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Abstract 

Let nT  be the set of ribbon L-shaped n-ominoes for some n 4≥  even, and let nT +  be nT  with an 

extra 2 2×  square. We investigate signed tilings of rectangles by nT  and nT + . We show that a rec-
tangle has a signed tiling by nT  if and only if both sides of the rectangle are even and one of them is 

divisible by n, or if one of the sides is odd and the other side is divisible by  
 
 

nn 2
2
− . We also show 

that a rectangle has a signed tiling by nT n, 6+ ≥  even, if and only if both sides of the rectangle are 

even, or if one of the sides is odd and the other side is divisible by  
 
 

nn 2
2
− . Our proofs are based 

on the exhibition of explicit Gröbner bases for the ideals generated by polynomials associated to 
the tiling sets. In particular, we show that some of the regular tiling results in Nitica, V. (2015) Every 
tiling of the first quadrant by ribbon L n-ominoes follows the rectangular pattern. Open Journal of 
Discrete Mathematics, 5, 11-25, cannot be obtained from coloring invariants. 
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1. Introduction 
In this article, we study tiling problems for regions in a square lattice by certain symmetries of an L-shaped po-
lyomino. Polyominoes were introduced by Golomb in [1] and the standard reference about this subject is the 
book Polyominoes [2]. The L-shaped polyomino we study is placed in a square lattice and is made out of 
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, 4n n ≥ , unit squares, or cells (see Figure 1(a)). In a a b×  rectangle, a is the height and b is the base. We con-
sider translations (only!) of the tiles shown in Figure 1(b). They are ribbon L-shaped n-ominoes. 

A ribbon polyomino [3] is a simply connected polyomino with no two unit squares lying along a line parallel 
to the first bisector y x= . We denote the set of tiles nT . 

Related papers are [4] and [5], investigating tilings by ,nT n  even. In [4], we look at tilings by nT  in the 
particular case 4n = . The starting point was a problem from recreational mathematics. We recall that a repli-
cating tile is one that can make larger copies of itself. The order of replication is the number of initial tiles that 
fit in the larger copy. Replicating tiles were introduced by Golomb in [6]. In [7], we study replication of higher 
orders for several tiles introduced in [6]. In particular, we suggested that the skewed L-tetromino showed in 
Figure 2(a) was not replicating of order 2k  for any odd k. The question is equivalent to that of tiling a k-in- 
flated copy of the straight L-tetromino using only the ribbon orientations of an L-tetromino. The question is 
solved in [4], where it is shown that L-tetromino is not replicating of any odd order. This is a consequence of a 
stronger result: a tiling of the first quadrant by 4T  always follows the rectangular pattern, that is, the tiling re-
duces to a tiling by 4 2×  and 2 4×  rectangles, each tiled in turn by two tiles from 4T . 

The results in [4] are generalized in [5] to ,nT n  even. The main result shows that any tiling of the first qua-
drant by nT  reduces to a tiling by 2 n×  and 2n×  rectangles. An application is the characterization of all 
rectangles that can be tiled by nT , n even: a rectangle can be tiled by ,nT n  even, if and only if both sides are 
even and at least one side is divisible by n. The rectangular pattern persists if one adds an extra 2 2×  tile to 

,nT n  even. The new tiling set is denoted nT + . A rectangle can be tiled by nT +  if and only if it has both sides 
even. The main result also implies that a skewed L-shaped n-omino, n even, (see Figure 2(b)) is not a replicat-
ing tile of order 2k  for any odd k. This development shows that the limitation of the orientations of the tiles 
can be of interest, in particular when investigating tiling problems in a skewed lattice. 

Signed tilings (see [8]) are also of interest. These are finite placements of tiles on a plane, with weights +1 or 
−1 assigned to each of the tiles. We say that they tile a region R if the sum of the weights of the tiles is 1 for 
every cell inside R and 0 for every cell elsewhere. The existence of a regular tiling clearly implies the existence 
of a signed tiling. Many times solving a tiling problem can be reduced to a coloring argument. It was shown in 
[8] that the most general argument of this type is equivalent to the existence of a signed tiling. Consequently, 
different conditions for regular versus signed tilings can be used to show that certain tiling arguments are  

 

 
Figure 1. (a) An Ln-omino with n-cells. (b) The set of tiles nT .                                                            

 

 
Figure 2. (a) Skewed L-tetromino. (b) Skewed L n-omino.                                                            
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stronger then coloring arguments. By looking at signed tilings of rectangles by nT  and nT + , n even, we show 
that some of the results in [5] cannot be obtained via coloring arguments. 

A useful tool in the study of signed tilings is a Gröbner basis associated to the polynomial ideal generated by 
the tiling set. See Bodini and Nouvel [9]. One can associate to any cell in the square lattice a monomial in the 
variable x,y. If the coordinates of the lower left corner of the cell are (a, b), one associates a bx y . This corres-
pondence associates to any bounded tile a Laurent polynomial with all coefficients 1. The polynomial associated 
to a tile P is denoted Pf . The polynomial associated to a tile translated by an integer vector (c, d) is the initial 
polynomial multiplied by the monomial c dx y . If the region we tile is bounded and the tile set consists of 
bounded tiles, then the problem can be translated in the first quadrant via a translation by an integer vector, and 
one can work only with regular polynomials in x, y. See Theorem 10 below. 

Signed tilings by ribbon L n-ominoes, n odd are studied in [10], where we show that a rectangle can be signed 
tiled by ribbon L n-ominoes, n odd, if and only if it has a side divisible by n. 

The main results of the paper are the following: 
Theorem 1. A rectangle can be signed tiled by , 6nT n ≥ , even, if and only if both sides of the rectangle are 

even and one of them is divisible by n, or one of the sides is odd and the other is divisible by ( )2 2n n − . 
Theorem 1 is proved in Section 5, after finding a Gröbner basis for ,nT n  even, in Section 3. A summary of 

Gröbner basis theory is shown in Section 2. Theorem 1 shows that some tiling results for , 6nT n ≥  even, in 
[10] cannot be found via coloring arguments. We recall that it is shown in [4] that a rectangle is signed tiled by 

4T  if and only if the sides are even and one side is divisible by 4. 
Theorem 2. A rectangle can be signed tiled by 4T +  if and only if both sides are even. A rectangle can be 

signed tiled by , 6nT n+ ≥  even, if and only if it has both sides even or one side is odd and the other side is di-
visible by ( )2 2n n − . 

Theorem 2 is proved in Section 6, after finding a Gröbner basis for nT +  in Section 4. Theorem 2 shows that 
some tiling results for , 6nT n+ ≥  even, in [5] cannot be found via coloring arguments.  

Due to the Gröbner basis that we exhibit for , 6nT n ≥  even, we also have: 
Proposition 3. A k-inflated copy of the ribbon L n-omino, 6n ≥  even, has a signed tiling by nT  if and only 

if k is even or k is odd and divisible by 2 2n − . 
The proof of Proposition 3 is shown in Section 7. 
Barnes [11] [12] developed a method for solving signed tiling problems with complex number weights. Ap-

plied to our tiling sets, the method gives: 
Theorem 4. If complex number weights are used, a rectangle can be signed tiled by , 6nT n ≥  even, if and 

only if it has a side divisible by n. If only integer weights are used, a rectangle that has a side divisible by n and 
all cells labeled by the same multiple of 2n n−  can be signed tiled by , 6nT n ≥  even. 

Theorem 4 is proved in Section 8. A Gröbner basis for the tiling set helps even if Barnes method is used. 
Theorem 5. If complex number weights are used, a rectangle can be signed tiled by , 6nT n+ ≥  even, if and 

only if it has an even side, and a rectangle can be signed tiled by 4T +  if and only if both sides are even. 
Theorem 5 is proved in Section 9. It is not clear to us if last statement in Theorem 4 implies Theorem 1 and if 

Theorem 5 implies Theorem 2. Guided by the work here, we conclude that Gröbner basis method for solving 
signed tiling problems with integer weights is sometimes more versatile and leads to stronger results then Barnes 
method. 

The methods we use in this paper are well known when applied to a particular tiling problem. Here we apply 
them uniformly to solve an infinite collection of problems. Our hope was to see some regularity in the Gröbner 
bases associated to other infinite families of tiling sets, such as the family , ,m n pT  investigated in [5]. We recall 
that if ,m p  are odd and n is even, tilings of the first quadrant by this family follow the rectangular pattern. 
Nevertheless, our hopes were not validated. The subfamily 3, ,3 ,nT n  even, has a wide variety of Gröbner bases, 
making difficult to state a general result. Thus, for this particular family, we understand regular tilings of rectan-
gles due to [5], but cannot decide if the results follow from coloring invariants. 

2. Summary of Gröbner Basis Theory 
Let [ ] [ ]1, , kR R X X=X �  be the ring of polynomials with coefficients in a principal ideal domain (PID) R. A 
term in the variables 1, , kx x�  is a power product 1 2

1 2
kaa a

kx x x�  with ,1ia N i n∈ ≤ ≤ ; in particular  
0 0 0
1 2 kx x x= �1  is a term. A term with an associated coefficient from R is called monomial. We endow the set of 
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terms with the total degree-lexicographical order, in which we first compare the degrees of the monomials and 
then break the ties by means of lexicographic order for the order 1 2 kx x x> > >�  on the variables. If the va-
riables are only x, y and x y> , this gives the total order: 

2 2 3 2 2 3 41 y x y xy x y xy x y x y< < < < < < < < < < <�                    (1) 

For [ ]P R∈ X  we denote by HT(P) the leading term and by HM(P) the highest monomial in P with respect 
to the above order. We denote by HC(P) the coefficient of the leading monomial in P. We denote by T(P) the set 
of terms appearing in P and by M(P) the set of monomials in P. For a given ideal I in [ ]R X  an associated 
Gröbner basis is introduced as in Chapters 5, 10 in [13]. If G is a finite set in [ ]R X , we denote by I(G) the 
ideal generated by G in [ ]R X . 

Definition 1. Let [ ], ,f g p R∈ X . We say that f D-reduces to g modulo p and write pf g→  if there exists 
( )m M f∈  with HM(p)/m, say m = mHM(p), and g = f – mp. For a finite set Gin [ ]R X , we denote by G→  

the reflexive-transitive closure of ,p p G→ ∈ . We say that g is a normal form for f with respect to G if 
Gf g→  and no further D-reduction is possible. We say that f is D-reducible modulo G if 0Gf → . 

If 0Gf → , then ( )f I G∈ . The converse is also true if G is a Gröbner basis. 
Definition 2. A D-Gröbner basis is a finite set G of [ ]R X  with the property that all D-normal forms mod-

ulo G of elements of I(G) equal zero. If [ ]I R∈ X  is an ideal, then a D-Gröbner basis of I is a D-Gröbner ba-
sis that generates the ideal I. 

Proposition 6. Let G be a finite set of [ ]R X . Then the following statements are equivalent: 
1) G is a Gröbner basis. 
2) Every ( )0,I f f I G∈ ≠ ∈ , is D-reducible modulo G. 
We observe, nevertheless, that if R is only a (PID), the normal form associated to a polynomial f by a finite set 

G of [ ]R X  is not unique. That is, the reminder of the division of f by G is not unique. 
We introduce now the notions of S-polynomial and G-polynomial that allows to check if a given finite set G 

of [ ]R X  is a Gröbner basis for the ideal it generates. As usual, lcm is the notation for the least common mul-
tiple and gcd is the notation for the greatest common divisor. 

Definition 3. Let [ ] ( ) ( )0 , 1, 2, , .i i i i ig R i HC g a HT g t≠ ∈ = = =X  Let ( )1 2,i ia a b lcm a a= =  with ib R∈ , 
and ( )1 2,i it s t lcm t t= =  with is T∈ . The S-polynomial of 1 2,g g  is defined as: 

( )1 2 1 1 1 2 2 2, .S g g b s g b s g= −                               (2) 

If 1 2,c c R∈  such that ( )1 2 1 1 2 2gcd ,a a c a c a= + . Then the G-polynomial of 1 2,g g  is defined as: 

( )1 2 1 1 1 2 2 2, .G g g c s g c s g= +                              (3) 

Theorem 7. Let G be a finite set of [ ]R X . Assume that for all ( )1 2 1 2, , , 0Gg g G S g g∈ →  and ( )1 2,G g g  
is top-D-reducible modulo G. Then G is a Gröbner basis. 

Assume now that R is an Euclidean domain with unique reminders (see page 463 [13]). This is the case for the 
ring of integers Z if we specify reminders upon division by 0 m≠  to be in the interval [ )0, m . 

Definition 4. Let [ ], ,f g p R∈ X . We say that f E-reduces to g modulo p and write ,E pf g→  if there exists 
( )m at M f= ∈  with ( ) |HM p t , say ( ) ,=t s HT p  and g f qsp= −  where 0 ≠ ∈q R  is the quotient of a 

upon division with unique reminder by ( )HC p . 
Proposition 8. E-reduction extends D-reduction, i.e., every D-reduction step in an E-reduction step. 
Theorem 9. Let R be an Euclidean domain with unique reminders, and assume G subset of [ ]R X  is a 

D-Gröbner basis. Then the following hold: 
1) , 0E pf →  for ( )f I G∈ . 
2) E-reduction modulo G has unique normal forms. 
The following result connects signed tilings and Gröbner bases. See [9] and [14] for a proof. 
Theorem 10. A polyomino P admits a signed tiling by translates of prototiles 1, , kP P�  if and only if for 

some (test) monomial a bx y  the polynomial a b
px y f  is in the ideal generated by 

1
, ,

kP Pf f� . 

3. Gröbner Basis for Tn, n Even 
We show first Gröbner bases for the ideals generated by 4 6,T T , as these are different from the general case. 

Proposition 11. The polynomials ( ) ( )2 2
1 22 1, 2 1C x x y C y x y= + + + = + + +  form a Gröbner basis for the 



K. Gill, V. Nitica 
 

 
189 

ideal generated by 4T . 
Proof. The polynomials corresponding to the tiles in 4T  are  
( ) ( ) 2 2 2 2

1 22 , 2 , , .C C xy xy y x x y xy x y+ + + + + +  The last two can be generated by ( ) ( )1 22 , 2C C : 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 2 12 1 2 , 2 1 2 .xy xy y x C x C x y xy x y C y C+ + + = − + + + + + = − + +         (4) 

It remains to show that the S-polynomial associated to ( ) ( )1 22 , 2C C  can be reduced. One has: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 1 22 , 2 1 1 1 2 1 2 .S C C y x x y x y y x x y C x y C= + + + − + + + = − + + + + +    (5) 

Proposition 12. A Gröbner basis for the ideal of polynomials generated by 6T  is given by: 

( ) ( ) ( )3 2 2 3 2 2
1 2 33 1, 3 1, 3 1.C x x x y y C y y y x x C xy= + + + + + = + + + + + = −            (6) 

Proof. The polynomials associated to 6T  are: 

( ) ( )
( ) ( )

4 3 2 4 4 3 2
1 2

4 3 2 4 3 2 4
3 4

1 , ,

1, .

H k y y y y x H k y xy xy xy xy x

H k y y x x x H k x y x y x y xy y x

= + + + + + = + + + + +

= + + + + + = + + + + +
              (7) 

Similar to what is done in [10] the presence of ( )3 3C  in the Gröbner basis allows to reduce the algebraic 
proofs to combinatorial considerations. We leave most of the details of this proof to the reader. The proof that 
polynomials in Formula (7) are in the ideal generated by ( ) ( ) ( )1 2 33 , 3 , 3C C C  is similar to that of Proposition 5 
in [10]. The proof that ( ) ( ) ( )1 2 33 , 3 , 3C C C  are in the ideal generated by the polynomials in Formula (7) is sim-
ilar to that of Proposition 6 in [10]. A geometric proof that ( )3 3C  belongs to the ideal generated by  

( ) ( ) ( ) ( )1 2 3 43 , 3 , 3 , 3H H H H  is shown in Figure 3. 
For the rest of this section 2 , 4n k k= ≥ . The polynomials associated to the tiles in nT  are: 

( ) ( )
( )

( ) ( )
( )2 1 2 12 1 2 1

2 2 2 2
1 2 3 4

1 11 1, , ,
1 1 1 1

k kk k
k k

x y y xy xH k x H k y H k y H k x
y y x x

− −− −
− −

− −− −
= + = + = + = +

− − − −
  (8) 

We show that a Gröbner basis for the ideal generated by the polynomials in Formula (8) is given by: 
 

 
Figure 3. The polynomial ( )3 3C  is generated by ( ) ( ) ( ) ( ){ }1 2 3 43 , 3 , 3 , 3 .H H H H                                                             
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( )

( )

( ) ( ) ( ) ( ) ( )

1 1

1

1 1

2

2 2
3 4 5

1 1 1 1 ,
1 1 2 2

1 1 1 1
1 1 2 2

1, 1, 2 2 ,

k k

k k

y x k kC k x xy
y x

x y k kC k y xy
x y

C k x y xy x C k xy xy y C k k xy k

+ −

+ −

− − − −   = + + −   − −    
− − − −   = + + −   − −    

= + − − = + − − = − − −

             (9) 

where x    is the integer part of x. It is convenient to visualize the elements of the basis as tiles with cells la-
beled by integers, see Figure 4.  

Proposition 13. The polynomials ( ) ,1 4,iH k i≤ ≤  belong to the ideal generated by ( ) ,1 5.iC k i≤ ≤  
Proof. Due to the symmetry, we only show that ( ) ( )1 2,H k H k  are in the ideal. The polynomials 
( ) ( )3 4,C k C k  allow to translate a horizontal domino with both cells labeled by the same sign, respectively a ver-

tical domino, along a vector parallel to the line y x= . They also allow to translate horizontally or vertically a 
block of two cells adjacent at a vertex and labeled by different signs into a similar block. If the length of the 
translation is even, the signs stay the same. If the length of the translation is odd, all signs are changed. See Fig-
ure 5. 

We show how to build ( )1H k . There are two cases to be considered, k odd and k even. 
The steps of a geometric construction for k odd are shown in Figure 6. To reach Step 1, we add several times 

multiples of ( )4C k , as in Figure 5(b). To reach Step 2, we add several times multiples of ( )3C k , as in Figure 
5(a). To reach Step 3, first we subtract ( )5C k , then add several times multiples of ( ) ( )3 4,C k C k  as in Figure 
5(c) and Figure 5(d). To obtain now ( )1H k  in the initial position, we multiply the tile in Step 3 by 2kx − , which  

 

 

Figure 4. The Gröbner basis ( ) ( ) ( ) ( ) ( ){ }2 3 41 5, , , ,C k C k C k C k C k .                                                            

 

 
Figure 5. Tiles arithmetic.                                                                                                                       
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will translate the tile 2k −  cells up, and then add multiples on ( ) ( )3 4,C k C k , as in Figure 5(c) and Figure 
5(d). 

The steps of a geometric constructions for k even are shown in Figure 7. To reach Step 1, we add several times 
multiples of ( )4C k , as in Figure 5(b). To reach Step 2, we add several times multiples of ( )3C k , as in Figure 
5(a). To reach Step 3, first we subtract ( )5C k , then add several times multiples of ( ) ( )3 4,C k C k  as in Figure 
5(c) and Figure 5(d). To obtain now ( )1H k  in the initial position, we multiply the tile in Step 3 by 2kx − , 
which will translate the tile 2k −  cells up, and then add multiples on ( ) ( )3 4,C k C k , as in Figure 5(c) and 
Figure 5(d). 

 

 

Figure 6. Building ( )1H k , k odd, out of ( ) ( ) ( ) ( ) ( ){ }2 3 41 5, , , ,C k C k C k C k C k .                                                            

 

 

Figure 7. Building ( )1H k , k even, out of ( ) ( ) ( ) ( ) ( ){ }2 3 41 5, , , ,C k C k C k C k C k .                                                            
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We show how to build ( )2H k . There are two cases to be considered, k odd and k even. 
The steps of a geometric constructions for k odd are shown in Figure 8. To reach Step 1, we add several times 

multiples of ( )4C k , as in Figure 5(b). To reach Step 2, we add several times multiples of ( )3C k , as in Figure 
5(a). To reach Step 3, first we subtract ( )5C k , then add several times multiples of ( ) ( )3 4,C k C k  as in Figure 
5(c) and Figure 5(d). To obtain now ( )2H k  in the initial position, we multiply the tile in Step 3 by 2kx − , 
which will translate the tile 2k −  cells up, and then add multiples on ( ) ( )3 4,C k C k , as in Figure 5(c) and 
Figure 5(d). The steps of a geometric constructions for k even are shown in Figure 9. To reach Step 1, we add  

 

 

Figure 8. Building ( )2H k , k odd, out of ( ) ( ) ( ) ( ) ( ){ }2 3 41 5, , , ,C k C k C k C k C k .                                                            

 

 

Figure 9. Building ( )2H k , k even, out of ( ) ( ) ( ) ( ) ( ){ }2 3 41 5, , , ,C k C k C k C k C k .                                                            
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several times multiples of ( )4C k , as in Figure 5(b). To reach Step 2, we add several times multiples of ( )3C k , 
as in Figure 5(a). To reach Step 3, first we subtract ( )5C k , then add several times multiples of ( ) ( )3 4,C k C k  
as in Figure 5(c) and Figure 5(d). To obtain now ( )2H k  in the initial position, we multiply the tile in Step 3 by 

2kx − , which will translate the tile 2k −  cells up, and then add multiples on ( ) ( )3 4,C k C k , as in Figure 5(c) 
and Figure 5(d). 

Proposition 14. The polynomials ( ) ,1 5iC k i≤ ≤  belong to the ideal generated by ( ) ,1 4iH k i≤ ≤ . 
Proof. Due to the symmetry, it is enough to show that ( ) ( )1 3,C k C k  and ( )5C k  belong to the ideal. We 

show how to generate ( ) ( )3 5,C k C k  (and consequently ( )4C k ). To generate ( )1C k  we can reverse the 
process in Proposition 13. For ( )3C k , one has ( ) ( ) ( ) ( )3 3 41C k xy x H k xH k= + − − . To generate ( )5C k  we 
first show how to obtain a configuration in which all nontrivial cells, 4 of them, are located on the main diagonal. 
See Figure 10. Then we use the tiles arithmetic shown in Figure 11 to pull the cells in positions ( )1, 1k k− −  
and ( )2 2, 2 2k k− −  in positions ( )1,1  and ( )2, 2 . This gives ( )5C k . 

Proposition 15. The sets ( ){ },1 5iC k i≤ ≤  and ( ){ },1 4iH k i≤ ≤  generate the same ideal. 
Proof. This follows from Propositions 13, 14. 
 

 

Figure 10. Building ( )5C k  out of ( ) ( ) ( ) ( ){ }21 3 4, , ,H k H k H k H k .                                                            
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Figure 11. Tiles arithmetic: ( ) ( )3 3 2 2 2

4 4 2x y x yC k xyC k x y xy+ − + = − .                                                            

 
Proposition 16. One has the following formulas: 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 3
1 2 1 2 3

1 2 3 1
4 5

1 1 1
4 5 3

, 1

1

1 1
2 2

k k k k

k k k

k k k

S C k C k y C k x C k y x x C k

x y y C k y C k

k ky C k x C k x C k

− − − −

− − −

− − −

= − + − + + +

+ + + + +

− −   − − +      

�

�              (10) 

( ) ( )( ) ( ) ( ) ( ) { } { } ( )( ) ( )

( ) ( )

4 62 2
1 3 2 4 3 4

5 3

,

1 ,
2

k kk kS C k C k xC k y C k y C k xy xy xy k C k

kxC k xC k

ε− −− −= − + + + + +

− − + 

+



�
     (11) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )4 6 2
1 4 2 4 5 3

1, ,
2

k k kS C k C k C k x x x k C k C k C kε− − − = + + + + + − +   
�        (12) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) { }( )
( ) ( ) ( ) ( )

33
1 5 2 3

5 3

, 2 2 1

3 12 2 ,
2 2

kS C k C k k C k k C k k y y y

k kk C k k C k

ε

ε

−= − + − − + + + +

 −  −   + + + −        

�
          (13) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )4 6 2
1 3 53 42

1, ,
2

k k kS C k C k C k y y y k C k C k C kε− − − = + + + + − +   
+�      (14) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

2 2 4 6 2

4

4 3 3

5

2 1 4,

1 ,
2

k k k kS C k C k yC k x C k x C k x y x y x y k y C k

kyC k yC k

ε− − − −= − + + + + + +

− − +   

�
  (15) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 5
3 3

1 4

5 4

, 2 2 1

3 12 2 ,
2 2

kS C k C k k C k k C k k x x x

k kk C k k C k

ε

ε

−= − + − − + + + +

 −  −   + + + −        

�

         (16) 

( ) ( )( ) ( ) ( )3 43 4,S C k C k C k C k= − +                          (17) 

( ) ( )( ) ( ) ( ) ( )( ) ( )3 5 5 4 5 5, , , ,S C k C k C k S C k C k C k= =                    (18) 

where ( ) ( )1 1
2

k

kε
− −

= , which are given by D-reductions. Therefore, ( ){ },1 5iC k i≤ ≤  form a Gröbner basis. 

Proof. We observe that we can always choose one of the coefficients 1 2,C C  in Definition 3 to be zero. So in 
order to check that we have a Gröbner basis, we do not need to use G-polynomials. Due to the symmetry, some 
formulas above follow immediately from others: (14) follows from (12), (15) follows from (11), (16) follows 
from (13), and second formula in (18) follows from the first. For the rest, note that the leading monomial in 
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( )1C k  is ky , the leading monomial in ( )2C k  is kx , the leading monomial in ( )2C k  is 2x y , the leading 
monomial in ( )4C k  is 2xy , and the leading monomial in ( )5C k  is ( )2k xy− .  

The D-reduction of ( ) ( )( )1 2,S C k C k  is shown in Figure 12. ( ) ( )( )1 2,S C k C k  consists of two disjoint 
symmetric tiles. The reduction of them is similar and it is shown in parallel in Figure 12. We start with 

 

 

Figure 12. The D-reduction of ( ) ( )( )1 2,S C k C k .                                                            
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( ) ( )( ) ( ) ( )2 11 2, .k kS C k C k x C k y C k= −                           (19) 

The D-reduction of ( ) ( )( )1 3,S C k C k  is shown in Figure 13. We start with 
 

 

Figure 13. The D-reduction of ( ) ( )( )1 3,S C k C k .                                                            
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( ) ( )( ) ( ) ( )1 3
2 1

1 3, .kS C k C k x C k y C k−= −                            (20) 

From Step 3 to Step 4 we subtract ( ) ( )4 6
4

k kxy xy xy C k− −+ + +�  or ( ) ( )4 6 2
4

k kxy xy xy x C k− − ++ + +� , 
depending on k odd or even. From Step 4 to Step 5 we use the following formulas: 

( ) ( )3 1 1 12 , if is odd, 2 , if is even.
2 2 2 2

k k k kk k k k− − − −       − − = − − =              
            (21) 

The D-reduction of ( ) ( )( )1 4,S C k C k  is shown in Figure 14. We start with 
 

 

Figure 14. The D-reduction of ( ) ( )( )41 ,S C k C k .                                                            
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( ) ( )( ) ( ) ( )2
14 41 , .kS C k C k xC k y C k−= −                            (22) 

From Step 1 to Step 2 we subtract ( ) ( )4 6
4

k kx x x C k− −+ + +�  or ( ) ( )4 6 2
41k kx x x C k− −+ + + +� , depend-

ing on k odd or even. From Step 2 to Step 3 we use Formulas (21). 
The D-reduction of ( ) ( )( )1 5,S C k C k  is shown in Figure 15. We start with 

( ) ( )( ) ( ) ( ) ( )1 5
1

1 5, 2 .kS C k C k k xC k y C k−= − −                       (23)        

To reach Step 1, we subtract ( ) ( )22k C k− . To reach Step 2, we subtract ( ) ( )2 3
41 ky y C k−+ + +�  if k is  

odd and ( ) ( )3
4

ky y C k−+ +�  if k is even. To reach Step 3, we add ( )5
12

2
k C k− 
  

 if k is odd and  

 

 

Figure 15. The D-reduction of ( ) ( )( )51 ,S C k C k .                                                                                                                       
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( )5
32 1

2
k C k −   +    

 if k is even. 

The D-reduction of ( ) ( )( )3 4,S C k C k  is: 

( ) ( )( ) ( ) ( ) ( ) ( )4 33 44 3, .S C k C k yC k xC k C k C k= − = − +                    (24) 

The D-reduction of ( ) ( )( )3 5,S C k C k  is: 

( ) ( )( ) ( ) ( ) ( ) ( )3 5 3 5 5, 2 .S C k C k k C k xC k C k= − − =                       (25) 

4. Gröbner Basis for nT n,+  Even 
We consider first the case 4n = . 

Proposition 17. A Gröbner basis for the ideal generated by 4T +  is: 2
1 22 1,D y y D x y= + + = − . 

Proof. The pictures for tiles corresponding to the basis are shown in Figure 16. One has: 

( ) ( ) ( )

( ) ( )

2 2 2 2

2 2

2 1 1 1 ,

1 ,

y y y y x x y xy x y x xy x y

x y x y xy x y x xy x y

+ + = + + + + + + + − + + +

− = − + + + + + + +
               (26) 

thus the Gröbner basis can be generated by the polynomials in 4T + . Conversely, one has: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2

2 2

2 2 2 2

2

1 2 1 ,

1 1 ,

1 2 1 1 ,

2 1 2 ,

1 2 1 1 ,

y y x y y x y

y xy xy x y y y y y x y

y x x y y x y x y

x y xy x y y y y xy y x y x y

xy x y y y y x y

+ + + = + + + −

+ + + = + + + + + −

+ + + = + + + + + −

+ + + = + + + + + + −

+ + + = + + + + −

                 (27) 

thus 4T +  is generated by the Gröbner basis. 
The S-polynomial ( )1 2,S D D  is reduced as follows: 

( ) ( ) ( ) ( ) ( ) ( )2 2 3 2
1 2, 2 1 2 2 1 2 1 .S D D x y y y x y xy x y y y y y x y= + + − − = + + = + + + + −         (28) 

Let now 2 , 3n k k= ≥ . Recall that nT +  is the set nT  plus a 2 2×  tile with polynomial  
( )5 1H k xy x y= + + + . We show that the Gröbner basis for the ideal generated by nT +  is given by: 

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
1

2

3

2 1,

2 1 1 2 1 ,

2 1 .

D k y y

D k k k y x k k

D n k k y

= + +

= − − − + + − −  
= − +

                      (29) 

As nT  is a subset of nT + , nT +  generate the Gröbner basis ( )iC k  for nT . Next formula shows how to 
generate ( )1D k : 

( ) ( ) ( ) ( ) ( )2 2 2 2
5 4 11 1 2 .H k y C k y xy y xy y xy xy y y D k− = + + + − − − + + = + + =          (30) 

Lemma 18. The polynomial ( ) ( )21 1x k y y+ + − +  is generated by ( )1H k  and ( )1D k , and ( )1H k  is 
generated by ( ) ( )21 1x k y y+ + − +  and ( )1D k . 

Proof. First produce ( ) ( )2 3
11 1y y y D k y+ − − = − . Adding copies of this tile to ( )1H k  gives the sum: 

( ) ( ) ( )5 7 9 2 3
1 2 3 2 1 .n n nH k y y y k y y y y− − − + + + + + − + − − �                         (31) 

Expanding Formula (31) gives a telescopic sum that reduces to ( ) ( )2 1 1y y k x+ − + + . 
Proposition 19. The polynomials ( ) ( ) ( )2 31 , ,D k D k D k  belong to the ideal generated by nT + . 
Proof. We showed in Formula (30) how to generate ( )1D k . By Lemma 18, we can start from ( )1H k  to 

produce ( ) ( )2 1 1y y k x+ − + + . Then, subtract as follows: 
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Figure 16. The Gröbner basis ( ) ( ) ( ){ }2 31 , ,D k D k D k .                                                            

 

( ) ( ) ( ) ( ) ( ) ( )2
11 1 1 2 1 .x k y y D k k k x y k+ + − + − − = − − + − −                (32) 

By the symmetry of nT +  about x y= , we can also generate ( ) ( )2 1k x k y− − − − + . Combining the two: 

( ) ( ) ( ) ( ) ( )( ) ( )31 2 1 2 1 .k k x y k k x k y D k− − − + − − + − − − − + = −                (33) 

Finally, ( )2D k  is produced from ( )3D k  and ( ) ( )2 1k x y k− − + − − , which we have from Formula 
(32): 

( ) ( ) ( ) ( ) ( )22 1 1 2 .k x y k y k k D k− − + − − + + − =                      (34) 

Lemma 20. The polynomials ( ) 2
1 1 2D k x x= + + , ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1D k k k x k k y= − − + − − − +   ,  

( ) ( ) ( )3 1 2D k x k k= + −  belong to the ideal generated by ( ) ( ) ( )2 31 , ,D k D k D k . 
Proof. We show below independently in Proposition 21 that ( )5H k  is also in this ideal. Then one can 

easily check that: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 5

2 2 3

3 2 3

1 1 2 1

1 2 1 1 3

2 2 1 1 .

D k x D k k k H k

D k k k D k k k D k

D k k k D k k k D k

= + − − − −  
= − − − − − −  
= − − − − −  

                 (35) 

Proposition 21. The members of nT +  belong to the ideal generated by ( ) ( ) ( )2 31 , ,D k D k D k . 
Proof. One has after calculations: 

( ) ( ) ( ) ( ) ( ) ( )5 2 11 2 1 1 .H k y D k k k D k= + − − − −                     (36) 

To obtain ( )1H k , begin with 

( ) ( ) ( ) ( ) ( ) ( )2
2 3 11 1 1 .D k D k k D k x k y y− + − = + + − +                  (37) 

By Lemma 18, this tile may be transformed into ( )1H k  using only ( ) ( ) ( )2 31 , ,D k D k D k . We also get 
( )3H k  by symmetry in the following way. Swap the variables ,x y  in Lemma 18. Then we have that 
( )3H k  and ( ) ( )21 1y k x x+ + − +  can each be produced from the other using either nT + , which is symme-

tric about x y= , or the tiles ( ) ( ) ( )2 31 , ,D k D k D k . Then swapping ,x y  in Formula (37) allows to obtain 
( ) ( )21 1y k x x+ + − +  from the basis ( )iD k , which in turn can be obtained from the Gröbner basis itself by 

Lemma 20. Therefore the Gröbner basis also generates ( )3H k . 
The polynomial ( ) 2

4 1C k y xy xy= − − + +  can be used to change ( )1H k  into ( )2H k : 

( ) ( ) ( ) ( )2 2 4 4
1 21 1 .nH k y xy xy y y y H k−+ − − + + + + + + =�               (38) 

By symmetry, the same process will change ( )3H k  into ( )4H k  using ( )3C k . It remains, then, to 
show that the Gröbner basis for nT +  can generate ( )3C k  and ( )4C k . Start with 

( ) ( ) ( )( ) ( )2
1 3 2 1 .D k y D k D k y y k xy+ − = + + −                    (39) 

Then, multiply by 1y +  and add ( )1kyD k− : 
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( ) ( ) ( ) ( )2 2 2
41 1 2 1 1 .y y y k xy ky y y y xy xy C k + + + − − + + = + − − = −                (40) 

Once again, symmetry gives us a procedure for ( ) 2
3 1C k x xy x y= + − − , and the proof is complete. 

Proposition 22. The sets ( ){ },1 3iD k i≤ ≤  and ( ){ },1 5iH k i≤ ≤  generate the same ideal. 
Proof. This follows from Propositions 19, 20. 
Proposition 23. We have the following formulas: 

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

3

2

1 2 3

1 3

1 23 3

, 2 1 ,

, ,

, 2 1 1 2 2 ,

S D k D k k k D k x D k

S D k D k D k

S D k D k k k k k D k k k D k D k

= − + −

=

= − − − − + − −  

          (41) 

which are given by D-reductions. Therefore, ( ){ },1 3iD k i≤ ≤  forms a Gröbner basis. 
Proof. We start with 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

1 1 2

1 1

2

3

2 3

3

2 3

3 , 2 2 1 1 2

, 2 1

, 2 .

S D k D k k k k k D k k k yD k

S D k D k k k D k y D k

S D k D k k k yD k xD k

= − − − − − −  
= − − +

= − − +

            (42) 

The reader may easily check that the given reductions are valid for these S-polynomials. 

5. Proof of Theorem 1 
The case 6n =  follows as in paper [4]. We assume for the rest of this section 8n ≥ . Consider a rectangle 

, 1.q p q p× ≥ ≥  Using the presence of ( )3C k  and ( )4C k  in the Gröbner basis, the rectangle can be reduced 
to one of the configurations in Figure 17(a) and Figure 17(b). Configuration (b) appears when ,q p  are both 
even. The number of cells labeled by p is 1q p− +  in a) and q p−  in (b). 

 

 
Figure 17. D-reductions of a rectangle.                                                            
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In what follows the signed tile 1B xy= −  will play an important role. We recall that it can be moved hori-
zontally/vertically as shown in Figure 5. The tile B does not belong to the ideal generated by nT . Other signed 
tile of interest in the sequel is 1 1 1n n nD y y y y xy+ −= + + + + + −� , which is the concatenation of a vertical bar 
of length n and B. The tile ( ) ( )1 4 $D yH k C k= −  belongs to the ideal generated by nT . 

Multiplying the polynomial associated to the rectangle by py , we can assume that the configurations in Fig-
ure 17 are at height 1p −  above the x-axis. Using the tiles ( ) ( )3 4,C k C k  and an amount of tiles B (p/2 if p is 
even and zero if p is odd), they can be reduced further to the configurations shown in Figure 17(c) and Figure 
17(d). We observe that (b) is the sum of (a) with p/2 copies of B. 

Reducing further the configurations in Figure 17(c) and Figure 17(d), with copies of D, the existence of a 
signed tiling for the q p×  rectangle becomes equivalent to deciding when the following two conditions are 
both true: 

1) The polynomial ( ) 2 11 nQ x y y y −= + + + +�  divides: 

( ) ( ) ( )2 1 1 1 3 21 2 3 1 2 2 .p p q q q p q p q
pqP y y y py py py p y p y y y− − + + − + −= + + + + + + + + − + − + + +� � �      (43) 

2) The extra tiles B that appear while doing tile arithmetic for 1), including those from Figure 17, can be 
cancelled out by ( )5C k . 

If 1p q n+ − < , then pqdegQ deg P> , so divisibility does not hold. If 1p q n+ − ≥ , we look at pqP  as a 
sum of p polynomials with all coefficients equal to 1: 

( ) 2 3 1 1 1 4 3 2

2 3 1 1 1 4 3

2 3 1 1 1 4 1

1

.

p p q q q p q p q p q
pq

p p q q q p q p q

p p q q q p q p q

P y y y y y y y y y y y y
y y y y y y y y y y
y y y y y y y y y y

− − + + − + − + −

− − + + − + −

− − + + − −

= + + + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + ++ + + + +

� � �
� � �

��� � �
        (44) 

We discuss first 1) and show that it is true when p or q is divisible by n. Then, assuming this condition satis-
fied, we discuss 2). 

1) Let 1 ,0p q nm r r n+ − = + ≤ < , and , 0p ns t t n= + ≤ < . The remainder ( )pqR y  of the division of 
( )pqR y  by ( )Q y  is the sum of the remainders of the division of the p polynomials above by ( )Q y . 

If r is odd, one has the sequence of remainders, each remainder written in a separate pair of parentheses: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( )

2 1 2 2 2 3

1 1
2 2 2 12 2

1
1 2 3 2 2 3 2

1
2 3 1 3 32

1

1

r r r
pq

r r
r r

r n
r r n n r n

r n
r n r r n n

R y y y y y y y y y

y y y y y y y y

y y y y y y y

y y y y y y y

− − −

− −
− −

+ −
+ + − − + −

+ −
+ − + + −

= + + + + + + + + + + + +

   
+ − − − + + + − + + + +      
   

 
+ + + + + + + + + +   

 
 

− − − + + − + + + +  
 

� � � �

� � �

� � �

� � �( )2− +�

            (45) 

If p n≥ , the sequence of remainders above is periodic with period n, given by the part of the sequence 
shown above, and the sum of any subsequence of n consecutive remainders is 0. So if p is divisible by n, 

( )pqP y  is divisible by ( )Q y . If p is not divisible by n, then doing first the cancellation as above and then us-
ing the symmetry present in the sequence of remainders, the sum of the sequence of remainders equals 0 only if 

1r t+ = , that is, only if q is divisible by n. 
If r is even, one has the sequence of remainders, each remainder written in a separate pair of parentheses: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 2 2 2 3

2 2
2 22 2 2 2

2 1 1 3 3 2

1 1 1 1
2 3 2 2 2 2

1

0

1

0

r r r
pq

r r r r
r

r r r n n

r n r n r n r n
r n

r

R y y y y y y y y y

y y y y y y y

y y y y y y y

y y y y y y

y

− − −

− −
−

− + + − −

+ − + + + − + +
+ −

+

= + + + + + + + + + + + +

   
+ + + − + − − + + +      
   

− + + + + + + + + +

   
+ + + + + + + − + −      

   
−

� � � �

� �

� �

� � �

( ) ( )2 3 1 3 3 2n r r n ny y y y y− + + − −+ + − + + + + −� � �

          (46) 
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If p n≥ , the sequence of remainders above is periodic with period n, given by the part of the sequence 
shown above, and the sum of any subsequence of n consecutive remainders is 0. So if p is divisible by n, 

( )pqP y  is divisible by ( )Q y . If p is not divisible by n, then doing first the cancellation as above and then us-
ing the symmetry present in the sequence of remainders, the sum of the sequence of remainders equals 0 only if 

1r t+ = , that is, only if q is divisible by n. 
2) We assume now that n divides p or q and count the extra tiles B that appears. They are counted by the coef-

ficients of the quotient, call it ( )S y , of the division of ( )pqP y  by ( )Q y . We need to compute the sum 1S  
of the coefficients in ( )S y  of the even powers of y and the sum 2S  of the coefficients in ( )S y  of the odd 
powers of y. The difference 1 2S S−  gives the number of extra tiles B that we need to consider. 

We use the equation relating the derivatives: 

( ) ( ) ( ) ( ) ( ).pqP y Q y S y Q y S y′ ′ ′= +                           (47) 

Note that ( ) ( ) ( ) 1 21 0, 1 2, 1Q Q n S S S′− = − = − = − . Plugging in 1x = −  gives: 

( ) ( )
1 2

2 1
1 .pqP

S S S
n
′ −

− = − =                               48) 

Differentiating the equation of ( )pqP y  one has: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 3 2 2

1 4 3

2 1 3 2 4 3 1 2 1 1

1 2 1 2 3 2 .

p p q
pq

q q p q p q

P y y y p p y p p y p q y

p qy p q y p q y p q y

− − −

− + − + −

′ = × + × + × + + − − + − + + −

+ − + − + + + + − + + −

� �

�
      (49) 

While computing ( )1pqP −  we recall that n is even and distinguish the following cases: Case A. p even, q 
odd, Case B. p odd, q even, Case C. p even, q even. 

We need the following formulas: 

( ) ( ) ( )2
2 1 3 2 4 3 1 2

2
p p

p p
−

× − × + × − − − × − = −�  

( ) ( ) ( ) ( ) ( ) ( )1
1 1 2 1

2
p q p

p p p p p p p q p q
− +

× − − × + × + − + × − − × − = −�  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 4 2 3 2 .
2
pqp q p q p q p q p q− × − − × + + + × + − − × + − + + − =�        (50) 

Case A. One has: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 3 2 4 3 1 2 1 1

1 2 1 2 3 2 .
2

pqP p p p p p q

pp q p q p q p q

′ − = × − × + × − − − × − + × − − − × −

+ − × − − × + + − × + − + + − =

� �

�
         (51) 

The number of extra B tiles is ( )1
2

p kp p
n n

−
− + = . To have a complete reduction, the number of B tiles has  

to be a multiple of 2k − . As 1k −  and 2k −  are relatively prime, p has to be a multiple of ( )2n k − . 
Case B. One has: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 3 2 4 3 1 2 1 1

1 2 1 2 3 2 .
2

pqP p p p p p q

qp q p q p q p q

′ − = × − × + × − + − × − − × − + + × −

− − × + − × + + − × + − + + − =

� �

�
          (52) 

The number of extra B tiles is q
n

. We have the condition that q is a multiple of ( )2n k − . 

Case C. One has: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 3 2 4 3 1 2 1 1

1 2 1 2 3 2 0.
pqP p p p p p q

p q p q p q p q

′ − = × − × + × − − − × − + × − − + × −

− − × + − × + + + × + − − + − =

� �

�
          (53) 
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The number of extra B tiles is 0.
2 2
p p

− + =  In this case a signed tiling is always possible. 

6. Proof of Theorem 2 
Let 3k ≥ . Consider a , 1,q p q p× ≥ ≥  rectangle. Using the presence of ( )1D k  and ( )1D k  in the ideal, the 
rectangle can be reduced to one of the configurations in Figure 18, where the integers , ,s t st  represent the 
weights of the corresponding cells. The configuration in (a), and its copies appearing in (b), (c), (d), are multiples 
of ( )5H k  and can be reduced to zero. The remaining region in (b) can be reduced to ( ) ( ) ( )1 2 1 1k k y− − − +   . 
As ( ) ( )1 2 1k k− − −  is never a multiple of ( )2k k −  for 4k ≥ , this configuration can be reduced further by 

( )2D k  to zero only if s is a multiple of ( )2k k − . Same reasoning works for (c). The remaining region in (d) 
can be reduced further to ( ) ( ) ( ) ( )2 1 2 1 1k k s t y k k s s t− − − + − − + − +        which is never a multiple of 

( )2D k , thus cannot be reduced to zero. 
Assume now 2k = . The proof is similar, but one observes that only configuration (a) in Figure 18 can be 

reduced to zero using the Gröbner basis for 4T + . 

7. Proof of Proposition 3 
If k is even, finding a signed tiling for a k-inflated copy of the Ln-omino can be reduced, via reductions by 

( ) ( )3 4,C k C k  tiles, to finding a signed tiling for a nk k×  rectangle. From Theorem 1 follows that such a til-
ing always exists. If k is odd, a reduction to a kn k×  rectangle can be done only modulo a B tile, which does 
not belong to the ideal generated by nT . 

8. The Method of Barnes for nT n,  Even 
In this section we give a proof of Theorem 4 following a method of Barnes. We assume familiarity with [11] 
[12]. We apply the method to , 6nT n ≥  even. Consider the polynomials (8) associated to the tiles in nT  and 
denote by I the ideal generated by them. We show that the complex algebraic variety V defined by (8) consists 
only of the points ( )2 1,1 nε ε ε ε −+ + + +� , where ε is an n-th root of identity different from 1. 

Separating x from ( )1 0H k = , replacing in ( )2 0H k =  and factoring the resulting polynomial gives: 

( ) ( )2 1 2 2 2 2 3 2 4 21 1 0.k k k ky y y y y y y y− − − −+ + + + + + + + + + =� �                  (54) 

Denote the polynomial on the left hand side by ( )2f y , and denote the corresponding polynomial in the va-
riable x (obtained from ( )3H k  and ( )4H k ) by ( )1f x . Their roots are roots of unity of order 2 1k −  and 
2 3k − . Using the system of equations that defines V, the roots of order 2 3k −  can be eliminated. Moreover, 
the only solutions of the system are as above. 

We show now that I is a radical ideal. We use an algorithm of Seidenberg which can be applied to find the 
radical ideal of a zero dimensional algebraic variety over an algebraically closed field. See Lemma 92 in [15]. 
Compare also with Theorem 7.1 in [11]. As V is zero dimensional, one can find square free polynomials ( )1f x  
and ( )2f x  that belong to the radical ideal. We take these to be ( ) ( ) ( ) ( )1 2, ,f x F x f x F y= =  where: 

( ) ( ) ( )2 1 2 2 22 1k kF x k x x x x− −= − + + + + +� .                         (55) 

 

 
Figure 18. Reduced configurations.                                                                                          
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The ideal generated by ( )iH k ’s and ( ) ( )1 2,f x f x  is radical. To show that I is radical, it is enough to show 
that ( ) ( )1 2,f x f x  belong to I. For ( )1f x  we have ( ) ( ) ( ) ( )1 3 52 $f x k xH k C k= − +  and ( )2f x  follows by 
symmetry. 

We apply Lemma 3.8 in [11]: a region R is signed tiled by nT  if and only if the polynomial ( ),Rf x y  eva-  
luates to zero on V. If R is a p q×  rectangle, then ( ) ( ) ( ) ( ) ( ), 1 1 1 1 ,q p

Rf x y x x y y   = − − − −     which  
evaluates to zero on V if and only if one of ,p q  is divisible by n. This gives the first statement in Theorem 4. 

For the second statement in Theorem 4 we use the method described in the proof of Theorem 4.2 in [11]. A 
set of generators over the rationals for the rectangles that have a side divisible by n is given by the set 

( ) ( ) ( ) ( ){ }2 3 41 , , ,H H k H k H k H k=  and the polynomial with rational coefficients ( ) ( )1
52k C k−− . As 

( )5C k  is already generated by H, this implies that ( )2k −  multiples of the elements in H can signed tile with 
integer coefficients any ( )2k −  multiple of a rectangle with a side divisible by n. 

9. The Method of Barnes for nT n,+  Even 
Let 3k ≥ . Adding the extra polynomial 1 x y xy+ + +  to the set of generators, reduces the variety V to the 
point ( )1, 1− − . Proceeding as before, the ideal I is radical and the square free polynomials ( ) ( )1 2,f x f x  can 
be chosen to be ( ) ( ) ( ) ( ) ( ) ( )1 22 1 , 2 1f x k k x f x k k y= − + = − + . The second one belongs to the Gröbner basis 
for nT +  and the first one can be generated as well as our set of generators ( )iH k  is symmetric in the variables 

,x y . The statement in Theorem 5 follows now from Lemma 3.8 in [11]. 
Assume now 2k = . In this case the ideal I it is not radical. This follows using the theory developed in [11] 

about colorings. It is shown in [11] that 4T  has 4 colorings, three standard and one nonstandard due to the dif-
ferential operator x y∂ + ∂ . It is easy to check that one of the standard colorings (see Figure 1 in [11]) and the 
nonstandard coloring (see Figure 4 in [11]) are the only colorings for 4T + . One can check that a rectangle fits 
these colorings only if and only if it has both sides even, so it follows from Theorem 5.3 in [11] that a rectangle 
is signed tiled by 4T +  if and only if it has both sides even. 

10. Conclusions 
Understanding tilings of rectangles by particular, even simple, polyominoes is a difficult combinatorial problem 
with a long history. Among the pioneering contributions, we mention those of Klarner [16]. In particular, Klarn-
er on page 113 of [16] emphasizes the difficulty of the problem of classifying rectangles tileable by L-shaped 
n-ominoes of order two, that is, those for which two copies can be assembled in a rectangle: It seems impossibly 
difficult to characterize the rectangles which can be packed with an n-omino of order 2. A theorem of this kind 
restricted to the L-shaped n-ominoes of order 2 would probably still be too difficult to formulate. 

Similar problems can be studied for parallelograms. As already mentioned in the introduction, the problem of 
tiling a general parallelogram positioned on a skewed lattice by all symmetries of a single skewed tile that has all 
sides parallel to the sides of the parallelogram is equivalent to the problem of tiling a rectangle by a polyomino 
(the straightened tile) allowing only a reduced set of orientations for that polyomino. This new problem seems to 
be more amenable to a solution and considerable progress has been done in the case of L-shaped n-ominoes of 
order two in several recent papers of one of the authors and collaborators [4] [5] [10] [17]. The results are con-
sequences of more general tiling results for quadrants, showing that many of these tilings can be reduced to til-
ings by rectangles. Several general conjectures about the solution of this problem are formulated in [17]. 

The main contribution of the present paper is a strengthening of the results in [5]. We show that the regular 
tiling results obtained in [5] for the tiling sets , ,n nT T n+  even, cannot be obtained from coloring invariants. The 
approach we used is via computations of explicit Gröbner basis for the ideals of polynomials generated by the 
tiling sets , ,n nT T n+  even. In particular, we are able to classify signed tilings with integer weights of rectangles 
by , ,n nT T n+  even. Our tools are graphic combinatorics and algebra. We also revisit some previous results of 
Barnes [11] [12], relevant for signed tilings with complex/rational weights, and explain what they imply for

, ,n nT T n+  even. 
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