Log-Concavity of Centered Polygonal Figurate Number Sequences

Fekadu Tolessa Gedefa
Department of Mathematics, Ambo University, Ambo, Ethiopia
Email: toli4rage@gmail.com, fekadu.tolessa@ambou.edu.et

Received 28 May 2016; accepted 23 June 2016; published 27 June 2016
Copyright © 2016 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

This paper investigates the log-concavity of the centered \boldsymbol{m}-gonal figurate number sequences. The author proves that for $m \geq 3$, the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ of centered \boldsymbol{m}-gonal figurate numbers is a log-concave.

Keywords

Log-Concavity, Figurate Numbers, Centered Polygonal, Number Sequences

Subject Areas: Discrete Mathematics, Combinatorial Sequences, Recurrences

1. Introduction

For $n \geq 1$ and $m \geq 3$, let $\mathcal{C}_{n}(m)$ denote the $n^{\text {th }}$ term of the centered m-gonal figurate number sequence. E. Deza and M. Deza [1] stated that $\mathcal{C}_{n}(m)$ could be defined by the following recurrence relation:

$$
\begin{equation*}
\mathcal{C}_{n+1}(m)=\mathcal{C}_{n}(m)+m n \tag{1}
\end{equation*}
$$

where $\mathcal{C}_{1}(m)=1$. E. Deza and M. Deza [1] also gave different properties of $\mathcal{C}_{n}(m)$ and obtained

$$
\begin{equation*}
\mathcal{C}_{n}(m)=1+\frac{m(n-1) n}{2}=\frac{m n^{2}-m n+2}{2} \tag{2}
\end{equation*}
$$

where $n \geq 1$ and $m \geq 3$. For $m \geq 3$, some terms of the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ are as follows:

$$
1,1+m, 1+3 m, 1+6 m, 1+10 m, 1+15 m, 1+21 m, 1+28 m, \cdots
$$

Some scholars have been studying the log-concavity (or log-convexity) of different numbers sequences such as Fibonacci \& Hyperfibonacci numbers, Lucas \& Hyperlucas numbers, Bell numbers, Hyperpell numbers, Motzkin numbers, Fine numbers, Franel numbers of order $3 \& 4$, Apéry numbers, Large Schröder numbers,

Central Delannoy numbers, Catalan-Larcombe-French numbers sequences, and so on (see for instance [2]-[9]).
To the best of the author's knowledge, among all the aforementioned works on the log-concavity and logconvexity of number sequences, no one has studied the log-concavity (or log-convexity) of centered m-gonal figurate number sequences. In [1] [10] [11], some properties of centered figurate numbers are given. The main aim of this paper is to discuss properties related to the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n>1}$. Now we recall some definitions involved in this paper.

Definition 1. Let $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. If for all $i \geq 1, s_{i}^{2} \geq s_{i-1} s_{i+1}$, the sequence $\left\{s_{n}\right\}_{n \geq 0}$ is called log-concave.

Definition 2. Let $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. If for all $i \geq 1, s_{i}^{2} \leq s_{i-1} s_{i+1}$, the sequence $\left\{s_{n}\right\}_{n \geq 0}$ is called log-convex. In case of equality, $s_{i}^{2}=s_{i-1} s_{i+1}, i \geq 1$, we call the sequence $\left\{s_{n}\right\}_{n \geq 0}$ geometric or log-straight.

Definition 3. Let $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. The sequence $\left\{s_{n}\right\}_{n \geq 0}$ is log-concave (logconvex) if and only if its quotient sequence $\left\{\frac{s_{n+1}}{s_{n}}\right\}_{n \geq 0}$ is non-increasing (non-decreasing).

Log-concavity and log-convexity are important properties of combinatorial sequences and they play a crucial role in many fields, for instance economics, probability, mathematical biology, quantum physics and white noise theory [2] [12]-[18].

2. Log-Concavity of Centered \boldsymbol{m}-gonal Figurate Number Sequences

In this section, we state and prove the main results of this paper.
Theorem 4. For $m \geq 3$ and $n \geq 3$, the following recurrence formulas for centered m-gonal number sequences hold:

$$
\begin{equation*}
\mathcal{C}_{n}(m)=R(n) \mathcal{C}_{n-1}(m)+S(n) \mathcal{C}_{n-2}(m) \tag{3}
\end{equation*}
$$

with the initial conditions $\mathcal{C}_{1}(m)=1, \mathcal{C}_{2}(m)=1+m$ and the recurrence of its quotient sequence is given by

$$
\begin{equation*}
x_{n-1}=R(n)+\frac{S(n)}{x_{n-2}} \tag{4}
\end{equation*}
$$

with the initial condition $x_{1}=1+m$.
Proof. By (1), we have

$$
\begin{equation*}
\mathcal{C}_{n+1}(m)=\mathcal{C}_{n}(m)+m n \tag{5}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mathcal{C}_{n+2}(m)=\mathcal{C}_{n+1}(m)+m(n+1) \tag{6}
\end{equation*}
$$

Rewriting (5) and (6) for $n \geq 3$, we have

$$
\begin{align*}
\mathcal{C}_{n-1}(m) & =\mathcal{C}_{n-2}(m)+m(n-2) \tag{7}\\
\mathcal{C}_{n}(m) & =\mathcal{C}_{n-1}(m)+m(n-1) \tag{8}
\end{align*}
$$

Multiplying (7) by $m(n-1)$ and (8) by $m(n-2)$, and subtracting as to cancel the non homogeneous part, one can obtain the homogeneous second-order linear recurrence for $\mathcal{C}_{n}(m)$:

$$
\begin{equation*}
\mathcal{C}_{n}(m)=\left[\frac{2 n-3}{n-2}\right] \mathcal{C}_{n-1}(m)-\left[\frac{n-1}{n-2}\right] \mathcal{C}_{n-2}(m), \forall n, m \geq 3 . \tag{9}
\end{equation*}
$$

By denoting

$$
\frac{2 n-3}{n-2}=R(n)
$$

and

$$
-\frac{n-1}{n-2}=S(n),
$$

one can obtain

$$
\begin{equation*}
\mathcal{C}_{n}(m)=R(n) \mathcal{C}_{n-1}(m)+S(n) \mathcal{C}_{n-2}(m), \forall n, m \geq 3 \tag{10}
\end{equation*}
$$

with given initial conditions $\mathcal{C}_{1}(m)=1$ and $\mathcal{C}_{2}(m)=1+m$.
By dividing (10) through by $\mathcal{C}_{n-1}(m)$, one can also get the recurrence of its quotient sequence x_{n-1} as

$$
\begin{equation*}
x_{n-1}=R(n)+\frac{S(n)}{x_{n-2}}, n \geq 3 \tag{11}
\end{equation*}
$$

with initial condition $x_{1}=1+m$.
Lemma 5. For the centered m-gonal figurate number sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$, let $x_{n}=\frac{\mathcal{C}_{n+1}(m)}{\mathcal{C}_{n}(m)}$ for $n \geq 1$ and $m \geq 3$. Then we have $1<x_{n} \leq 1+m$ for $n \geq 1$.

Proof. Assume $x_{n} \neq 1$ for $n \geq 1$ and $m \geq 3$. Otherwise,

$$
\begin{equation*}
1=x_{n}=\frac{\mathcal{C}_{n+1}(m)}{\mathcal{C}_{n}(m)}=\frac{2+m n(n+1)}{2+m n(n-1)} \tag{12}
\end{equation*}
$$

It follows that $-1=1$ which not true. Now it is clear that $x_{n} \neq 1$ and

$$
\begin{equation*}
x_{1}=1+m, x_{2}=3-\frac{2}{1+m}, x_{3}=2-\frac{1}{1+3 m}>1 \text {, for } m \geq 3 . \tag{13}
\end{equation*}
$$

Assume that $x_{n}>1$ for all $n \geq 3$. It follows from (11) that

$$
\begin{equation*}
x_{n}=\frac{2 n-1}{n-1}-\frac{n}{(n-1) x_{n-1}}, n \geq 2 \tag{14}
\end{equation*}
$$

For $n \geq 3$, by (14), we have

$$
\begin{align*}
& x_{n+1}-1=\frac{n+1}{n}-\frac{n+1}{n x_{n}} \tag{15}\\
& =\frac{(n+1) x_{n}-(n+1)}{n x_{n}} \tag{16}\\
& =\frac{(n+1)\left(x_{n}-1\right)}{n x_{n}} \tag{17}\\
& >0 \text { for } m \geq 3 .
\end{align*}
$$

Hence $x_{n}>1$ for $n \geq 1$ and $m \geq 3$.
Similarly, it is known that

$$
\begin{equation*}
x_{1}=1+m, x_{2}=3-\frac{2}{1+m}, x_{3}=2-\frac{1}{1+3 m}<1+m, \text { for } m \geq 3 . \tag{18}
\end{equation*}
$$

Assume that $x_{n} \leq 1+m$ for all $n \geq 3$. It follows from (11) that

$$
\begin{equation*}
x_{n}=\frac{2 n-1}{n-1}-\frac{n}{(n-1) x_{n-1}}, n \geq 2 \tag{19}
\end{equation*}
$$

For $n \geq 3$, by (19), we have

$$
\begin{equation*}
x_{n+1}-(1+m)=\frac{n+1-m n}{n}-\frac{n+1}{n x_{n}} \tag{20}
\end{equation*}
$$

$$
\begin{gather*}
=\frac{(n+1-m n) x_{n}-(n+1)}{n x_{n}} \tag{21}\\
<-\frac{m}{x_{n}}<0 \text { for } m \geq 3 .
\end{gather*}
$$

Hence $x_{n} \leq 1+m$ for $n \geq 1$ and $m \geq 3$.
Thus, in general, from the above two cases it follows that $1<x_{n} \leq 1+m$ for $n \geq 1$ and $m \geq 3$.
Lemma 6. For the centered m-gonal figurate number sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$, the quotient sequence $\left\{x_{n}\right\}_{n \geq 1}$, given in (4), is a decreasing sequence for $m \geq 3$.

Proof. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a quotient sequence given in (4). We prove by induction that the sequence $\left\{x_{n}\right\}_{n \geq 1}$ is decreasing. Indeed, since $x_{1}=1+m, x_{2}=3-\frac{2}{1+m}, x_{3}=2-\frac{1}{1+3 m}$, we have $x_{1}>x_{2}>x_{3}$. Next we assume that $x_{n}<x_{n-1}$.

By using (11), one can obtain

$$
\begin{equation*}
x_{n}=\frac{2 n-1}{n-1}-\frac{n}{(n-1) x_{n-1}}, n \geq 2 \tag{22}
\end{equation*}
$$

with initial condition $x_{1}=1+m$.
For $n \geq 3$, by (22), we get

$$
\begin{gather*}
x_{n+1}-x_{n}=\frac{2 n+1}{n}-\frac{n+1}{n x_{n}}-\frac{2 n-1}{n-1}+\frac{n}{(n-1) x_{n-1}} \tag{23}\\
=\frac{2 n+1}{n}-\frac{2 n-1}{n-1}-\frac{n+1}{n x_{n}}+\frac{n}{(n-1) x_{n-1}} \tag{24}\\
=\frac{2 n+1}{n}-\frac{2 n-1}{n-1}+\frac{1}{x_{n}}\left[\frac{n}{n-1}-\frac{n+1}{n}\right]+\frac{n}{n-1}\left[\frac{1}{x_{n-1}}-\frac{1}{x_{n}}\right] \tag{25}\\
=-\frac{1}{n(n-1)}+\frac{1}{n(n-1) x_{n}}+\frac{n}{n-1}\left[\frac{1}{x_{n-1}}-\frac{1}{x_{n}}\right] \tag{26}\\
=-\left[\frac{x_{n}-1}{n(n-1) x_{n}}\right]+\frac{n}{n-1}\left[\frac{1}{x_{n-1}}-\frac{1}{x_{n}}\right]<0 . \tag{27}
\end{gather*}
$$

By Lemma 5 and induction assumption, one can get $x_{n+1}-x_{n}<0$ for $n \geq 3$.
Thus, the sequence $\left\{x_{n}\right\}_{n \geq 1}$ is decreasing for $m \geq 3$.
Theorem 7 For $m \geq 3$, the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ of centered m-gonal figurate numbers is a log-concave.
Proof. Let $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ be a sequence of centered m-gonal figurate numbers and $\left\{x_{n}\right\}_{n \geq 1}$ its quotient sequence, given by (4). To prove the log-concavity of $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ for all $m \geq 3$, it suffices to show that the quotient sequence $\left\{x_{n}\right\}_{n \geq 1}$ is decreasing.

By Lemma 6, the quotient sequence $\left\{x_{n}\right\}_{n \geq 1}$ is decreasing. Thus, by definition 3, the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ of centered m-gonal figurate numbers is a log-concave for $m \geq 3$. This completes the proof of the theorem.

3. Conclusion

In this paper, we have discussed the log-behavior of centered m-gonal figurate number sequences. We have also proved that for $m \geq 3$, the sequence $\left\{\mathcal{C}_{n}(m)\right\}_{n \geq 1}$ of centered m-gonal figurate numbers is a log-concave.

Acknowledgements

The author is grateful to the anonymous referees for their valuable comments and suggestions.

References

[1] Deza, E. and Deza, M. (2012) Figurate Numbers. World Scientific.
[2] Ahmiaab, M., Belbachirb, H. and Belkhirb, A. (2014) The Log-Concavity and Log-Convexity Properties Associated to Hyperpell and Hyperpell-Lucas Sequences. Annales Mathematicae et Informaticae, 43, 3-12.
[3] Aigner, M. (1998) Motzkin Numbers. European Journal of Combinatorics, 19, 663-675. http://dx.doi.org/10.1006/eujc.1998.0235
[4] Deutsch, E. and Shapiro, L. (2001) A Survey of the Fine Numbers. Discrete Mathematics, 241, 241-265. http://dx.doi.org/10.1016/S0012-365X(01)00121-2
[5] Gessel, I. (1982) Some Congruences for Apéry Numbers. Journal of Number Theory, 14, 362-368. http://dx.doi.org/10.1016/0022-314X(82)90071-3
[6] Santana, S.F. and Diaz-Barrero, J. (2006) Some Properties of Sums Involving Pell Numbers. Missouri Journal of Mathematical Sciences, 18, 33-40.
[7] Sun, Z.-W. (2011) On Delannoy Numbers and Schröder Numbers. Journal of Number Theory, 131, 2387-2397. http://dx.doi.org/10.1016/j.jnt.2011.06.005
[8] Sun, Z.-W. (2013) Congruences for Franel Numbers. Advances in Applied Mathematics, 51, 524-535. http://dx.doi.org/10.1016/j.aam.2013.06.004
[9] Sloane, N.J., et al. (2003) The On-Line Encyclopedia of Integer Sequences.
[10] Hartman, J. (1976) Figurate Numbers. The Mathematics Teacher, 69, 47-50.
[11] Weaver, C. (1974) Figurate Numbers. Mathematics Teacher, 67, 661-666.
[12] Asai, N., Kubo, I. and Kuo, H.-H. (2001) Roles of Log-Concavity, Log-Convexity, and Growth Order in White Noise Analysis. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 4, 59-84. http://dx.doi.org/10.1142/S0219025701000498
[13] Asai, N., Kubo, I. and Kuo, H.-H. (1999) Bell Numbers, Log-Concavity, and Log-Convexity.
[14] Došlic, T. (2005) Log-Balanced Combinatorial Sequences. International Journal of Mathematics and Mathematical Sciences, 2005, 507-522. http://dx.doi.org/10.1155/IJMMS.2005.507
[15] Liu, L.L. and Wang, Y. (2007) On the Log-Convexity of Combinatorial Sequences. Advances in Applied Mathematics, 39, 453-476. http://dx.doi.org/10.1016/j.aam.2006.11.002
[16] Wang, Y. and Yeh, Y.-N. (2007) Log-Concavity and Lc-Positivity. Journal of Combinatorial Theory, Series A, 114, 195-210.
[17] Zhao, F.-Z. (2014) The Log-Behavior of the Catalan-Larcombe-French Sequence. International Journal of Number Theory, 10, 177-182.
[18] Zheng, L.-N., Liu, R. and Zhao, F.-Z. (2014) On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers. Journal of Integer Sequences, 17, 3.

Warmly welcome your paper submission to OALib Journal!

- Publication on a daily basis
- 9 subject areas of science, technology and medicine
- Fair and rigorous peer-review system
- Fast publication process
- Article promotion in various social networking sites (LinkedIn, Facebook, Twitter, etc.)
- Widely-targeted and multidisciplinary audience to read your research

Submit Your Paper Online: Click Here to Submit
Contact Us: service@oalib.com

