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Abstract 
 
In this paper, the boundary value problems for nonlinear third order differential equations are treated. A ge-
neric approach based on nonpolynomial quintic spline is developed to solve such boundary value problem. 
We show that the approximate solutions of such problems obtained by the numerical algorithm developed 
using nonpolynomial quintic spline functions are better than those produced by other numerical methods. 
The algorithm is tested on a problem to demonstrate the practical usefulness of the approach. 
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1. Introduction 
 
Engineering problems that are time-dependent are often 
described in terms of differential equations with condi-
tions imposed at single point (initial/final value prob-
lems); while engineering problems that are position de-
pendent are often described in terms of differential equa-
tions with conditions imposed at more than one point 
(boundary value problems). Boundary value problems 
are encountered in many engineering fields including 
optimal control, beam deflections, heat flow, draining 
and coating flows, and various dynamic systems. In this 
paper we are concerned with general third-order nonlin-
ear boundary value problems, such problems arise in the 
study of draining and coating flows. Many authors have 
studied and solved such type of third order boundary 
value problems with various types of boundary condi-
tions. A. Khan and Tariq Aziz [1] solved a third-order 
linear and non-linear boundary value problem of the type  

   , ,y x f x y a x   b

3

            (1) 

Subject to 

     1 2, ,y a k y a k y b k           (2) 

by deriving a fourth order method using polynomial 
quintic splines. S. Valarmathi and N. Ramanujam [2], T. 
Y. Na [3], N. S. Asaithambi [4], Xueqin Li and Minggen 
Cui [5] and N. H. Shuaib et al. [6] used some other 
computational methods for solving boundary value pro- 

blems for third-order ordinary differential equations. A. 
Cabada et al. [7] studied external solutions for third- 
order nonlinear problems with upper and lower solutions 
in reversed order. 

In this paper Nonpolynomial quintic spline functions 
are applied to obtain a numerical solution of the follow-
ing nonlinear third order two-point boundary value pro- 
blems  

     2, , , 0,1,y f x y y y g x y x    

3A

     (3) 

subject to the boundary conditions: 

         1 1
1 21 , 0 , 1y A y A y  

3

      (4) 

where , 1,2,iA i   are finite real constants. 
The existence theorems for the solution of (3) sub-

jected to boundary condition (4) are derived by Xueqin 
Li and Minggen Cui [5]. M. Pei et al. and F. M. Minhos 
[8,9] also discussed the existence of nonlinear third order 
boundary value problems. Xueqin Li and Minggen Cui 
consider the problem in the reproducing kernel Hilbert 
space  1 0,1W . In order to derive the existence theorems 
for solution of (3) they make the following assumptions 

:H  
    3( 1) , , , 0,1H f x y z w XR  is completely continu-

ous function; 

    ( 2) , , , , , , , , , , ,x y H f x y z w f x y z w f x y z w   

and  , , ,wf x y z w  are bounded; 

 ( 3) , , , 0H f x y z w   on   30,1 XR , 
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where    1, , , 0,1f x y z w W  as 

   1 0,1 ,y y x W      1 0,1 ,z z x W   

   1 0,1 ,w w x W    0 1, , ,x y z w     
Here the reproducing kernel Hilbert space  1 0,1W  is 

the inner product space  1 0,1W  which is defined by, 

     
     

1

2

0,1 :    

 0,1 , 0,1

W u x u x is absolutely continuous real

value function in u x L



 

 
 

The inner product and norm in  1 0,1W  are given, 
respectively, by 

           
1

1

0

, 0 0
W

u x v x u v u x v x x    d  

   
1

1/2
,Wu u x u x  

M. Cui et al. and C. I. Li et al. [10,11] had proved that 
 1 0,1W  is a complete reproducing kernel space. That is, 

there exists a reproducing kernel function 

     1 0,1 , 0,1xQ y W y   

for each fixed  0,1x  and any    1 0,1u y W , such 

that  The reproducing kernel 

 can be denoted by 

   , xu y Q x

 y

 
1W

y u

xQ

 
1 ,

1 ,x

y y x
Q y

,

.x y x

 
   

 

In the present paper, our main objective is to apply 
non-polynomial quintic spline function [12-14] that has a 
polynomial and trigonometric parts to develop a new 
numerical method for obtaining smooth approximations 
to the solution of nonlinear third-order differential equa-
tions of the system of form (3) subjected to (4). Here 
algorithms are developed and the approximate solutions 
obtained by these algorithms are compared with the solu-
tions obtained by iterative method [5]. The paper is or-
ganized as follows—In Section 2, we have given a brief 
introduction of nonpolynomial quintic spline. In Section 
3, we give a brief derivation of this non-polynomial 
quintic spline. We present the spline relations to be used 
for discretization of the given system (3). In Section 4, 
we present our numerical method for a system of non- 
linear third-order boundary-value problems and develop- 
ment of boundary conditions, truncation error and class 
of the method are discussed, in Section 5, numerical 
evidence is included to compare and demonstrate the 
efficiency of the methods, in which we have shown that 
our algorithm performs better than an iterative method. 

Finally, in Section 6 we have concluded the paper with 
some remarks. 
 
2. Nonpolynomial Quintic Spline 
 
A quintic spline function , interpolating to a func-

tion 

 S x

 u x  defined on [ ,  is such that ]a b

1) In each subinterval 1[ , ]j jx x ,  is a poly-
nomial of degree at most five. 

 S x

2) The first, second, third and fourth derivatives of 
 S x  are continuous on . [ , ]a b

To be able to deal effectively with such problems we 
introduce “spline functions” containing a parameter  . 
These are “non-polynomial splines” defined through the 
solution of a differential equation in each subinterval. 
The arbitrary constants are being chosen to satisfy cer-
tain smoothness conditions at the joints. These “splines” 
belong to the class  and reduce into polynomial 
splines as parameter 

2C
0  . The exact form of the 

spline depends upon the manner in which the parameter 
is introduced. We have studied parametric spline func-
tions: spline under compression, spline under tension and 
adaptive spline. A number of spline relations have been 
obtained for subsequent use. 

A function  ,S x   of class  which inter-
polate  

4[ , ]C a b
 u x  at the mesh points { }jx  depends on a 

parameter  , reduces to ordinary quintic spline  S x  
in  as [ ,a b] 0   is termed as parametric quintic 
spline function. The three parametric quintic splines de-
rived from quintic spline by introducing the parameter in 
three different ways are termed as “parametric quintic 
spline-I”, “parametric quintic spline-II” and “adaptive 
quintic spline”. 

The spline function we propose in this paper has the 
following form 

 
 
 

2 3

2 3

2 3 4 5

span 1, , , ,sin ,cos ,

or span 1, , , ,sinh ,cosh ,

or span 1, , , , , , where 0

x x x x x

x x x x x

x x x x x

 

 

 

 

The above fact is evident when correlation between 
polynomial and non-polynomial splines basis is investi-
gated in the following manner: 

 

   

     

2 3
5

2

2 3
4

3

5

span 1, , , , sin( ),cos( ) ,

24
span 1, , , , cos 1 ,

2

120
sin

6

T x x x x x

x
x x x x

x
x x

 







 





         
      

  
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From the above equation it follows that  

 2 3 4 5
0 5lim 1, , , , ,T x x x x x   

where   is the frequency of the trigonometric part of 
the splines function which can be real or pure imaginary 
and which will be used to raise the accuracy of the 
method. This approach has the advantage over finite dif-
ference methods that it provides continuous approxima-
tion to not only for  y x , but also for ,y y   and 
higher derivatives at every point of the range of integra-
tion. Also, the differentiability of the trigonomet-
ric part of non-polynomial splines compensates for the 
loss of smoothness inherited by polynomial splines in 
this paper. 

C 

 
3. Development of the Method  
 
Without loss of generality in order to develop the nu-
merical method for approximating solution of a differen-
tial Equation (3), we consider a uniform mesh   with 
nodal points ix  on  ,a b  such that   

0 1 2 3: Na x x x x x b          

, 0,1, 2, ,ix a ih i N      

where, 
b a

h
N


 . 

Let us consider a non-polynomial function  S x  of 
class  4 ,C a b  which interpolates  y x  at the mesh 
points ix ,  depends on a parameter 0,1,2, , ,i   N  , 
and reduces to ordinary quintic spline  in  
as 

 x [ ,S ]a b
0.   

For each segment  the 

non-polynomial, , define by 
1[ , ], 0,1,2, , 1,i ix x i N   

xS

       
   

2 3

sin cos

0,1,2, , 1

i i i i i i i

i i i i

S x a b x x c x x d x x

e x x f x x

i N

       

   

   

  (5) 

where  and , , , ,i i i i ia b c d e if  are constants and   is 
arbitrary parameter. 

Let i  be an approximation to y  iy x , obtained by 
the segment  of the mixed splines function pass-
ing through the points 

 S x

 ,i i x y  and 1 1i ,i x y  , to ob-
tain the necessary conditions for the coefficients intro-
duced in (5), we do not only require that  xS  satis-
fies interpolatory conditions at ix  and 1ix   , but also 
the continuity of first, second and third  derivatives at 
the common nodes  , i ix y  are fulfilled. 

To derive expression for the coefficients of (5) in 
terms of , , , ,iy 1iy  , 1 ,i i iD D T 1iT  iF  and 1iF  we first 
denote: 

   
   
   
   

1 1

1

(3) (3)
1 1

(4) (4)
1 1

,

,

,

,

i i i i

i i i i

i i i i

i i i i

S x y S x y

S x D S x D

S x T S x T

S x F S x F

  

   1





   

   

 

  

 

 

        (6) 

From algebraic manipulation we get the following ex-
pression: 

 

4

1
3

1 1
2

1

1
4

4

,

cos
,

sin
2

,
2

cos sin
,

6(1 cos )

cos
,

sin

.

i
i i

i i
i i

i i i
i

i i i
i

i i
i

i
i

F
a y

F F
b D

y y y
c

h
T T F

d

F F
e

F
f




 

 



 





 





 


 

 


 










       (7) 

where h   and 0,1, 2, , 1i N   .  

Using the continuity of the first and third derivatives at 

 ,i i ,x y  that is   i i i iS x S x     and  

   ixi iS x iS , we obtain the following relations: 

 

   

    

2 1 1
3

1 1 12

1 1 1 1

3 3

1

2 ,

i i i i

i i i i i

i i i i i

y y y y

h

hF T T T T
h

T T T h F F i N

 

 

 

  

  

    1 1 1

  


    

      

 

(8) 
The operator Λ is defined by for any function 

   2 2 1 1i i i i iw p w w q w w sw         i  

for any function  evaluated at the mesh points. Then 
we have the following relations connecting  and its 
derivatives: 

w
y

1) iT   

     2 2 1 13

1
2 4i i i iy y y y

h
              

(9) 

2) 4
4

1
i iF y

h
   

where 1 ,
6

p
    

   1 1

1
2 2

6
q     ,

      
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   

 

 

 

1 1

2

2

1 2

1
2 4 2

6

1
1 ,

1
1 ,

1 1
,

3

,

i i

s

csc

cot

h

T S x

   

  


  


 


 



      
   
 
   
 

   
 




,

 

and  (4)
i iF S x . 

 
4. Description of the Method and  

Development of Boundary Conditions 
 
At the mesh point ix  the proposed differential equation  

     2, , , '' , ,y f x y y y g x y x a b          (10) 

subjected to boundary conditions (4), may be discretized 
by 

2
i i i iT f g y                 (11)  

where  and  iT S x i  i ig g x . 

Using the spline relation (9) (i), in (11) we have 

     
   


  

2
2 1

2 2
2 2 2 1

3 2 2 2 2
2 2 1 1 1 1

2
2 2

2 4 2 4

, 2 1 2

i i

i i i i i

i i i i i i i i

i i

y y h qf

ph f y h pf qf sf

h pg y qg y sg y qg y

pg y i N

     

 

 

   

     

 

       

      

    

  

1 1i iy 

 

(12) 
To obtain unique solution we need two more equations 

to be associated with (12) so that we use the following 
boundary conditions: 

1) To obtain the second-order boundary formula we 
define: 

  
   

1 2 3 4

3
2 3 3 2

3 3

, 1

y y y y

h y y h y y i

 

 

   

        
 

  
   

3 2 1

3
2 1 1 2

3 3

,

1

N N N N

N N N N

y y y y

h y y h y y

i N

 

 
  

   

   

       

 

 

(13) 

for any choice of and , 1 2α     . Using Equation 
(3) we have: 

  
 

1 2 3 4

3 3
2 2 3 3

3 2 3
2 3

3 3

i i

y y y y

hf h f hf h f

h h g y h h g y

 

 

 

   

   

          
2

 

  
 

3 2 1

3 3
2 2 3 3

3 2 3
2 2 1

3 3N N N N

N N N N

N N N N

y y y y

hf h f hf h f

h h g y h h g y

 

 

 

  

   

2
1  

   

   

           

 

2) To obtain the fourth-order boundary formula we 
define: 

  

   

  

 

1 2 3 4

3

2 3 3 2

3 2 1

3

2 1 1 2

3 3

, 1,
2 8

3 3

, 1
2 8

N N N N

N N N N

y y y y

h h
y y y y i

y y y y

h h
y y y y i N

 

 

 

 

  

   

   

        

   

           

 

(14) 
for any choice of and , 1 2α     . Using Equation 
(3) we have: 

  1 2 3 4

3 3

2 2 3 3

3 3
2 2

2 3

3 3

2 8 2 8

2 8 2 8i i

y y y y

h h h h
f f f f

h h h h
g y g

 

 

 

   

 
    
 
   

       
   

y

 

  3 2 1

3 3

2 2 1 1

3 3
2 2

2 2 1

3 3

2 8 2 8

2 8 2 8

N N N N

N N N N

N N N N

y y y y

h h h h
f f f f

h h h h
2g y g

 

 

 

  

   

y  

   

 
    
 
   

       
   



 

By expanding (8) in Taylor series about xi, we obtain 
the following local truncation error: 

     

     

     

 

44

66

88

9

1
9 3 4

6

1 1
33 3 16

1806 12

1 1
1613 27 4

131040 360

i i

i

i

T p q h y

p q h y

p q h y

O h

 

 

 

      
      
      



(15) 

For any choice of α and β, provided that 1 2    . 
Remark 1): Second-order method  
For 1 4, 1 4   ,  
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963

and   0.04063489941134321703,p 

0.25412730690212937985,

0.41047570631347259688.

q

s




 

gives   4 .iT O h

Remark 2): Fourth-order method 

For 
1 1 1 2

, , ,
6 3 120 12

p q    
6

0
, 

and 
66

120
s  , gives .  6

iT O h

Clearly, the family of numerical methods is described 
by the Equation (12), boundary equations and the solu-  

tion vector , T denoting transpose, is   1 2, , ,
T

NY y y y  
obtained by solving a non-linear algebraic system of or-
der N. 

To ensure cost effectiveness, better accuracy and sim-
ple applicability of the new method, the best way is to 
find the unknown parameters α and β, which are the ex-
pressions containing the actual parameter  . The hall 
mark of the new approach is that it gives family of 
fourth- and second-order methods by running the code 
once and also skips the multiplications involved in the 
expressions α and β.  
 
5. Numerical Example  
 
We now consider a numerical example illustrating the 
comparative performance of nonpolynomial quintic 
spline algorithms over an iterative method [5]. 

Example: Consider the boundary value problem  

       ( )xy xy x y x xy x y      2 x

0

      (16) 

under the boundary condition  

     1 0 1y y y              (17) 

The analytic solution of (16) is  

   1y x x x                 (18) 

Nonpolynomial Quintic Spline Solution of Example  
The maximum observed errors (in absolute value) by 

our algorithm (of second order) and iterative method 
(Xueqin Li et al. [5]) for the example considered are 
presented in Table 1. 
 
6. Discussion and Conclusions 
 
In this paper we used a nonpolynomial Quintic spline 
function to develop numerical algorithms of system of 
nonlinear third order boundary value problems. Here the 
result obtained by our algorithm is better than that ob-
tained by some other method as compared in Tables 1  

Table 1. Comparison of our algorithm of second order with 
iterative method. 

(Maximum Absolute Error) 
(Our Method) 

Node 

(Maximum Abso-
lute Error) 

(By Xueqin Li et 
al. [5]) 
N = 10 N = 10 N = 20 

0.1 4.24272E-04 2.52718E-04 6.01631E-05 
0.2 1.97294E-04 1.25174E-04 3.2713E-05 
0.3 3.66041E-04 2.52833E-04 5.3529E-05 
0.4 1.020626E-03 2.62819E-04 6.52289E-05 
0.5 1.52747E-03 3.82917E-04 8.82427E-05 

 
Table 2. Comparison of our algorithm of fourth order with 
iterative method. 

(Maximum Absolute Error) 
(Our Method) 

Node 

(Maximum Abso-
lute Error) 
(By Xueqin Li et 

al. [5]) 
N = 10 N = 10 N = 20 

0.1 4.24272E-04 6.28192E-05 3.58192E-06 
0.2 1.97294E-04 4.62816E-05 2.23147E-06 
0.3 3.66041E-04 3.52842E-05 2.18372E-06 
0.4 1.020626E-03 8.16252E-05 4.98326E-06 
0.5 1.52747E-03 1.93165E-05 1.28429E-06 

 
and 2. The approximate solutions obtained by the present 
algorithms are very encouraging and it is a powerful tool 
for solution of nonlinear third order boundary value 
problems. 
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