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Abstract 
Fermi liquid properties of nuclear matter at finite temperature are studied by employing a relati-
vistic nonlinear (σ, ω) model of quantum hadrodynamics (QHD). The relativistic nonlinear (σ, ω) 
model is one of the thermodynamically consistent QHD approximations. The QHD approximations 
maintain the fundamental requirement of density functional theory (DFT). Hence, the finite tem-
perature nonlinear (σ, ω) mean-field approximation can be self-consistently constructed as a 
conserving approximation. Fermi liquid properties of nuclear matter, such as incompressibility, 
symmetry energy, first sound velocity and Landau parameters, are calculated with the nonlinear 
(σ, ω) mean-field approximation, and contributions of nonlinear interactions and finite tempera-
ture effects are discussed. Self-consistent structure to an employed approximation as conserving 
approximation is essential to examine physical quantities at finite temperature. Finite-tempera- 
ture effects are not large at high density, however, the Fermi ground state, density of states and 
Fermi-liquid properties may be varied noticeably with a finite temperature ( T 10 MeV ) at low 
densities. Low-density finite-temperature and high-density finite-temperature experiments might 
exhibit physically different results, which should be investigated to understand nuclear many- 
body phenomena. 
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1. Introduction 
Quantum hadronic theories of hot and dense nuclear matter have been applied to nuclear-structure properties 
such as proton-nucleus scattering and nuclear matter [1]-[5], and problems of nuclear-astrophysics: neutron 
stars, baryon-hyperon phase transition, hadron-quark phase transition and quark-gluon plasma. Equations of 
state of nuclear and hyperonic matter are fundamental to examine properties of neutron star masses, radii, mo-
ments of inertia [6]-[8]. It is expected that the phase-transition temperature from hadronic phase to quark-gluon 
plasma should be of the order of T = 200 MeV, and it is hoped that head-on heavy-ion collision experiments 
may achieve physical values of defining hadron-quark phase transition [9]-[11]. In order to examine wide varie-
ty of hypothetical nuclear and astrophysical phenomena, one will need consistent microscopic many-body cal-
culations based on a relativistic quantum field theory at finite temperature [12] [13]. 

The dynamics of infinite hadronic matter can be checked against conditions of macroscopic conservation 
laws, such as, the virial theorem [14], the first law of thermodynamics, Gibbs’ relation and the corresponding 
differential laws which are written covariantly [15] [16]. Macroscopic properties are expressed with particle 
density, energy density, pressure and entropy constructed from basic interactions of particles. Covariant formu-
lations of thermodynamics and thermodynamic consistency in microscopic calculations are explicitly shown in a 
relativistic formalism. The consistency of microscopic calculations and validity of approximations can be ex-
amined through macroscopic conservation laws [17]-[23]. 

Nuclear many-body theory states that even in the strong interaction region, the effect of the nuclear medium 
on a specific nucleon about the Fermi energy range can be described by a single particle energy that will be de-
termined by microscopic interactions of particles. For all processes with energy near the Fermi energy, the nuc-
leus may be considered as a gas of (quasi-) particles [4] [24] [25], which satisfies macroscopic conservation 
laws, and we have a picture that self-consistently determined or dressed single particles move within the 
mean-field potential of nucleons. The dynamically determined single particle energy constructed from a basic 
Hamiltonian or a Lagrangean and the self-consistent single quasiparticle energy of nuclear matter must be 
equivalent at the Fermi surface, which is known as Landau’s requirement of quasiparticles [26]-[28] or the re-
quirement of density functional theory (DFT) [29] [30]. 

We employ a relativistic nonlinear (σ, ω) effective model of hadrons [8] [31], extended from a relativistic 
quantum field theory, Quantum Hadrodynamics (QHD) [32] [33], and the nonlinear mean-field approximation is 
applied to nuclear matter in order to investigate Fermi liquid properties of nuclear matter at finite temperature. 

The mean-field approximation (Walecka model) to the theory of QHD produces a thermodynamically consis-
tent field theoretical approximation. One can directly show that dynamical single particle energy defined in 
Green’s function and quasiparticle energy defined by Landau’s fundamental requirement are equal, and conse-
quently, Fermi liquid properties of nuclear matter are discussed consistently at zero temperature [34]-[36]. The 
self-consistency, equality of dynamical and quasiparticle single particle energies, can be proved only if nonli-
near interactions are properly renormalized. The fundamental requirement of conserving approximation or DFT 
is satisfied. The nonlinear (σ, ω) effective model is a conserving approximation [37] [38], which is also essential 
for self-consistent finite temperature approximations. Nonlinear interactions should be properly renormalized as 
effective masses and effective coupling constants to be a conserving approximation. 

The high-density, high-energy phenomena would require a relativistic and non-equilibrium kinetic theory at 
finite temperature. The relation between quasiparticle scattering amplitudes and Landau parameters is necessary 
for reasonable approximations and calculations for finite temperature properties of Fermi liquids [39]. Relativis-
tic hadronic models are also essential to examine nuclear fissions and cluster radioactivities in terms of conser-
vation laws and self-consistency [40]-[42]. Astrophysical problems such as the formation of neutron stars re-
quire finite temperature and nonlinear hadronic approximations [15] [16] [33]; density and temperature inside 
stars will increase toward the center of a star, which is expected to produce pion condensations, hyperon genera-
tions and hadron-quark neutron stars [7] [8] [10] [31]. 

It is important to know finite temperature effects on many-body systems of quasiparticles. Based on self-con- 
sistency and DFT, we extend the nonlinear (σ, ω) effective model to the finite temperature mean-field approxi-
mation and examine Landau parameters, finite temperature effects on Fermi liquid properties of nuclear matter. 

2. Macroscopic Properties at Zero Temperature 
The distribution function, ( )n k , is a function of quasiparticle momentum k and single particle energy ( )E k  

http://dx.doi.org/10.4236/oalib.1102757


S. T. Uechi, H. Uechi 
 

OALibJ | DOI:10.4236/oalib.1102757 3 July 2016 | Volume 3 | e2757 
 

(0 ≤ k ≤ kF) directly connected to the ground state energy of Fermi particles at T = 0, and the single particle 
energy is equal to the chemical potential, μ0. The distribution function, ( )n k , has a characteristic property at T 
= 0: 1 (k ≤ μ0) and 0 (k > μ0), and physical quantities of the ground state of nuclear matter are described by the 
Fermi momentum, kF, or the baryon density, 3 26πB Fkρ ζ=  where ζ is a spin-isospin degeneracy number (ζ = 
2 for neutron matter and ζ = 4 for nuclear matter). 

The current nonlinear ( ),σ ω  mean-field lagrangian is defined by:  

( ) ( ) ( )22 2 3 4 2 23 4 41 1 ,
2 3! 4! 2 4!

g g gi g M g m mµ µ µσ σ ω
µ ω σ σ ω µ µψ γ ω φ ψ φ φ φ ω ω ω = ∂ − − − − − − + +        (1) 

and meson quantum fields are replaced with classical fields: φ̂ φ→ , ( ) ( )0ˆ ˆ ˆ, ,µω ω ω= →ω ω , (all Greek suf-
fixes run as μ = 0, 1, 2, 3). The replacement of meson quantum fields by classical fields in mean-field lagran-
gians generally produces Hartree approximation [22] [23] [32]. Generalized nonlinear (σ, ω, ρ) mean-field ap-
proximations are discussed in [6] [33] and chap. 6 in [8]. 

The hadron masses are chosen as M = 939, mσ = 550, mω = 783 MeV. The coupling constants are fixed so as 
to produce the nuclear matter saturation property: 15.75 MeVB Mρ − = −  at kF = 1.30 fm−1. The saturation 
condition leads to the coupling constants: gσ = 9.298, gω = 10.660, gσ3 = 200.0 (MeV), gσ4 = 350.0, and gω4 = 
350.0. These coupling constants yield, incompressibility K = 333.4 MeV and symmetry energy, a4 = 15.3 MeV. 
The maximum mass of neutron stars produced by the nonlinear model is star 1.98=�M M  ( M�  is the solar 
mass). In the following calculations, natural units are used: 1Bc k= = =� . 

The equations of motion for the scalar and vector mesons are given by  

2 2 33 4 ,
2! 3!

g gm gσ σ
σ σ σφ φ φ ρ+ + =                                (2) 

( )2 4 ,
3! B

gm g µ
νω

ω µ ν µ ωω ω ω ω ρ+ =                               (3) 

where σρ ψψ≡  is the scalar source; ( ),B B Bµ µρ ψγ ψ ρ= = j  is the baryon density and baryon current 
density. The explicit expression of scalar source σρ  is derived from minimization of energy density with re-
spect to φ , or self-consistent condition of ( )i in E kδ δ = :  

( )
,i

i i

Mn
E kσρ

∗

∗= ∑                                     (4) 

where ( ) ( )1 22 2E k k M∗ ∗= + , and the nucleon effective mass is defined by M M gσφ
∗ = − . The baryon density, 

Bρ , is given by  

3
2 ,

6πiB F
i

n kκ
ζρ = =∑                                    (5) 

where ζ is a degeneracy factor: ζ = 4 for nuclear matter and ζ = 2 for neutron matter. The baryon current, jB, is 
similarly obtained from self-consistent condition as,  

( )* ,
i

i
B

i i

n
Eκ= ∑j κ

κ
                                    (6) 

where the momentum κ  is defined by [34],  
.k gω= −κ ω                                       (7) 

The single particle energy is given by Green’s function formalism, and the Fermi energy, ( )FE k , and chem- 
ical potential defined by the Gibbs’ relation in thermodynamics can be proved to be equal in the mean-field ap-
proximations to QHD, which shows that the requirement of conserving approximations [17] [18] [22] [23] and 
DFT [29] [30] is maintained. The requirement of self-consistency is not automatically satisfied in approxima-
tions and must be checked in all self-consistent approximations. Even if some calculations compared to data 
seem to be reasonable, approximations which do not maintain the requirement of conserving approximations 
cannot be accepted. 

The Green’s function is defined by Schwinger-Dyson equation, and the baryon Green’s function with renor-
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malized dynamical variables has a similar structure as the noninteracting Green’s function, which assumes the 
existence of the (on-shell) single quasiparticle energy, ( )E k . The Green’s function ( )G k  is decomposed as 
Dirac and Feynman terms: ( ) ( ) ( )D FG k G k G k= +  [32]. The Dirac term, ( )DG k , expresses the propagation of 
positive energy Fermi-sea particles at finite baryon density, and ( )FG k  is the interacting Feynman propagator. 
As discussed considerably in [21]-[23] [32], we will employ the renormalized Fermi-sea particle approach to 
extract finite and physically meaningful contributions by assuming the Green function as ( )DG k . Therefore, it 
is essential that physical quantities such as the single particle energy, effective masses of baryons and mesons 
and effective coupling constants must be self-consistently renormalized by the fundamental requirement of the 
density functional theory. 

The energy density and pressure are calculated by way of energy-momentum tensor and Green’s function as 
[6] [8] [32],  

( ) ( )22 2 2 3 4 2 23 4 4
2 0

1 1d ,
2 3! 4! 2 4!2π

Fk g g gkk E k m m µσ σ ω
σ ω µ µ

ζ φ φ φ ω ω ω= + + + − −∫             (8) 

( ) ( )
4 22 2 3 4 2 23 4 4

2 0

1 1d .
2 3! 4! 2 4!3π

Fk g g gkp k m m
E k

µσ σ ω
σ ω µ µ

ζ φ φ φ ω ω ω∗= − − − + +∫              (9) 

The matrix structure of the baryon self-energy will be reduced generally to the following form:  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0, , , ,s s ik k k k k kµ
µγ γ γΣ = Σ − Σ = Σ − Σ + ⋅ Σk k k k  

and so, we have three independent self-energy functions, ( )s kΣ , ( )0 kΣ  and ( ) ( )i vk kΣ = Σk  (i = x, y, z, the 
space-homogeneity is assumed). The self-consistent dynamical variables (all dynamical variables are functions 
of k , k0 and kF) are renormalized as:  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1 220 2

0 0 0

, 1 ,

,

, , .

s vM k M k k k

k E k k M k

k k k k k k k E k

ω

µ µ µ
ω ω

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

≡ + Σ ≡ + Σ

≡ ≡ +

≡ + Σ = + Σ =

k k

k

k

 

The self-consistent effective masses of hadrons should be determined from equations of motion, Green’s 
functions for baryons and mesons and the condition of self-consistency, ( )n kδ δ . They are given by [22] 
[23]:  

2 2 23 4

2 2 4

2! 3!

.
3!

M M g
g gm m

gm m

σ σ
σ σ

µω
ω ω µ

φ

φ φ

ω ω

∗

∗

∗

= −

= + +

= +

                               (10) 

Scalar and vector self-energies are related to fields and sources by:  

( )

2

2

2 2
0

0 2 2

,

and , , .B

s

i i i
B

gg
m

g gg g j i x y z
m m

σ
σ σ

σ

ω ω
ω ω ω ω

ω ω

φ ρ

ω ρ ω

∗

∗ ∗

Σ = − = −

Σ = − = − Σ = − = − =

               (11) 

One should note that the effective masses (10) and self-energies (11) are derived from self-consistent condition, 
( )B FE kδ δρ = , and equations of motion for mesons. Hence, renormalized effective masses and self-energies 

are consistent with requirements of thermodynamic consistency and the density functional theory. 
The saturation curves of binding energy at T = 0 are given in Figure 1, in order to show that the linear (σ, ω) 

and nonlinear (σ, ω) mean-field approximations in QHD model maintain the fundamental requirement of nuclear 
matter, which is taken in the current calculation as, ρB = 0.148 fm−3, 15.75 MeVB Mρ − = −  [19]-[21] [32]. 
In Figure 1, the smooth curve at saturation (NHA) produces a small incompressibility, KNHA = 333.0 MeV, 
compared to KLHA = 530.3 MeV of LHA binding energy curve, generating a stiff equation of state. A mean-field  
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Figure 1. Binding energies of symmetric nuclear matter at T = 0. The dotted-line is 
for LHA (linear σ, ω Hartree approximation), and solid-line is for NHA (nonlinear σ, 
ω Hartree approximation), which maintain the saturation condition: ρB = 0.148 fm−3, 

15.75 MeVB Mρ − = − . The saturation curve of NHA is produced by the coupling 
constants, gσ = 9.298, gω = 10.660, gσ3 = 200.0 (MeV), gσ4 = 350.0, and gω4 = 350.0, 
resulting in incompressibility K = 333.4 MeV and symmetry energy, a4 = 15.3 MeV. 

 
(σ, ω) calculation usually produces a small value of symmetry energy, but it is improved by including ρ-meson, 
or extending to Hartree-Fock, Bruckner HF approximations [21] [32] [43]-[46]. 

Effective masses of hadrons are shown in Figure 2. The effective mass of nucleon, ~ 0.72M M∗  at satura-
tion density, decreases when the baryon density ρB increases, whereas effective masses of mesons slowly in-
crease ( ~ 1.08m mσ σ

∗  and ~ 1.02m mω ω
∗  at saturation density). 

3. Macroscopic Properties at Finite Temperature 
To describe the system at finite temperature, we need a thermodynamic potential and partition function that will 
select the correct ground state in the limit T → 0 [15] [16]. In the current calculations, the nonlinear (σ, ω) 
mean-field is reproduced at T → 0. Thus, we are naturally directed to define  

( ) ( )ˆ ˆ ˆTr exp exp , , , ,Z H B T T Vµ µ = − − − ⋅ ≡ −Ω   v P v                   (12) 

and the thermodynamic potential in our nonlinear (σ, ω) model is  

( )

( )
( )( ) ( )( )

22 2 3 4 2 23 4 4

, , , ln
1 1
2 3! 4! 2 4!

ln 1 e ln 1 e ,
E T E T

i

T V T Z
g g gm m

T

µσ σ ω
σ ω µ µ

κ κ ν κ κ ν

µ

φ φ φ ω ω ω

∗ ∗− − ⋅ − − + × +

Ω = −

= − − − + +

    − + + +        
∑

v v

v

             (13) 

where v  is a fluid velocity and P̂  is a momentum density in nuclear matter. 
In finite temperature nuclear matter, particle anti-particle distribution functions are given by,  

( ) ( )( ) 1

, , 1 e ,
i

E T
Tn n

ν
κ ν

∗ −
− ⋅ − ≡ = + 

 

v
v

κ κ
κ                            (14) 

( ) ( )( ) 1

, , 1 e ,
i

E T
Tn n

ν
κ ν

∗ −
+ ⋅ + ≡ = + 

 

v
v

κ κ
κ                            (15) 

where the single particle energy is: ( ) ( ) ( )1 2* 0 2 *2 0E E Mω ω= − Σ = + − Σκ κ κ . The momentum κ  is given by  
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Figure 2. The effctive masses of nucleons and mesons 
in NHA (solid-lines) and LHA (dotted-line). The 
meson masses in LHA are constant: mσ and mω. The 
effective masses of mesons are produced by nonlinear 
interactions: mσ

∗  and mω
∗ . 

 
2

*2 ,B
gg
m

ω
ω

ω

= − = −k k jκ ω                                (16) 

where Bj  is the baryon current:  

( ) ( )* .
i i

i
B

i i

n n
E κ κ= +∑j κ

κ
                               (17) 

The self-consistency of nonlinear (σ, ω) approximation requires  

( )
2

*2 .T B B
g
m

ω

ω

ν µ ρ= − − ⋅v j                                (18) 

The chemical potential, Tµ , is equal to the single particle energy at finite temperature ( )FE k , and the baryon 
density, ( )B Tρ , is given by  

( ) ( ) ,i iB
i

T n nκ κρ = −∑                                  (19) 

which is denoted as ρB for simplicity at finite temperature computations. 
The equation of motion for scalar meson, which leads to the correct ground state in the limit T → 0 and con-

sistent with thermodynamic potential (13), is given by  

( )
( )

*
2 2 33 4

1 22 *2
.

2! 3! i i
i

g g Mm g n n
M

σ σ
σ σ κ κφ φ φ+ + = +

+
∑

κ
                     (20) 

The scalar field, φ , is related to the nucleon effective mass M ∗  as ( )M M gσφ ∗= − , and the equation of 
motion for vector meson is:  

( )

( ) ( ) ( )

2 4
0 0

2 4
*

,
3!

.
3! i i

B

i
i i B

i i

gm g

gm g g n n
E

νω
ω ν ω

νω
ω ν ω ω κ κ

ω ω ω ω ρ

ω ω ω ω

+ =

+ = = +∑j κ
κ

                    (21) 

The energy density, pressure, entropy density and momentum density in the nonlinear (σ, ω) model are directly 
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derived from the thermodynamic potential (13):  

( ) ( ) ( )22 2 3 4 2 23 4 4
0

1 1 ,
2 3! 4! 2 4! i iB i

i

g g gm m g E n nµσ σ ω
σ ω µ µ ω κ κφ φ φ ω ω ω ω ρ κ∗= + + − − + + +∑        (22) 

( ) ( ) ( )22 2 3 4 2 23 4 41 1 ln 1 ln 1 ,
2 3! 4! 2 4! i i

i

g g gp m m T n nµσ σ ω
σ ω µ µ κ κφ φ φ ω ω ω  = − − − + + − − + − ∑       (23) 

( ) ( ) ( ) ( )ln 1 ln 1 ln 1 ln 1 ,
i i i i i i i i

i
s n n n n n n n nκ κ κ κ κ κ κ κ

 = − + − − + + − − ∑               (24) 

( )
2

*2 .
i iB B i

i

g n n
m

ω
κ κ

ω

ρ= + −∑j κ                               (25) 

Note that the coupling constants are fixed so as to produce the nuclear matter saturation property: B Mρ − =  
−15.75 MeV at kF = 1.30 fm−1 at T = 0, resulting in incompressibility K = 333.4 MeV and symmetry energy, a4 = 
15.3 MeV. 

Though nonlinear coupling constants are introduced as free parameters to the model, the saturation condi-
tions, self-consistency and density-dependent nonlinear interactions restrict the values of nonlinear coupling 
constants [6] [8] [10]. The restrictions to coupling constants become strict when spontaneous symmetry breaking 
mechanism is used to produce the chiral (σ, π, ω) mean-field model [8] [31]. 

It is necessary to check whether or not generated physical quantities satisfy macroscopic conservation laws. 
Thermodynamic relations are discussed in the Ref. [15] [16], and one can directly check the following funda-
mental thermodynamic relation, Gibbs’ relation, from the above equations,  

,T Bp Ts µ ρ+ − = + ⋅v                                   (26) 

and in the rest frame of nuclear matter, or a comoving frame defined by 0=v , it becomes T Bp Tσ µ ρ+ − = . 
The thermodynamic functions are self-consistently solved by choosing constants, T, ν  and v , and solving 
Equations (20) and (21) by iteration for the baryon and meson effective masses, baryon density and current. 

The concept of Fermi surface at finite temperature is introduced by the relation:  

( ) .TFE µ=k                                       (27) 

Equation (27) self-consistently determines the finite temperature Fermi-momentum ( )Fk t . It is assumed at 
finite temperature that there exists a chemical potential such that for ( )E k  appreciably greater and smaller 
than Tµ , the particle distribution function behaves as:  

( )( ) ( )
( )

0 for ,
,

1 for ,
T

T
T

E
n E

E
µ
µ

 >=  ≤

k
k k

k
                             (28) 

in the rest frame of nuclear matter with the limit of the baryon current, 0B →j . This allows us to change the 
variable κ  to k , and the Fermi surface at finite temperature T is defined by  

( )( ) 0 ,F TE k T ωµ ν= = − Σ                                  (29) 

where ν  is the chemical potential at T = 0. 
At a finite temperature and a low density, it is known that the sharp Fermi surface will be smoothed out, 

which is also perceived by the disappearance of solutions to Equation (27) at low densities. The stable ground 
state of Fermi-liquid at T = 0 is defined by a sharp Fermi energy defined by energy density, and the qua-
si-particle energy and Pauli exclusion principle are expressed simultaneously. In a finite temperature system, a 
sharp Fermi surface is smeared out by the effect of temperature agitation. Especially, Fermi energy at low den-
sity is completely smeared out and used, for example, to effective masses of hadrons and single particle energy, 
resulting in the increase of effective masses and binding energies shown in Figure 3 and Figure 4. These cha-
racteristics are consistent with those discussed in nonrelativistic calculations of 3He [27]. 

The definition of Fermi surface is given by the condition, ( )FE k ν∗ = , or (29), and hence, solutions do not 
exist when M ν∗ > . These phenomena appear at low densities in a finite temperature (see Figure 3). It indi-
cates that Fermi energy is absorbed to M ∗  or single particle energy, ( )E k , resulting in the disappearance of  
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Figure 3. The effective masses of nucleons at finite temperatures: T = 
0, T = 10, T = 30, T = 50 MeV. The results of T = 0 and T = 10 are 
similar. 

 

 
Figure 4. The temperature effect on binding energy of symmetric 
nuclear matter. Solid-lines are solutions to Fermi-liquid sphere de-
fined by (29). The onset of Fermi-liquid sphere is gradually shifting 
to a higher density with increasing temperature. 

 
Fermi surfaces (the effective masses cannot be directly calculated because Fermi surface does not exist in the 
low densities: ( )FE k ν∗ > ). The Fermi surface exists in the densities, ( )30.030 1 fmBρ ≥ , * 0.93M M ≤  at  

T = 10 MeV; ( )30.098 1 fmBρ ≥ , * 0.80M M ≤  at T = 30 MeV and ( )30.179 1 fmBρ ≥ , * 0.69M M ≤  at 
T = 50 MeV. 

When baryon density is low, the Fermi surface is gradually smeared out and vanishes as temperature increases. 
With a fixed finite temperature, the Fermi energy (27) gradually becomes sharp as baryon density increases. The 
effect of temperature appears at low densities when the thermal energy exceeds Fermi energy and unfreezes the 
ground state energy of nuclear matter, indicating a gas-liquid phase transition of nuclear matter. The Fermi liq-
uid analysis is confined in higher densities shown in nucleon effective masses and binding energies at 0T ≠  in 
Figure 3 and Figure 4. Hadron effective masses are thermally increased slightly at low densities by absorbing 
Fermi ground state energy, while the quasiparticle energy and Fermi ground state (Fermi surface) are supposed 
at all densities in other calculations [4] [24]-[28]. 
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When the finite temperature Fermi-momentum ( )Fk T  and zero-temperature Fermi-momentum kF are com-
pared at the same baryon density ρB, one can check ( )Fk T  in (29) is smaller than kF at low densities, and 

( )F Fk T k≈  at high densities. The Fermi-momentum ( )Fk T  is the radius of a smeared Fermi surface and it is 
conveniently used for numerical calculations at finite temperature. 

All discrete summations of physical quantities are changed to integrations taking care of spin-isospin degrees 
of freedom [32]. In order to compute thermodynamic functions, one needs to solve self-consistent equations for 
M ∗ ; then, ρB, ωμ and other quantities are determined. In finite temperature calculations, main contributions from 
numerical integrations are generated in the range, ( )0 2 Fk k T≤  ; numerical convergences are checked care-
fully. The baryon density is expressed as (19) which is the function of ( )i i

n nκ κ− , and because of the emergence 
of anti-particles, the ground state of Fermi-sphere is slow to increase at finite temperatures. 

In Figure 3, effective masses are shown for T = 10, T = 30 and T = 50 MeV. The temperature effect is small 
on effective masses, and the result of T = 10 MeV is almost similar to the one at T = 0. However, the binding 
energy curves in Figure 4 indicate that the single particle energy at saturation density is relatively increased 
with temperature in the range 10 50 MeVT  . The gas-liquid type phase transition is generally expected 
about saturation density [7] [32], and the binding energy at saturation is enhanced up to a higher density by fi-
nite temperature effects (see, Figure 4 at T = 30 and T = 50). The effect of enhancement at saturation density 
continues to affect calculations of Fermi liquid properties, such as incompressibility, symmetry energy, first 
sound velocity and so forth. 

4. Landau Parameters at Finite Temperature 
Landau’s theory of Fermi liquid is constructed so that quantum statistical properties, such as energy density, 
pressure, single particle energy and self-energies are consistent with macroscopic conservation laws, in other 
words, thermodynamic relations [4] [24]-[28] [34]-[36]. The requirement is not trivially true in an approxima-
tion, which is self-consistently related to Hamiltonian or Lagrangian formalism and approximation methods. The 
validity and applicability of Fermi-liquid theory are confined in the Fermi energy range, finite temperature and 
density which reasonably maintain ( )F TE k µ= , or in non-equilibrium systems close to their equilibria. Lan-
dau’s Fermi-liquid properties are discussed at densities where solutions to the self-consistent single particle 
energy, (29), exist. 

Based on the results in the sec. 3, Landau theory of nuclear matter can be rigorously discussed, since the cur-
rent nonlinear (σ, ω) approximation maintains macroscopic conservation laws which can be rigorously proved 
with the fundamental relation, ( )Fin E kδ δ = , in the current approximation. Landau parameters are calculated 
from self-consistent single particle energy, iε , and functional derivative of iε  with respect to particle distri-
butions, in  or in , in the current approximation. 

Landau parameters are self-consistently computed at the Fermi surface defined by (29): ( )( )F TE k T µ= , and 
finite temperature effects on Fermi-liquid properties are compared to calculations at T = 0. The functional deriv-
ative of energy density, inδ δ , should be performed as functions of momentum κ  in the sec. 3, but because 
Fermi liquid properties are defined in the rest frame of nuclear matter, physical quantities are evaluated in the 
limit 0Bj →  (or 0iω → ) and the rest frame of nuclear matter (or comoving frame v = 0). Hence, after the 
functional derivative and in the limit 0Bj →  and v = 0, the variable κ  can be regarded as k in the evaluation 
of effective mass M ∗  and 0ω  in Equations (20) and (21). 

The quasiparticle energies are directly obtained from the functional derivative of the energy density, (22), 
with respect to quasiparticle distribution function of baryons and anti-baryons, ( )( ),n Eκ κ  and ( )( ),n Eκ κ . 
For simplicity, we denote i i→κ , j j→κ  in the following calculations. The baryon and anti-baryon quasi-
particle energies, iε  and iε , are obtained:  

( )

( )

2
*

2

2
*

2

,

.

B

B

i i
i

i i
i

gE
n m

gE
n m

ω

ω

ω

ω

δε ρ
δ

δε ρ
δ

∗

∗

= = +

= = −





κ

κ
                                (30) 

The functional derivatives of the quasiparticle energy with respect to baryon and antibaryon distribution func-
tions will generate the baryon-baryon (NN), baryon-antibaryon ( NN ), and ( NN ) interactions:  
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,
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where  
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                      (32) 

The closed forms of the coupled equations for the derivatives, i jnδ δκ , *
jM nδ δ , i jnδ δκ , *

jM nδ δ  
and jm nωδ δ∗ , jm nωδ δ∗ , are obtained from Equations (16), (18) for iκ , and (10), (20), (21) for M ∗  and 
mω

∗ . Noticing that the system will become symmetric with respect to the momentum as i i→ kκ  in the limit 
0B →j , we have  

1

4 0 4 0
3 4
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6 3
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                         (33) 

where 1B

jn
δρ
δ

= , and in case of n  functional derivative, 1B

jn
δρ
δ

= − . 

The functional derivatives of κ  and M ∗  produce the following closed expressions:  
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              (34) 

Since jB and *M  are symmetric with respect to the baryon and antibaryon distribution functions, the functional 
derivatives, inδ δκ  and inδ δκ , *

iM nδ δ  and *
iM nδ δ  give the same expressions, resulting in ij jif f= , 

ij ijf f=  and ij ijf f= . 
According to Landau’s theory of Fermi liquid [27] [28], Landau parameters are defined by Legendre expan-

sions of f's with respect to ki, kj, taken on the Fermi surface kF, and they are expressed as  

( ) ( ) ( )d2 1 cos ,
4π i j F

l l ij ijij k k k
f l P fθ

= =

Ω
≡ + ∫                          (35) 

where 2cos i j
ij

Fk
θ

⋅
=

k k
. Employing the results (32)-(34), we obtain  
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∑

∑

    (36) 

and 0lf =  for 2l ≥ . The Landau parameter f0 contains symmetric and asymmetric contributions for ( )n k  
and ( )n k , but f1 is symmetric for ( )n k  and ( )n k . 

The relativistic density of states at the Fermi surface is defined by the use of δ-function as  
( ) ( )TF iiN T δ ε µ= −∑ , and it is obtained in Hartree approximation [34]-[36],  

( ) ( ) ( )*

2 ,
2T

F F
F i

i

k E k
N T

ζ
δ ε µ

π
= − =∑                           (37) 

where ζ is the spin-isospin degeneracy factor: ζ = 2 for neutron matter, ζ = 4 for nuclear matter. The dimension-
less Landau parameters are defined by  

( ) ( )( )
( ) ( )( )
( ) ( )( )

0 0

0 0

1 1

,

,

,

Fij ij

Fij ij

Fij ij

F N T f

F N T f

F N T f

=

=

=

                                 (38) 

and the parameters, ( )0 ij
F  and ( )1 ijF  against the baryon density ( )B Tρ , are shown in Figure 5, and ( )0 ij

F  
in Figure 6. 

In the nonlinear (σ, ω) calculation, the values of Landau parameters, F0 and F1, become smaller compared to 
the linear (σ, ω) calculation (LHA). In addition, the finite temperature contribution shifts the density dependence 
of Landau parameters to a high density, resulting in the decrease of the magnitude of Landau parameters. The 
Figure 6 shows that baryon-antibaryon, ( NN ), interactions contribute negative in all densities, and it indicates 
that ( NN ) many-particle system is unstable. The many-body systems of ( )0 ij

F  and ( )0 ij
F  (if it exists) are 

stable. 
 

 
Figure 5. Landau parameters F0 and F1; LHA (dotted-line at 
T = 0) and NHA (solid-lines at T = 0, 10, 30, 50 MeV). 

http://dx.doi.org/10.4236/oalib.1102757


S. T. Uechi, H. Uechi 
 

OALibJ | DOI:10.4236/oalib.1102757 12 July 2016 | Volume 3 | e2757 
 

 
Figure 6. NN  Landau parameters, ( )0 ij

F , which give neg-

ative contributions in all densities. 
 

In the current finite temperature Fermi liquid calculation, there are only two components corresponding to 
baryon-baryon (NN) and baryon-antibaryon ( NN ) interactions (32), and we introduce  

( ) ( ) ( )

( ) ( ) ( ) ( ) ,

s a
l l lij ij ij

s a
l l l lij ij ij ij

f f f

f f f f

= +

= = −
                              (39) 

where ( )s
l ij

f  and ( )a
l ij

f  are baryon symmetric and baryon antisymmetric parts of the quasiparticle interactions. 
From Equation (32), one can obtain 
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They are expanded in a series of Legendre polynomials as  

( ) ( ), ,

=0
= cos ,s a s a

l l l ijij
l

f f P θ
∞

∑                                (41) 

and the dimensionless symmetric and antisymmetric Landau parameters, s
lF  and a

lF , are defined by  

( ) ( ), .s s a a
l F l l F lF N T f F N T f= =                             (42) 

It is easy to see ( )0 0 0
s a

ij
F F F+ = , and ( )1 1

s
ijF F= , 0a

lF =  for l ≥ 2. The parameters ( )0
s

ij
F  and ( )0

a

ij
F  are 

shown in Figure 7, and Fermi surface shifts to a higher density when T is increased. The ( NN ) Landau para-
meter ( )0 ij

F  is negative at all densities as shown in Figure 7, because ( )0
s

ij
F  is negative and ( ) ( )0 0

a a

ij ij
F F= − .  
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Figure 7. Symmetric and asymmetric Landau parameters, 

0
sF  and 0

aF . The onset of parameters is shifted to higher 
densities according to binding energies in Figure 4. 

 
The attractive interaction coming from the exchange of scalar mesons exceeds the repulsive force due to the ex-
change of vector mesons at a low density; and the cancellation of large value of scalar and vector meson contri-
butions can be observed in Figure 7 as 0 0 0

s aF F F= + . 

5. Macroscopic Properties and Scattering of Quasiparticles 
Fermi-liquid properties, such as incompressibility, first sound velocity, symmetry energy and Landau parameters 
are discussed in a relativistic formalism [8] [45] [46]. The incompressibility, K, and symmetry energy, a4, are 
defined by (T = 0):  

3

2 2

42 2
3

0

19 , ,
2

B

B B
B

E EK a
ρ ρ

ρ ρ
ρ ρ

=

  ∂ ∂ = =  ∂ ∂   
                          (43) 

where the isovector, ρ3, is given by ( )3 3 2
3 3π

p np n F Fk kρ ρ ρ= − = −  using proton and neutron densities. 
The first derivative of   is equal to the single particle energy: ( )F BE k ρ= ∂ ∂ . The incompressibility and 

symmetry energy given by Landau parameters are,  

( ) ( )0 4 0
19 1 , 1 ,
2

B
B F

F

K F N a F
N
ρρ ′= + = +                          (44) 

where the density of states, NF, baryon density, ρB, and Landau parameters are given in Sec. 3. In the current 

nonlinear (σ, ω) mean-field approximation, symmetry energy can be generally calculated as 
( )

2

4
1
6

F

F

ka
E k∗=   

which gives rather small value for a4. The Landau parameter, 0F ′ , is the dimensionless parameter for isovector 
quasiparticle interactions, and one can directly check 0 0F ′ =  in (σ, ω) model using (43). Serot and Walecka 
extended (σ, ω) model by including ρ-meson, and the model is used to calculate the symmetry energy and iso-
vector Landau parameter [32] [34] [43]-[46], resulting in a reasonable value of a4. 

The incompressibilities, K, and symmetry energies, a4, for symmetric nuclear matter in the nonlinear (σ, ω) 
approximation at T = 0, T = 30, T = 50 are shown in Figure 8 and Figure 9 and compared to the result of the li-
near (σ, ω) mean-field approximation (LHA). The hydrodynamic first sound velocity C1 in the relativistic case is 
given by  

2
1 ,

9
p KC

µ
∂ = = ∂ 

                                   (45) 
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Figure 8. Incompressibilities of symmetric nuclear matter; 
LHA (dotted-line at T = 0) and NHA (solid-lines at T = 0, 30, 
50 MeV. The Fermi ground states at low densities are shifted 
to a higher density according to binding energies in Figure 4. 

 

 
Figure 9. Symmetry energies; LHA at T = 0 (dotted-line) and 
NHA (solid-lines at T = 0, 30, 50 MeV). 

 
where p,   are pressure and energy density; ( )FE kµ =  is the chemical potential (single particle energy at 
the Fermi surface) of the system. The first sound velocities are shown in Figure 10. The average nucleon veloc-
ity in the medium is about 0.21c (c is the velocity of light) at normal nuclear density (T = 0), and C1 is smaller 
than the velocity of light at all densities, which is consistent with causality. The effect of temperature to Fermi- 
liquid properties are not large at high densities, however, one should note that the density regions of the 
gas-liquid phase transition at low densities are slightly extended to higher densities. 

The Fermi-liquid properties are significantly reduced at high densities by nonlinear interactions. Because sa-
turation curves are shifted to a higher density and energy (Figure 4), many-body properties such as incompres-
sibility, symmetry energy and first sound velocity at saturation density are accordingly shifted to higher densi-
ties (Figure 8, Figure 9 and Figure 10), and it shows that the gas phase or gas-liquid type phase transition is 
also shifted to higher densities. These characteristic density-dependent properties at finite temperature should be 
checked experimentally. 
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Figure 10. First sound velocities; LHA (dotted-line) and 
NHA (solid-lines). 

 
The quasiparticle scattering amplitude in the transport theory [26] [27] can be expressed in the current (σ, ω) 

nonlinear mean-field approximation. The transport equation for quasiparticles yields the equation for the scat-
tering amplitude ( ),pp ppA q ε′ ′ , where ( ),pp ppA q ε′ ′  represents the scattering amplitude for a process in which 
two quasiparticles with momenta p and p' exchange momentum and energy transfer q p p′= −  and  

( ) ( )pp p pε ε ε′ ′= − . It is assumed that the scattering is nearly forward, ppε ′  is bound to be pp Tε ′  , but q is 
moderately large as 0 Fq vν≤  , where ν  is the chemical potential and ( )d dF FFv k kε=  is the relativistic 
Fermi velocity. The equation for the corresponding scattering amplitude is defined by,  

( ) ( ), .Bij ij ij il l lj
l

A q f fω ρ ε= + ∂ ∂∑f f�                            (46) 

The expansions of Legendre polynomials in Equation (35) yield:  

( ) { } ( )cos ,s a
F ij l l l ij

l
N T P θ= ±∑f F F                             (47) 

where  

( ) ( )
, .

1 2 1 1 2 1

s a
s al l

l ls a
l l

F F
F l F l

= =
+ + + +

F F                           (48) 

Properties of symmetric nuclear matter at saturation densities are listed. The saturation of the NHA (T ≥ 50) 
cannot be defined.  

The transition probabilities of the quasiparticle collisions of baryon-baryon, baryon-antibaryon scattering, Wij 
and ijW , are defined as,  

( ) ( ) ( ) ( )
22

, 2π , , , 2π , ,ij ij ij ijW A W Aθ φ θ φ θ φ θ φ= =                       (49) 

where φ  is the angle between the plane containing the momentum vectors of incident quasiparticles and the 
plane containing the momentum vectors of the scattered quasiparticles [26] [27] (note that 1c= =� ). Assuming 

ijA  and ijA  are independent of angles, the order of magnitude estimate of the two quantities is given by  

( ) ( ) ( ) ( )0 0 0 0~ , ~ ,s a s a
F ij F ijN T A N T A+ −F F F F                       (50) 

and the average transition probabilities are computed from the Equation (49) by employing Equation (50). Be-
cause of assumptions introduced to derive the equation for the scattering amplitude, the validity of Equation (48) 
should be confined in a density where constraints, ( )0 2 1sF l> − +  and ( )0 2 1aF l> − + , are maintained. Fermi- 
liquid properties of symmetric nuclear matter and Landau parameters are listed in Table 1. The finite tempera-
ture effects are mainly noticeable about saturation and low densities. 
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Table 1. Fermi-liquid properties for nuclear matter. 

 NM M∗  m mσ σ
∗  m mω ω

∗  K a4 C1 F0 0
sF  0

aF  1
sF  

LHA (T = 0) 0.54 1 1 541 19.3 0.26 0.56 −8.62 9.18 −1.15 

NHA (T = 0) 0.72 1.08 1.02 333 15.3 0.22 0.41 −6.07 6.48 −0.66 

NHA (T = 10) 0.72 1.08 1.02 356 14.5 0.21 0.27 −5.98 6.25 −0.62 

NHA (T = 30) 0.73 1.08 1.02 362 7.94 0.21 −0.08 −4.57 4.49 −0.26 

6. Concluding Remarks 
The nonlinear (σ, ω) mean-field approximation is extended to finite temperature and applied to properties of 
nuclear matter by way of Landau’s Fermi-liquid theory. The finite temperature mean-field approximations in 
QHD are thermodynamically consistent relativistic approximations, and Landau’s assumption in the theory of 
Fermi liquid is maintained rigorously. Hence, nonlinear interactions of hadrons and finite temperature effects 
can be consistently examined in the mean-filed approximation of QHD. 

The nonlinear interactions appear as density-dependent and energy-dependent interactions, which manifestly 
contribute at high densities. On the contrary, finite temperature effects appear at low densities of the Fermi-liq- 
uid ground state of nuclear matter and contribute to observables at saturation density. Although finite tempera-
ture effects on hadron effective masses are not large, the single particle energy ( )E k  and Landau parameters, 
F0, F1, are subject to temperature contributions at low densities. The finite temperature effects of symmetry 
energy, incompressibility and sound velocity should be reexamined by including ρ-meosn [43]-[46]. 

At finite temperature, the Fermi surface is smeared out, which is observed by comparing Fermi momentums, 
( )0Fk  at T = 0 and ( )Fk T . The Fermi momentums are ( ) ( )0F Fk T k<  at low densities, and they are almost 

equal, ( ) ( )~ 0F Fk T k , at high densities, restoring a sharp Fermi surface. When 50 MeVT  , the Fermi sur-
face at saturation density disappears completely. Though effective masses of nucleons and mesons change 
slightly, the single particle energy, symmetry energy and modifications to Landau parameters should be ex-
amined carefully at finite temperature and low densities. 

The Landau parameters in scattering amplitude, (48)-(50), should be checked in heavy-ion collision experi-
ments, for instance, whether the modification to Fermi liquid properties or the reduction to Landau parameters is 
significant or not. Nucleon and meson effective masses depend on nonlinear and density interactions, which be-
come noticeable above saturation densities. Hence, nonlinear and density modifications to physical quantities 
are important from saturation to higher densities, whereas finite temperature modifications would be important 
from low to saturation densities. From the current Hartree approximation, it is suggested that Fermi-liquid prop-
erties are fairly sensitive to variations of temperature at low densities. 

Physical quantities sensitive to Landau parameters, 0
sF  and 0

aF , or the density of states at the Fermi surface 
( )FN T  should be checked at low density and finite temperature. The specific heat depends on the density of 

states and linearly on temperature in low temperature limit [26]. Properties of Fermi liquid would be moderately 
stable at high densities and temperatures. There may be certain static properties of nucleus sensitive to low den-
sity and temperature, charge and electromagnetic interactions [24]. Physical quantities directly related to the 
density of states at the Fermi surface should be examined at a low temperature and a low density nuclear system. 
In addition, non-equilibrium process should be included. Fermi liquid properties at finite temperature with non- 
equilibrium effects may exhibit different results from those obtained by approximations at T = 0. 

The exchange interaction in the Dirac-Hartree-Fock approximation in QHD is applied to obtain the value of 
Landau parameters [35] [36]. The similar analyses may be carried out in more sophisticated approximations in 
QHD, such as the effective chiral (σ, π, ω) mean-field [8] [31] approximation, the chiral (σ, π, ω) Hartee-Fock 
approximation [47], and the chiral (σ, π, ω, ρ) model [48]. These analyses are necessary for applications to neu-
tron stars as high density matter [6]-[8], nuclear fission and cluster radioactivity [40]-[42]. It is important for the 
theory of finite temperature quantum liquids to examine heavy-ion collision experiments at a low temperature 
and a density, so as to clarify the validity and applicability of quasiparticle approach in nuclear matter. 
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