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Abstract 
A random simulation method was used for treatment of systems of Volterra integral equations of 
the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature 
formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with im-
portance sampling and numerical approximation solutions of the integral equations system were 
achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on 
importance sampling to solve the integral equations system. Finally, some numerical examples 
from literatures are given to show the efficiency of the method. 
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1. Introduction 
In engineering, social and other areas, a lot of problems can be converted to Volterra integral equations to solve, 
such as elastic system in aviation, viscoelastic and electromagnetic material system and biological system, and 
some differential equations are often transformed into integral equations to solve in order to simplify the calcu-
lation. For example, the drying process in airflow, pipe heating, gas absorption and some other physical processes 
can be reduced to the Goursat problem. Then, some of the Goursat problem can be described by Volterra 
integral equations [1]. Another example, when one-dimensional situations are concerned and the coolant flow is 
incompressible, the definite solution problem of the transpiration cooling control with surface ablation appears 
as Volterra integral equations of second kind [2]. In practice, the analytical solutions for this kind of integral 
equations are difficult to obtain. Therefore, it is more practical to research the numerical method for solving this 
kind of integral equations.  

The main aim of this paper is to propose a numerical algorithm based on Monte Carlo method for approx-
imating solutions of the following system of Volterra integral equations 
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, , 1, 2p q =  are known kernel functions, the functions 1( )f x ,  

2 ( )f x  are given and defined in a x b≤ ≤ , and 1 2( ), ( )x xϕ ϕ  are the unknown functions to be determined. One 
of the earliest methods for solving integral equations using Monte Carlo method was proposed by Albert [3], 
and was later developed [4]. Literatures [5]-[8] employed Monte Carlo method to solve numerical solutions of 
Fredholm integral equations of the second kind. But very few studies are devoted to employing Monte Carlo 
method to solve Volterra integral equations and the system of Volterra integral equations. In this paper, we 
present and discuss a relaxed Monte Carlo approach with importance sampling to solve numerically systems of 
Volterra integral equations. Due to less accuracy and lower efficiency of Monte Carlo method, in this paper, 
combination of Monte Carlo and quadrature formula will be used to deal with Equation (1) and importance 
sampling is applied to accelerate the convergence and improve the accuracy of Monte Carlo method. Some nu-
merical examples are given to show the efficiency and the feasibility of proposed Monte Carlo method. 

2. Discretizing System of Integral Equations  
Here, Newton-Cotes quadrature formula is used to discretize Equation (1). Dividing the interval ( , )a x  into 

( 1)n n ≥  subintervals with step length 1 / ( )h n x a= − , defining 0  ( 0,1, , )ix x ih i n= + =  , where  
0 , nx a x x= = . For convenience, denoting the notation ( )p i pixϕ ϕ= , ( )p i pif x f= , ( , )ij

pq pq pq i jk k x tλ= , where 
, 0,1, ,i j n=  , j jt x= . As j jt x> , 0ij

pqk = . Thus the following linear algebra system can be obtain 
A FΦ = ,                                        (2) 

where 10 11 1 20 21 2( , , , , , , , )n nϕ ϕ ϕ ϕ ϕ ϕ ΤΦ =   , 10 11 1 20 21 2( , , , , , , , )n nF f f f f f f Τ=   , 

2( 1) 2( 1)diag(1,1, ,1) n nI + × +=  , 
2( 1) 2( 1)

( )
n npqB B
+ × +

= , { } 1 ( 1) ( 1)nij n n
pq j pq ij

B k Rω
+ + × += ∈ , jω  is the weight of Newton-  

Cotes quadrature formula. The matrix of coefficients of Equation (2) is A I B= − . If we assume that there ex-
ists a unique solution of (2), the solution would be a numerical approximation of (1). This process will produce 
an error which is determined by numerical quadrature formula and can be reduced by increasing the number of 
nodes for a given quadrature formula. For a large number of nodes, Equation (2) is too large to solve directly. It 
is well known that Monte Carlo technique has a unique advantage for large systems or high-dimensional prob-
lems. At the same time, this method can obtain function values at some specified points or their linear combina-
tion that is just what researchers need. But for determined numerical methods, in order to obtain function value 
at a certain point, it is often necessary that find function values for all nodes. Here relaxed Monte Carlo method 
is used to Equation (2) based on a random sample from Markov chain with discrete state. According to theory of 
importance sampling, probability transition kernel is selected to suggest a possible move. To obtain solution of 
the linear algebraic system (2), the following iterative formula is considered  

( ) ( 1)
1,k kL F−Φ = Φ +                                     (3) 

where 2( 1) 2( 1){ }ij n nL I DA l + × += − =  is the iterative matrix, D  is a diagonal matrix with elements / iiaγ , 
2( 1) 2( 1){ }ij n nA a + × += , relaxation parameter of the iterative formula (0,1]γ ∈  is chosen such that it minimizes the 

norm of L  for accelerating the convergence, and 1F DF= . The iterative formula (3) can define a Neumann 
series, as following 

( ) 2 (0)
1 1 1 , 0k F LF L F L kΦ = + + + + Φ ≥                             (4) 

 
Set iterative initial value (0)

1FΦ = , *Φ  is the exact solution of Equation (2), the truncation error and con-
vergency of the iterative formula (3) can be obtained by the following expression  
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This conclusion can be proved by using theories in numerical analysis. Here, the iterative matrix L  satisfies  
2( 1)

1
1( 1, 2, , 2( 1))

n
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=

< = +∑   or ( ) 1Lρ < . 

To achieve a desirable norm in each row of L , a set of relaxation parameters, { }2( 1)

1

n
i i
γ +

=
 will be used in  

place of a single γ  value. According to the arguments of Faddeev and Faddeeva [9] [10], the relaxed Monte 
Carlo method will converge if 

1 2( 1)

2mini i n
iA

γ
≤ ≤ +

< , 

here iA  denotes the row norm of the given matrix A . 

3. Relaxed Monte Carlo Method with Importance Sampling 
For Neumann series (4), we have 
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In order to obtain the approximation solution of linear system (2) and system of integral Equation (1), the kth 
iteration ( )k

iΦ  of iΦ  will be evaluated by means of computing the following series 
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1 2

2( 1) 2( 1) 2( 1)

1
1 1 1

.
k k k

k

n n n

ij j j j j j
j j j

l l l F
−

+ + +

= = =
∑ ∑ ∑                                (5) 

Construct the Markov chain  

0 1: ,kS s s s→ → → →                               (6) 

on the state space { }1, 2, , 2( 1)n + . Let the initial probability and the transition probability of Markov chain 
respectively 
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=∑  for any 1, 2, , 2( 1)i n= + . According to non-after-effect  

property of Markov chain, one can get 
0 0 1 10 0 1 1( , , , ) .
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For 1iF  and the mth series (5), let 0( ) 1iP s i p= = = , estimators are established in the following form 

00 0 1 1,  
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The weight function mW  of Markov chain is defined as follows 
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By expressions (7) and (8), the following conclusion can be gotten. 
Theorem 3.1 For the given  ( 0)m m > , we have 
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This theorem is easy to prove. 
In the light of the expression (7), the following estimator is defined 
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Due to Theorem 3.1, the conclusion (11) is easy to prove. 
To estimate ( )k

iΦ , by the transition probability ijp , N  random paths of Markov chain are simulated  
( ) ( ) ( ) ( )

1 2:  ,      1, 2, , ,t t t t
kS i s s s t N→ → → → =   

the length k  of Markov chain is defined by kW ε< , ε  is the precision of truncation error and given in ad-
vance. Then one can evaluate the sample mean 
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If the standard deviation ( )Var( )kξ  is bounded, according to the Central Limit Theorem, we would obtain 

( )( ) ( ) ( )( ) Var( ) 2 ( ) 1.k k kP E r rξ ξ ξ− ≤ ≈ Φ −  

So the precision of the estimator ( )kξ  in the sense of probability can be measured by its variance ( )Var( )kξ . 
Based upon the minimum variance of estimator 1ξ , by the variance expression 
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the transition probability ijp  of Markov chain should be chosen in the following form 
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This form of ijp  leads to that more samples are taken in regions which have higher function values. This is 
importance sampling.  

According to the obtained approximation ( )ˆ ( ) k
p ixϕ ξ=  of ( ) ( ) ( )

1 2( , ),k k k
i i iϕ ϕΦ =  global approximation func-

tions of solutions 1( )xϕ  and 2 ( )xϕ  of Equation (1) would be achieved 
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4. Numerical Examples  
In this section, we employ the proposed relaxed Monte Carlo method with importance sampling (say RMCIS) to 
compute the numerical solution of some examples and compare it with their exact solutions. The numerical re-
sults are presented in Table 1 and Table 2, where AE means absolute error for ( )  ( 1, 2)p x pϕ = . We plot the  
 
Table 1. Numerical results of Example 1 with 5, 0.2 and 100k h N= = = . 

x  1AE( )ϕ  1AE( )ϕ  [11] 2AE( )ϕ  2AE( )ϕ  [11] 

0 0 1.12E−07 0 7.44E−08 
0.1 3.52E−10 1.93E−04 4.87E−11 2.14E−06 
0.2 1.10E−08 1.90E−04 7.55E−10 1.10E−04 
0.3 1.47E−09 1.61E−04 3.75E−09 1.37E−04 
0.4 1.86E−07 2.85E−04 4.01E−08 3.40E−04 
0.5 6.55E−07 4.46E−04 1.77E−07 6.70E−04 
0.6 4.45E−07 2.86E−04 4.33E−08 5.15E−04 
0.7 1.38E−06 1.60E−04 8.08E−08 3.46E−04 
0.8 1.53E−05 1.91E−04 6.18E−06 4.60E−04 
0.9 6.38E−05 1.80E−05 2.37E−05 5.68E−05 
1 2.09E−05 1.80E−06 2.88E−06 1.15E−06 
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mean absolute errors (MAE) in Figure 1 and Figure 2. Below are the numerical results for some of them. 
Example 1 Consider the equations [11] [12] 

3 2
1 1 1 20 0

4 3
2 2 1 20

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )

x x

x x
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∫ ∫

∫ ∫
 

 

Table 2. Numerical results of Example 2 with 8, 0.2 and 1000k h N= = = . 

x  1AE( )ϕ  1AE( )ϕ  [13] 2AE( )ϕ  2AE( )ϕ  [13] 

0 0 0 0 0 

0.1 8.20E−06 0.000770 6.93E−07 0.000746 

0.2 1.34E−05 0.001434 7.58E−06 0.001533 

0.3 8.52E−05 0.002054 8.10E−05 0.002313 

0.4 0.000173 0.002641 5.79E−05 0.003085 

0.5 0.000137 0.003103 7.86E−05 0.003844 

0.6 0.000370 0.003647 0.000257 0.004583 

0.7 0.005892 0.004089 0.009308 0.005296 

0.8 0.000151 0.004535 0.000547 0.005970 

0.9 0.000675 0.004998 8.75E−05 0.006599 

1 0.003018 0.005390 0.003943 0.007170 
 

 

Figure 1. The figure of average absolute errors (MAE) for Example 1 at eleven points 0,0.1, ,1 , (a) for 1( )xϕ  and (b) for 

2 ( )xϕ . 
 

 

Figure 2. The figure of average absolute errors (MAE) for Example 2 at eleven points 1,,1.0,0  , (a) for )(1 xϕ  and (b) 

for )(2 xϕ . 
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where 
3 4 4 5 7

2 3
1 2( ) 1 ,  ( ) 1

3 3 4 4 420
x x x x xf x x f x x x= + − − = + − − − − . The exact solutions are 2

1( ) 1x xϕ = +  and  
3

2 ( ) 1x x xϕ = + − . The numerical results are listed in Table 1. 
Example 2 Consider the equations [13] 

1 1 1 20 0

2 2 1 20

( ) ( ) sin( ) ( ) cos( ) ( )
,

( ) ( ) ( ) ( )

x x

x x x t
a

x f x x t t dt x t t dt

x f x t dt e t dt

ϕ ϕ ϕ

ϕ ϕ ϕ−

 = + − − −

 = − −

∫ ∫

∫ ∫
 

where 3
1 2

1( ) 3cos 3,  ( ) 1
3

xf x x f x e x= − + = + − . The exact solutions are 2
1( )x xϕ =  and 2 ( )x xϕ = , The nu-  

merical results are listed in Table 2. 

5. Conclusion 
In this paper, a relaxed Monte Carlo numerical method is provided to solve a system of linear Volterra integral 
equations. The most important advantage of this method is simplicity and easy-to-apply in programming, in 
comparison with other methods. The implementation of current approach RMCIS is effective. The numerical 
examples that have been presented in the paper and the compared results support our claims. 
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