 )

3. Transversal Intersection Curves

Consider the intersecting implicit and parametric surfaces
f(x,%,%)=0 and R=R(u,u,); ¢ <u <c,,

¢, <u, <c, such that, f#0, R xR, #0. Then the
intersection curve of these surfaces can be viewed as a
curve on both surfaces as

a(s)= (3 (5).x(s).x5(5)): /(3057002 =0,
a(s)=R(u,(s).u,(s)); ¢ <u,<c,e5<u, <c,.
Then we have
x,.(s):Ri(u, (S)’”z(s))’i:1’2’3
where R(u1 (s),u, (s)):(Rl,R2,R3). Then the surface
f canbe expressed as
h(u,u,)=f (R, R*,R*)=0 3.1)

Thus the intersection curve is given by

a(s)= R(u1 (s).u, (s)); h(u,,u,) =0,

(3.2)
¢ <u <cy,c<u, <c,
3.1. Tangential Direction
Differentiation (3.1) yields
hu) +hyu, =0 (3.3)
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where &, = %, then we have
ou,

1

) :_h—hlu{, hy #0 (3.4)

2

Since a' is the unit tangent vector field of the curve
(3.2), then we have

lo'|| = ( Ryt Ryus, Ry Ry ) =1 (3.5)
which can be written as
! 2 ' ! 2
g (”1) + 28,y + 85, (”2) =1 (3.6)
Substituting (3.4) into (3.6) yields

u = h, ((hz )2 g, —2hhg, +(hl )2 45 )7E >
1

u =—h, ((hz )2 8 —2hhg, +(h1 )2 En )7~

The unit tangent vector field of the intersection curve is
given by substituting (3.7) into (2.12) as follows

(3.7)

¢
t=r0 {=hR -hR, (3-8
]

3.2. Curvature and Curvature Vector

The curvature vector is given by differentiation (3.8)
with respect to s as follows

<
¢'= "5"71 ((hz ) Ry+(h) Ry - 2hR (3.9

+(h2h12 _hlhzz)Rl +(hlh12 _hZhll)RZ)

The unit principal normal vector field, the curvature
and the unit binormal vector are given by using (2.3) (2.4)
and (2.5) as follows

_JeFe=tee)e
It ¢'~(¢.¢)¢
¢ -(¢¢)¢
 Nereiead a0
Iq
¢ ¢l e-(¢e)e

Il e e —(en)e]

3.3. Torsion and Higher-Order Derivatives

Equation (3.7) can be written as
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. h . —h R=R(u,u,); ¢ <u <c,,¢;<u, <c, are intersecting
= |_’ U= H G.11) tangentially at a point P on the curve (3.2) then the unit
surface normal vector field of both surfaces are parallel to
Differentiation (3.13) we obtain each other. In other words
vf R xR
[ o <:¢>J,hzz, _ i Rk,
u, u 5 \ R xR
[n:n e ) el | L
<¢' ¢> which can be written as
" hll u h12 >
ul = hp 20007 (3.12) _ 7
el Lc | J Vf—A(Rlsz),A—i"Rlsz" (4.1)
:(hlZRl +hR, —hR, _thlz)”{ Then we can write
+(h22R1 +hR, —h,R, —hR, )”é fi= A(R12R23 —RSRZZ),
Differentiation (3.12) we obtain f. A( R'R.-R'R} )’ 4.2)
f":[h—@‘,’f)}u" h22 ' 1”112 (u) ﬁ:A(Rllez—RlzRé)
<l e [ .
Since x; (s) = R’ (ul (s),u, (s)), i=1,2,3, then we have
[ L) (@m0 ||J .
3 — i
lel™ el el el X = R+ Rat *3)
h122 O 2 <§,’§> hy, ' . . .
il + 2 (u) ) + U, 4.1. Tangential Direction
TRl el et
I < > Projecting the curvature vector a” onto the two unit nor-
u) = —hy u' ( 24> Ju;’ mal vectors of both surfaces yields
||~’=“ Ul gef o .
X
hm 12 }1122 1\2 <4A’C>hll ' <a”,— =% a", l : (4'4)
() - () - u V71 |R >R,
ll™" el e _ L
’ Using (2.15) (2.21) and (4.4) we obtain
Ll (@ om, e el o N .
T T ) el )
¢"=u(hoR + bRy~ IR, ~ Ry, #2 i + i +2f”x2x3’ ) | i @
+ul (hy R, + W Ry, — iy Ry —hy Ry, ) =—A|R, XRz”(Lu (uf)” +2Lufuy + Ly, (us) )
() ( hio R+ 20, Ry + o Ry ] Substituting (4.3) into (4.5) yields
_hmRz _2h11R12 _thIIZ N2 ,
" (u, )2 ( hzzle + 2h22R12 + h2R122 J a; [%J + 2312 [u—iJ +ta,, = 0, u; =0 (46)
’ _h122R2 - 2h12R22 - hl Rzzz : ?
+2u'u’ hlZZRl - 2h112R2 + h22R1I where 5 2
*\ =k, R, +2h,R,,, ~h R, | @, = AR xR,L,, + f, (Rll) +/n (Rlz)
(3.13) RY +2(7.R'R R’R® RR
Substituting  u/, u/, u/s uy, u, and u, into (2.14) we I ( 1 ) " (flz Rt Do ROR R R, )’
obtain the third-order derivative vector of the intersection ay, = AR X R,L,, + f,, ( R )2 + o ( R’ )2
curve. Hence the torsion can be obtained by (2.7). )
We can compute all higher-order derivatives of the in- + fi (R;) + 2( f.RR; + f,R R, + [, R\R; ),

tersection curve by a similar way.
Y e a, = AR xR,L,, + 11R11R; "'fzlesz2
4. Tangentially Intersection Curves + [ R R + 1, (R}Rz2 +R,2R;)

2 p3 3 p2 1 p3 3 pl
Assume that the surfaces f (x,,x,,x,)=0 and + /s (R1 R, +R'R, )+f13 (Rl R, + R R2)~

Copyright © 2011 SciRes. AM
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This can be written in a matrix form as follows

a, =VfR, +R'HR, 4.7

where Vf=[f, f, fLR,=[R, R} R

M he Ss
R =[R R R and H=|f, f, fs| is the
fa Su Sa

Hessian matrix of the surface f. Solving (4.6) for u—t
u,

yields

—a, T4/(a ’_a.a
M{ZBME, B: 12 ( 12) 11722 (48)

a,

Substituting (3.7) and (4.7) into (4.8) we obtain
A
Ul = B(Bzgn +2Bg), ""gzz) ?
1

Uy = (B2g11 +2Bg, +8x )7'

4.9

Then the unit tangent vector field of the intersection
curve is given by
BR +R,

From the previous formulas, it is easy to see that, there
are four distinct cases for the solution of (4.6) depending
upon the discriminant A =(a,,)" —a,,a,,, these cases are
as the following [1]

Lemma 1. The point P is a branch point of the inter-
section curve (3.2) if A >0 and there is another intersec-
tion branch crossing the curve (3.2) at that point.

Lemma 2. The surfaces f and /4 intersect at the
point P and at its neighborhood, if A=0 and

(ay, ) +(an) +(ay )2 # 0.(Tangential intersection curve).

Lemma 3. The point P is an isolated contact point of
the surfaces f and #4,if A<O.

Lemma 4. The surfaces f and 4 have contact of at
least second order at the point P, if @, =a, =a, =0.
(Higher-order contact point).

4.2. Curvature and Curvature Vector

Differentiation (4.6) and using (4.9) we obtain
u'—Bu) =a,,
. (al'le +2a/,B+a,, )

h =" (a“B+a,2)

@.11)

; a,B+a, #0,
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a, =t"HR; +(VfR; + R.HR, + R"HR, )u/

+(VfR,; + R, HR, + R HR, )u} + R' OR,,

S Foi S
Q:[Hl Hz H3]t’ Hi: flzi fzzi fzsi .
Jsi i S

@.11)
Since the curvature vector is perpendicular to the tangent
vector, then we have (a',a") =0. Using (2.12) (2.13) and
(4.9) we obtain
au'+au, =a, (4.13)
where
a, = Bgy +8,, @ =Bg,+gy,
1\2
a,=—(u;)" (B*(R,.R)+2B" (R,.R,)
+2B(R,,R,)+B(Ry,, R )+(Ry,. R,)+(R, . R,))

Solving the linear system (4.11) and (4.13) yields
y_ Gya,+ a,B

a,+a,B ’
(4.14)
u = a, — a4,
a, +a,B
The curvature vector of the intersection curve is obtained
by substituting u/,u/,u;, and wu, into (2.13).

4.3. Torsion

If we have a branch point, then we can compute the torsion
by taking the limit of the torsion of transversal intersection
curve at this point. If we have tangential intersection curve,
then we can compute " and u, by differentiation u/

and u,. Substituting u|, u/, uu), uy , and wu) into (2.14)
we obtain the third-order derivative vector of the intersec-
tion curve. Then we can obtain the torsion by using (2.7).

5. Examples

Example 1. Consider the intersection of the implicit and
the parametric surfaces

f=x+x-9=0,

5.1
R =(u,,3sinu,,3cosu, ); 0<u, <2m.
as shown in Figure 1.
Transversal intersection: Using (3.1) yields
h=u’-9cos’u, =0 (5.2)
AM
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The intersection curves

P(0,1,0)

Figure 1. Transversal and tangential intersection.

Differentiation (5.1) and (5.2) we obtain
by =2u,, h, =9sin2u,, R, =(1,0,0),
hy, =18c082u,, by = hy, =y, =0,

hy,, =—=36sin2u,,

5.3
R =(1,0,0), R, =3(0,cosu,,—sinu,), (5-3)
R,, =-3(0,sinsinu,,cosu, ),
R,,, =-3(0,coscosu,,—sinu, ).
Using (3.8) and (5.2), we obtain
. sinu, —u, u, tanu,
\/1 +sin’ u, 3\/1 +sin’ u, 3\/1 +sin*u, | (54
cosu, # 0.
Using (3.12) and (5.2), hence
¢ =(18sinu, cosu,,—6u, cosu,,6u, sinu, ),
, —2u, cos 2u, —6sin2u, —6c¢os2u,
é‘ = . 2 9 . 2 b . 2 b
cosuz\/1+sm u, \/l+sm u, \/l +sin” u,
I¢] =18 cosu,/1+sin® u,
N T2u;sin’ u
(6.¢)= T by
|J1+sin” u,
(5.5

Using (2.4), (2.5), (3.12), (3.13) and (5.4) then we have

. -u, —2sinu, —cosu,
a = H H

9(1+sin’u,)’ 3(1+sin’u,)’ 3(1+sin’u,)’

"o —u, —/2sinu, —cosu,
3x/§\/1+sin2 u, ’\/1+sin2 u, ’\/5\/1+sin2 u, ’
2

K= T(l+sin2 u, )% ,

5 :(ul (cosu, +2sinu, tanu, ) —_1]

3x/§(1+sin2u2) ’O’\/E .
(5.6)
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Using (3.15) and (3.16) hence

sinu —u
W= = '

, =
J1+sin’u, 9cosuz\/1+sin2 u,
. —u, , _ —sinu, cosu,
u = 1 .2 2 U, = 1 .2 2"
9(1+sin” u,) 9(1+sin” u,)

(5.7)

Using (3.17) and (5.7) hence

L, —sinu, (2+3cos2 u2)
u'= —,

9(1 +sin’ u, )5

(5.8)

_ —u,(2sinu, tanu, —cosu, cos 2u, )

"
U,

o
81(1+sin u, )2
Using (2.7) and (2.14) yields

—3(2+3cos’ u,)sinu, 2u, —6u,sin’u,
7 > 7 b
27(1+sin’ u, )?

m_

27(1+sin u,)?

) N ) N
—(4+sm uz)cosu2 51nu2—(1+sm uz)smu2

7

27 (1 +sin® u, )E
5.9
_A

T =—————(4u, tanu, —4sinu, —10cosu, sinu,
4-2cos”u,
+4cos” u, sinu, +7cos’ u, sinu, —cos* u, sinu,
5 . . 3 .
—cos’ u, sinu, + 2u, cosu, sinu, +3u, cos” u, sinu,

2 4
+2u, cos” u, tanu, —6u, cos” u, tan uz)

(5.10)
Tangentially intersection: The surfaces are intersect-
ing tangentially at the points P(0,+1,0). Consider the

point F,(0,1,0), using (4.7) (4.8) (4.9) and (5.3), then we
have

L] (5.11)
R

Then A >0, this means that the point £ is a branch
point (Figure 1). From (4.10) and (5.11), we obtain

B=13, u/ =

1 1
t=|+t—,0,— 5.12
=50 %) 1
Using (2.13) and (4.14) hence
AM
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u =uy =0, a”=%1(0,1,0),

n :(O,—I,O), K =l,

- (5.13)

-1 1
b=|—,0,x—|.
(«/5 \/Ej
Using (5.10) at £(0,1,0), we obtain

7= lim

< (—4\/5 sinu, —~/2 cos* u, sinu,
"ﬁg 4-2cos” u,

+2+/2u, cos® u, tanu, +4~/2 cos® u, sinu,
+33/2u, cos® u, sinu, +7/2 cos® u, sinu,
~10+/2 cos u, sinu, — V2 cos® u, sinu, 4«/§u1 tanu,
+ Zﬁul cosu, sinu, —6«/5141 cos* u, tanu, )
=0
(5.14)
Example 2. Consider the intersection of the implicit and
the parametric surfaces
f=x+x+x-9=0,

. (5.15)
R = (u;,3sinu,,3cosu, ), 0 <u, <2n

as shown in Figure 2.

At x, =0, (Vf)//(RxR,). Using (4.7) and (5.15),
we have A =0, this means that the surfaces are intersect-
ing tangentially in a curve as (Figure 2). Then from (4.8)
and (4.9), we have

B=0, u/ =0, u :é (5.16)
Using (4.10) we have

t=(0,cos8u,,—sinu,) (5.17)
Using (5.16) hence

w'=u"=0, u,=uy=0 (5.18)

Using (2.4) and (2.13) hence the curvature vector and the
curvature are given by

x, =0

Figure 2. Tangential intersection.
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P(0,3,0)

Figure 3. Tangential intersection.

1 .
a" = —5(0,s1nu2,cosu2),
(5.19)
n=(0,—sinu,,—cosu,), « =3
Using (2.5) (2.7)and (2.14) hence
1
a" =—(0,—cosu,,sinu, ),
9( : :) (5.20)

b=(-1,0,0), 7=0.

Example 3. Consider the intersection of the implicit and
the parametric surfaces

f=x"+(x,—6)-9=0,

5.21
R =(u,,3+3sinu,,3cosu, ). 21

as shown in Figure 3.

At the point P(0,3,0), (Vf)//(R xR,). Using (4.7)
and (5.21), we have A <0, this means that the point P
is an isolated tangential contact point (Figure 3).

Example 4. Consider the intersection of the implicit

and the parametric surfaces
f=x-x-x =0,
5.22
R:(u1(1+u§),—u2(1+uf),u12—ug). (522

as shown in Figure 4.

P(1,0,1)

Figure 4. Transversal intersection.
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At the point P =(1,0,1)e S nS*, on the intersection
curve (Figure 4), we have
R =(1,0,2), R, =(0,0,2),h,, =24,
R, =(0,-2,0), R,, =(2,0,0), R,, =(0,-2,0),
R, =(0,-2,0), R, =(2,0,0), R,,, =(0,0,-6),
ho=2,h, =10, hy, =h,, =-12,
h,=h,=0,h,, =-24,h,=0.

(5.23)
Using (3.8) and (5.23), we obtain
t= (0, 1,0) (5.24)
Using (3.12) (3.13) and (5.23) we obtain
a" = (2,0,3),
(5.25)

2 3 =
= —’0’— y = 13.
" (\/13 \/13) *

Using (2.5) (2.7) (2.14) (3.17) and (5.25) we obtain
am — (__3’_19’__3]’
4 4

b—[i ()__2J r=——
\/B’ ’\/B B 52

(5.26)

6. Conclusions

Algorithms for computing the differential geometry prop-
erties of intersection curves of implicit and parametric sur-
faces in R’ are given for transversal and tangential inter-
section. This paper is an extension to the works of Ye and
Mackawa [1]. They gave algorithms to compute the dif-
ferential geometry properties of intersection curves be-
tween two parametric surfaces then they applied it on a
simple example for implicit and parametric surfaces inter-
section. This paper presented direct and simple formulas to
compute all differential geometry properties, which may
reduce the time it takes to calculate those properties. The
types of singularities on the intersection curve are charac-
terized. The questions of how to exploit and extend these
algorithms to compute the differential geometry properties
of intersection curves between three surfaces in R*, can
be topics of future research.
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