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Abstract 
 
A mathematical model is developed to assist the design engineers by analyzing the vibration response of 
non-homogeneous orthotropic rectangular plate under exponentially varying thermal condition. Plate thick-
ness varies parabolically in both directions. Using Rayleigh Ritz approach, frequency parameter and two 
term deflection function is calculated for diverse values of taper constants. For the best comprehension of the 
vibration analysis, results are depicted graphically. 
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1. Introduction 
 
Study of vibration responses of plate has always been a 
principal concern for design engineers. These plates are 
used in numerous industries for the construction of in-
numerable vital structures and devices, such as space 
shuttles, rockets, air craft’s, shafts, plate heat exchanger 
and many more. Satellite antenna booms are used in 
space as electric field or gravity-gradient probes. Heated 
by sunlight, a temperature gradient is built up across the 
cross-section. The thermal strain produces bending and 
torsion of the boom. Due to the twist the direction of the 
sunlight changes with respect to the cross-section and 
another temperature distribution is obtained which again 
causes another deformation. Similarly, a serious problem 
in mechanical design of heat exchanger is flow induced 
vibration. 

Certain structures are less vulnerable against vibration 
impacts whereas certain other are more vulnerable. As 
we all know that vibration effects are now cannot be ne-
glected, as our day to day life is affected by them; From 
kitchen to exercise centre, vibration effect are experi-
enced. The only thing is we do not put an eye on them 
deliberately. Juicer, Mixer, massager, WholeBody Vi-
bration Plate (for fitness), all encompasses vibration 
effect. Those were few inevitable and positive aspects of 
vibration. Controlled vibrations are utilized in health 
industry, paper industry, structural engineering, and 
aeronautical engineering and in many more industries.  

But uncontrolled vibration causes devastation. Occur-

rences of Tsunami, earthquake, collapse of structures are 
few such most common devastating effects of vibration. 
Thus the study of vibration responses in advance is of 
immense importance for sustainable and positive effects 
of vibrations for the well being of humans.  

Monograph written by Leissa [1] is ample source of 
knowledge in the field of plate vibration. Leissa [2] pro-
vides abundant knowledge about the numerous compli-
cating effects that can be introduced in the analysis of 
plate vibration. Tomar and Gupta [3] evaluated the ex-
ponential thermal gradient effect on the vibration of 
orthotropic rectangular plate with variation in thickness. 
Rahimi & Davoodinik [4] studied the thermal behavior 
of functionally graded plates under the exponential and 
hyperbolic temperature conditions. They concluded that 
temperature distribution profile plays vital role in ther-
mal resultant distribution of stresses and strains for FGP. 

Shang, Wang and Li [5] analyzed the deformation of 
laminated plates under exponential distributions of tem-
perature through the thickness. The plate under consid-
eration is simply supported. Javaheri & Eslami [6] used 
classical plate theory for the buckling analysis of func-
tionally graded plates under four different types of ther-
mal load.Gupta, Johri & Vats [7] studied thermally in-
duced vibrations of an orthotropic rectangular plate using 
Rayleigh Ritz approach. Gupta, Johri & Vats [8] calcu-
lated deflection function and frequency parameter for a 
rectangular plate under the effect of linear temperature 
distribution where thickness of plate was varied para- 
bolically in both directions.  
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In the present scenario design engineers are indulge in 
making more efficient, vibration deficient and light 
weight structures.  

Present study is truly devoted for design engineers 
utilizing rectangular plates for construction of devices or 
structures. The effect of exponentially varying tempera-
ture distribution is analyzed for a non- homogeneous 
orthotropic rectangular plate whose thickness varies 
bi-directionally in parabolic manner. The non-homoge-
neity is assumed to arise due to the variation in the den-
sity of the plate material in linear manner along the 
length of the plate. The frequencies and deflection func-
tion for first mode of vibration are calculated using 
Rayleigh Ritz technique, for clamped plate, for diverse 
values of non-homogeneity constant, taper constants and 
temperature gradient. Results are demonstrated graphi-
cally. 

Authentication of work is done by comparing the re-
sults for a uniform unheated homogeneous orthotropic 
clamped rectangular plate with the results published by 
the authors [3]. Results are found to be in good agree-
ment with those of published by Tomar & Gupta [3]. 

 
2. Methodology 

 
Consider an orthotropic rectangular plate. Let us assume 
that complicating effects are introduced in the plate by 
density, thickness and thermal conditions.  

Let the plate be subjected to an exponential thermal 
variation along X-axis only, i.e. 
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where T is the temperature excess above the reference 
temperature at a distance x a  and 0T  is the tempera-
ture excess above the reference temperature at the end of 
the plate i.e. at x = a, where a is length of plate. 

Thickness h of the plate is assumed to be varying 
parabolically in both directions, i.e. 
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  and 1  & 2  are two taper con-
stants. 

Non- homogeneity or variation in density   is as-
sumed to varying linearly along X-axis, i.e.,  
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  & 1  is the non-homogeneity pa-

rameter. 
For most orthotropic materials, moduli of elasticity (as 

a function of temperature) are defined as [8], 
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where, xE and yE are Young’s moduli in x- and y-di-
rections respectively and xyG is shear modulus,   is 
Slope of variation of moduli with temperature. Using 
Equation (1) in Equation (4), one has,  
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The governing differential equation of transverse mo-
tion of an orthotropic rectangular plate of variable thick-
ness in Cartesian coordinate [3], is; 
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(6) 

where w is transverse deflection of plate, at the point (x, 
y),   is mass density per unit volume of the plate ma-
terial, t is time, h is thickness of the plate at the point (x, 
y), xD  & yD  are flexural rigidities in x- and y-direc-
tions respectively and xyD  is torsional rigidity [3], 
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1 ( )x y y xD D D    and 1 2 xyH D D  , where x  & 

y  are Poisson’s ratio. 
Assuming time harmonic motion, solution of Equation 

(6), may be written as, 

( , , ) ( , ) i tw x y t W x y e             (8) 

where, w is frequency in radian and W(x, y) is a two term 
deflection function. 

For Clamped rectangular plate two term deflection 
function is expressed as,  
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where, 1c  and 2c  are constants to be evaluated.  
For a clamped plate, boundary conditions are,  

0
W

W
x


 


  at 0,x a  

0
W

W
y


 


  at 0,y b  

In order to calculate the frequency  , Rayleigh Ritz 
Technique is employed which states that maximum strain 
energy must be equal to maximum kinetic energy, i.e. 

  0U T                (10)  

where, U is strain energy and T is kinetic energy  for a 
plate executing transverse vibrations of mode shape W(x, 
y), and are written as [3], respectively,  
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Using Equations (2), (3), (6), (7) and (9) in Equations 
(11) and (12) and then putting these values of U & T in 
Equation (10), one has,  
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meter. Equation (13) contains two unknown constants 

1c  and 2c  to be evaluated. Employing the following 
method, these constants may be evaluated:  
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where k = 1,2 
On simplifying Equation (14), we get following form,  

1 1 2 2 0k kr c r c              (15) 

where, 1kr  & 2kr  involves the parametric constants 
and the frequency parameter. 

For a non-zero solution, determinant of coefficients of 
Equation (15) must vanish. In this way frequency equa-
tion comes out to be, as below, 
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3. Result 
 
Frequency Equation (16) provides the value of fre-
quency parameter and deflection function for the first 
two modes of vibration for different values of taper 
constants, thermal gradient parameter and non-ho-
mogeneity constant, for a clamped plate with linear 
variation in thickness in both directions. Limitation of 
method used lies in the consideration of only first 
mode of vibration [3]. 

The parameter for orthotropic material has been 
taken as [8], 
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Results are displayed graphically. Figure 1 depicts 
the variation of frequency parameter Ω with the ther-
mal gradient parameter ‘’ for the following two cases: 
α1 = 0.0, β1 = 0.0, β2= 0.0 and α1 = 0.0, β1= 0.2, β2 = 0.6.  

In Figure 2, Variation in frequency parameter with 
non-homogeneity of the plate material is taken into 
consideration for the following two cases: 
α = 0.0, β1 = 0.0, β2 = 0.0 and α = 0.0, β1 = 0.2, β2 = 0.6 

Figures 3 and 4 display the variation of taper con-
stant ‘β1’ and ‘β2’ with frequency parameter ‘Ω’, re-
spectively, for the following cases: 

α1 = 0.0, α = 0.0, β2 or β1 = 0.0 
α1 = 0.0, α = 0.0, β2 or β1 = 0.6 
α1 = 0.0, α = 0.4, β2 or β1 = 0.0 
α1 = 0.0, α = 0.4, β2 or β1 = 0.6 
α1 = 0.8, α = 0.0, β2 or β1 = 0.0 
α1 = 0.8, α = 0.0, β2 or β1 = 0.6 
α1 = 0.8, α = 0.4, β2 or β1 = 0.0 
α1 = 0.8, α = 0.4, β2 or β1 = 0.6 

Figure 5 displays the variation of deflection func-
tion W with X for the following cases: 
α1 = 0.0, α = 0.0, β1 = 0.0, β2=0.0, a/b =1.5 for Y = 

0.2 and 0.4 
α1 = 0.8, α = 0.4, β1 = 0.2, β2 = 0.6, a/b = 1.5 for Y = 

0.2 and 0.4 
 
4. Conclusions 
 
From the above results it is seen that the frequency of 
vibration reduces on increasing thermal gradient and 
non-homogeneity, whereas increase in taper constants 
increases the frequency of vibration. A comparative 
study was carried out for the plates regarding variation in 
thickness under exponential temperature gradient i.e.  
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Figure 1. Frequency parameter ‘λ’ Vs. ‘α’. 
 

 

Figure 2. Frequency parameter ‘λ’ Vs. ‘α1’. 
 

 

Figure 3. ‘λ’ Vs. taper constant ‘β1’. 

 

Figure 4. ‘λ’ Vs. taper constant ‘β2’. 
 

 

Figure 5. Deflection Vs. X (= x/a). 
 
plates with linear and parabolic variations in thickness 
were compared. It was found that vibration effects were 
significantly less pronounced (lesser values of frequency 
parameter) for plates having parabolic bi-directional va- 
riation in thickness as compared to that of linear bi-di-
rectional variation in thickness. Hence it is concluded 
that plates with parabolic variation in thickness are more 
stable as compared to those of linearly varying thickness, 
for bearing up of exponential thermal gradient effects. 
Yet it was well thought-out that as compared to expo-
nential variation in thermal gradient, linear variation in 
temperature is better. Hence parabolic bi-directional va- 
riation in thickness under linear temperature distribution 
is a nice combination of conditions for the bearing up of 
vibration effects, till the further considerations. 
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