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Abstract 
Density-dependent relations among saturation properties of symmetric nuclear matter and 
hyperonic matter, the coupling ratios (strengths) of hyperon matter, and properties of hadronic 
stars are discussed by applying the conserving chiral nonlinear (σ, π, ω) hadronic mean-field 
theory. The chiral nonlinear (σ, π, ω) mean-field theory is an extension of the conserving nonlinear 
(nonchiral) σ-ω hadronic mean-field theory which is thermodynamically consistent, relativistic 
and is a Lorentz-covariant mean-field theory of hadrons. The extended chiral (σ, π, ω) mean-field 
model is one of effective models of Quantum Hadrodynamics (QHD). All the masses of hadrons are 
produced by the spontaneous chiral symmetry breaking, which is different from other conven-
tional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, 
the effects of the chiral symmetry breaking mechanism on the mass of σ-meson, coefficients of 
nonlinear interactions, coupling ratios of hyperons to nucleons and Fermi-liquid properties are 
investigated in nuclear matter, hyperonic matter, and neutron stars. 
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1. Introduction 
A renormalizable quantum field theory based on hadronic degrees of freedom provides us with an intuitively 
and physically accessible approach from finite nuclei to infinite nuclear matter. The microscopic many-body 
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field theory has been applied to high density neutron and hyperonic matter such as neutron stars in our universe 
[1]-[12]. The linear neutral scalar and vector (σ, ω), nonlinear (σ, ω), and nonlinear (σ, ω, ρ) mean-field models 
are actively studied and applied to finite and infinite hadronic many-body systems. Though hadronic pictures of 
mean-field models render nuclear and astronomical phenomena readily understandable, they are mainly 
composed of strongly interacting particles. Those strong interactions make the hadronic approaches and 
extensions much more complicated. One may investigate the hadronic system by starting from quantum 
chromodynamics (QCD), because of strong interactions, QCD becomes complicated to apply directly to the 
nuclear energy domain. 

It may be desirable, in principle, to start from QCD, but there are many difficulties in practice, because the 
QCD coupling is strong at distance scales relevant for the vast majority of nuclear phenomena. Even if it 
becomes possible to use QCD to describe many-body system of nucleons, this description may not be useful, 
since quarks cluster into hadrons at low energies, and hadrons are the degrees of freedom actually observed in 
experiments. A description based on hadronic degrees of freedom is attractive. These are the most efficient at 
normal densities and low temperatures and for describing particle absorption and emission. Consequently, one is 
led to introduce certain effective hadronic models to simulate strong interactions of hadrons. Although hadronic 
models must ultimately fail when the quark and gluon degrees of freedom become essential, we must understand 
the limitations of hadronic models to isolate and identify true signatures of subhadronic dynamics [11]. The 
hadronic degrees of freedom have many properties to investigate in terms of nuclear theories and applications 
(see, discussions in Chapters 2 and 3 in [12]). 

The hadronic mean-field models must be constructed to reproduce the binding energy at the saturation of 
symmetric nuclear matter (assumed to be −15.75 MeV at 3

0 0.148 fmρ −=  or 11.30 fmFk −=  in the current 
calculation), which is one of the fundamental requirements for nuclear physics. The pressure must vanish at 
saturation ( )0p = , and simultaneously, the self-consistent single particle energy, ( )FE k , must be obtained by 
the functional derivative of energy density with respect to baryon density, ( )B FE E kδ δρ = , as a dynamical 
constraint for any employed approximation. The energy density and pressure must maintain a thermodynamic 
relation, such as BE p µρ+ =  (at 0T = ), to be a self-consistent approximation for nuclear matter. In terms of 
dynamical quantities, the self-consistent requirement can be stated that Green function, self-energy and energy 
density must maintain conditions of conserving approximations, termed thermodynamic consistency. 
Thermodynamic consistency is explicitly expressed as the requirement that functional derivatives of energy 
density with respect to self-energies must vanish, 0Eδ δΣ =  [13], which becomes equivalent to Landau’s 
hypothesis of quasiparticles and the fundamental requirement of density functional theory [13]-[17]. Any 
models of hadrons, effective QCD, Lattice QCD which describe nuclear physics must satisfy these conditions of 
nuclear matter. 

The properties of symmetric nuclear matter, such as binding energy at saturation, effective masses and 
coupling constants, incompressibility and symmetry energy, simultaneously determine binding energy and 
saturation properties of hyperonic matter; the self-consistent relations are important to examine density- 
dependent correlations among nuclear and hyperonic matter [7] [8]. The conserving nonlinear mean-field 
approximation and effective quark models require different coupling constants for hyperons. Since the hyperon 
coupling ratios, 2 3NrωΛ = , required by SU(6) quark model produce weak density-dependent interactions for 
hadrons at saturation and high densities, it is not compatible with the coupling ratio, ~ 1.0NrσΛ , demanded by 
hadronic nonlinear mean-field approximations. The ratio ~ 1.0NrσΛ  is necessary to be consistent with 
properties of nuclear matter at saturation and neutron stars [7] [8]. This property is shown again in the current 
chiral model at the end of Section 2. The discrepancy of coupling ratios may not be a simple matter, because 
coupling rations are essentially related to nuclear matter saturation properties. Chiral hadronic models of 
Quantum Hadro- dynamics (QHD), effective quark models, Lattice QCD models for hadrons must be checked if 
they maintain conditions of thermodynamic consistency. Then, discrepancies among hadronic and quark models 
would become constructive to understand respective approaches to nuclear physics. 

Although the linear and nonlinear (σ, ω, ρ) mean-field models of QHD appropriately simulate properties of 
symmetric nuclear matter and neutron stars, they have many free parameters, masses and nonlinear coupling 
constants, coming from meson fields and nonlinear interactions. The upper bounds of values of nonlinear 
coefficients are confined by maintaining conditions of thermodynamic consistency to an employed appro- 
ximation and by reproducing empirical data [5] [6]. The results indicate that nonlinear coefficients have 
tendency to be bounded by conditions of self-consistency when nonlinear interactions are properly renormalized 
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as effective masses and effective coupling constants of hadrons. This could be a manifestation of naturalness for 
self-consistent approximations [18]-[21]. It is interesting to examine restrictions of nonlinear interactions in 
terms of self-consistency. The chiral mean-field model may help reveal essential features and strengths of 
nonlinear interactions [22]-[24]. 

Nonlinear (σ, π) chiral mean-field approximations were discussed and applied to nuclear matter [25]-[29]. 
Though density-dependent effects are only generated by nonlinear σ interactions, the nonlinear mean-field 
approximations improved the value of incompressibility in a consistent way, which indicated that nonlinear 
interactions may compensate for complicated many-body interactions. However, because the physical meaning 
and relation between nonlinear interactions and a mean-field approximation were not well understood, it was 
difficult to extend and examine nonlinear mean-field approximations. It is proved that a mean-field appro- 
ximation with nonlinear interactions is equivalent to Hartree approximation when nonlinear interactions are 
properly renormalized [5] [6]. Based on the results [5]-[8] and chiral linear and nonlinear models [1] [22], the 
current nonlinear (σ,π,ω) chiral mean-field approximation is developed as a thermodynamically consistent 
conserving approximation. 

The current chiral (σ, π, ω) mean-field approximation provides the following: 
1. Generations of hadron masses by the spontaneous chiral symmetry breaking correspondingly produce 

coefficients of nonlinear meson interactions. This indicates that the fundamental requirement of nuclear matter 
saturation is directly related to experimental values of hadron masses ( ), , , ,NM m m mπ ω ρ   and coupling 
constants. In the mean-field (Hartree) approximation, pion contributions vanish, and σ-meson compensates for 
attractive contributions expected to be given by pions at saturation density. Hence, the saturation property 
determines the effective mass of the sigma meson, mσ

∗ . 
2. The coupling constants for hyperons are important for studying phase transitions from β -equilibrium 

( ), ,n p e  asymmetric nuclear matter to ( )1, , ,n p H e  hyperon matter, binding energy of pure-hyperon matter 
and masses of hadronic stars. It is found that the Λ -hyperon coupling ratio to nucleon, N Nr g gω

ω ωΛ Λ= , is 
expected to be ~ 1.0NrωΛ  by the requirement of nuclear matter saturation and thermodynamic consistency [7] [8] 
[13], whereas the SU(6) quark model for hadrons demands ~ 2 3NrωΛ , or 1/3 [30] [31]. The differences of NrωΛ  
result in significant discrepancies in the effective masses of hadrons, onset densities of nucleon-hyperon phase 
transitions, saturation properties of hyperons, and masses of hadron stars [7] [8]. If the current chiral (σ, π, ω) 
mean-field model is applied to phase transition to β -equilibrium lambda matter ( ), , ,n p eΛ , the coupling ratio: 

1.187N N Nr g g M Mσ
σ σΛ Λ Λ= = ≈  can be deduced (see, Section 3), which is consistent with the analysis of the 

conserving, nonchiral (σ, ω, ρ) mean-field approximation. Although it may be a complicated task more than one 
expects to reconcile certain consequences derived from effective hadronic and quark theories, one of our 
purposes is to exhibit discrepancies between effective hadronic and quark theories if there were some indications 
at nuclear saturation and medium-energy densities. They could be a profound problem for clear comprehension 
of hadronic and quark approaches to nuclear physics. 

The current extended chiral (σ, π, ω) mean-field model starts from a Lagrangian without hadron masses and 
generates all the hadron masses and effective coupling constants by way of spontaneous chiral symmetry 
breaking. This is different from other chiral mean-field models, which introduce the isoscalar-vector ω particle 
externally, in order to produce the repulsive interaction and saturation mechanism. The current chiral (σ, π, ω) 
mean-field model produces masses of σ, π and ω particles by the chiral symmetry breaking mechanism. The 
chiral symmetric Lagrangian, spontaneous chiral symmetry breaking, and binding energy are discussed in 
Section 2. Fermi-liquid properties of nuclear matter, such as incompressibility and symmetry energy, K and 4a , 
and numerical results are shown in Section 3. 

Vacuum fluctuation corrections to the chiral (σ, π, ω) mean-field approximation, applications to β-equili- 
brium ( ), ,n p e  asymmetric nuclear matter and properties of hadron (neutron) stars are discussed in Section 4. 
The phase transition from symmetric nuclear matter to β-equilibrium hyperon matter, ( )1, , ,n p H e , and 
important results regarding coupling ratios given by the spontaneous chiral symmetry breaking are also 
discussed. Concluding remarks are in Section 5. 

2. An Extended Chiral (σ,π,ω) Nonlinear Mean-Field Approximation 
The conventional chiral mean-field models for hadrons assume that the Lagrangian with interaction potential, 
( )2 2V σ +π , should be invariant under the chiral transformation and constrain only σ  and π  mesons as a 
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chiral partner. Moreover, a massive isoscalar vector field µω  is input externally to supply repulsive nuclear- 
nuclear interactions, as in QHD-I [1] [2]. The conventional chiral mean-field models for hadrons reveal that, 
when the chiral symmetry breaking parameter vanishes, the masses mσ  and mπ  also vanish: 0mσ → , 

0mπ → , whereas 0mω →/ . 
We introduce an extended chiral symmetric mean-field Lagrangian for hadrons with the interaction potential 
( )2 2 2V a µσ ω+ −π . The Lagrangian is invariant under the chiral transformation and produces all hadron masses 

and nonlinear mean-field interactions by way of the spontaneous chiral symmetry breaking. The parameter a is 
constant, which will be identified as 2 2 ~ 31.65m mω π  in the nuclear domain, after chiral symmetry breaking. 
Therefore, the current extended chiral mean-field model generates ω-meson as chiral particles such that all the 
meson masses are required to vanish simultaneously: 0mσ → , 0mπ → , and 0mω →  when the chiral 
breaking parameter vanishes, 0ε → . In other words, we assume that all the hadron masses ( ), , ,NM m m mσ π ω  
and nonlinear interactions should be generated by the Lagrangian with interaction potential ( )2 2 2V a µσ ω+ −π  
under the chiral symmetry breaking mechanism. 

The current extended chiral mean-filed model that produces all the hadron masses and nonlinear interactions 
with the chiral symmetry breaking is based on a relativistic chiral ( ), ,σ ωπ  model discussed by Walecka, 
Serot and others [18] [20] [22]-[24]. The extended chiral ( ), ,σ ωπ  Lagrangian is  

( ) ( ) ( )

( )

5

2 2 2

1
2

1 ,
4 csb

L i g g i

F F V a

µ µ µ µ
µ ω µ µ

µν
µν µ

ψ γ ω σ γ ψ σ σ

σ ω δ

 = ∂ − + + ⋅ + ∂ ∂ + ∂ ⋅∂ 

− − + − −

τ π π π

π
       (2.1) 

where csbδ εσ=  is the chiral symmetry breaking term. The nucleon is p

n

ψ
ψ

ψ
 

=  
 

, and , , µσ ωπ  are neutral  

scalar meson, pseudo-scalar isovector pion and neutral isoscalar omega meson fields, respectively. The field 
strength tensor Fµν µ ν ν µω ω= ∂ − ∂  is for the vector-isoscalar ω-meson. Note that there are no baryon and 
meson masses in the Lagrangian (2.1). Baryons and mesons are coupled as g µ

ω µψγ ω ψ , and ( )5g iψ σ γ ψ+ ⋅τ π . 
The coupling constant, g, is the pion-nucleon (and σ-nucleon) coupling constant to be required from invariance 
under the chiral transformation ( g g gσ π= =  is assumed). 

The Lagrangian (2.1) satisfies SU(2)× SU(2) ×U(1) global chiral and isospin gauge symmetries, and hence, 
maintains isospin current and axial current conservations. We introduce the chiral-invariant potential of the 
following form:  

( ) 22 2 2 2 2 2 ,
4

V a aµ µ
λ

σ ω σ ω + − = + − π π                        (2.2) 

where 0λ ≠  and 0a >  are constants determined in the ground state after the spontaneous chiral symmetry 
breaking. Hence, the free parameters of the current chiral mean-field model are g, gω  and λ . Note that 
( ), ,σ ωπ  mesons make the Lagrangian chiral invariant all together, and in this sense, we call ( ), ,σ ωπ  
mesons chiral particles. 

The current chiral Lagrangian is invariant under the following gauge transformations [22]:  

5 ,
2

,
,

i
δψ γ ψ

δ σ
δσ

= ⋅

= −
= ⋅

τ

π
π






                                 (2.3) 

where   is assumed to be an infinitesimal value, and the ω  meson is invariant under the gauge 
transformation: 0µδω = . After chiral symmetry breaking, the interaction potential is given in the new ground 
state as,  

( )

( )

22 2 2 2

22 2 2 2

4

,
4

csbV a v

a v

µ

µ

λ
σ ω δ

λ
σ ω εσ

 = + − − + 

 = + − − + 

π

π
                        (2.4) 
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where λ , v, a and ε  are constants determined in the ground state. 
The mesons are excited from the new ground state as follows:  

,

,

,µ µ µ

σ σ φ

ω ω ω

→ +

→ +

→ +

π π π                                 (2.5) 

where σ , π  and µω  are values for the meson fields in the vacuum defined by minimization of (2.4) 

with respect to ,σ π , and µω . The interaction potential V has the following form at the ground state in the new 
vacuum  

( ) 222 2 2 ,
4

V a vµ
λ

σ ω ε σ = + − − +  
π                   (2.6) 

and the minimization conditions give 

( )
( )

( )

22 2 2

22 2 2

22 2 2

0,

0,

0.

V a v

V a v

V a a v

µ

µ

µ µ
µ

λ σ σ ω ε
σ

λ σ ω

λ ω σ ω
ω

∂  = + − − + =  ∂

∂  = + − − =  ∂

∂  = + − − =  ∂

π

π π
π

π

                 (2.7) 

The conditions, 0λ ≠  and 0ε ≠ , lead to 0 0σ σ≡ ≠ , 
22 2 2 0a vµσ ω + − − ≠  

π , and  

0, 0.µω= =π                                 (2.8) 

The ground state value, 0σ , is then defined as:  

0 .M
g

σ σ≡ = −                                  (2.9) 

By expanding the interaction potential V, the terms in (2.6) are collected as follows: 
(1) Constant terms are  

( )22 2
0 0 0.

4
V vλ

σ εσ= − +                             (2.10) 

(2) The terms that are linear in φ  are  

( ){ }2 2
1 0 0 0.V vλσ σ ε φ= − + =                          (2.11) 

This expression vanishes because of the minimization conditions, (2.7) and (2.8). 
(3) The terms that are quadratic in π  are  

2 2 2 2
2 2

0

1 1 1 .
2 2 2

gV
M

ε ε
µ

σ
= − = ≡π π π                        (2.12) 

(4) The terms that are quadratic in µω  are derived in the same way as  
2 2 2

3 3
1 1 .
2 2

gV a
M µ µ
ε

ω µ ω= − ≡ −                            (2.13) 

(5) The terms that are quadratic in φ  are  

( )2 2 2 2 2 2 2
4 0 0 1

1 ,
2 2

V vλ
σ φ λσ φ µ φ= − + ≡                      (2.14) 

and λ  is given by  

( )
2

2 2
1 2

1 .
2

g
M

λ µ µ ≡ − 
 

                             (2.15) 
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(6) The remaining cubic and quartic interactions of the meson fields ( ), ,φ ωπ  are then given by  

( ) ( )

( ) ( ) ( )

22 2 2 2 2 2
5 0

2
22 2 2 2 2 2 2 2

1 2

4
4
1 2 .
2 2 2

V a a

g ga a
M M

µ µ

µ µ

λ
σ φ φ ω φ ω

µ µ φ ω φ φ ω

 = + − + + −  
    = − + − − + −    
     

π π

π π
       (2.16) 

The collection of terms from (1) to (6) then yields the interaction potential V written as:  

( ) ( )

( )

2
22 2 2 2 2 2 2 2 2 2 2

1 2 3 1 2

2 2 2

1 1 1 1
2 2 2 2 2

2 constant .
2

gV a
M

g a
M

µ µ

µ

µ φ µ µ ω µ µ φ ω

φ φ ω

 = + − + − + − 
 

 − + − +    

π π

π

        (2.17) 

The Lagrangian density (2.1) with the generation of hadron masses by spontaneous symmetry breaking finally 
takes the following form:  

( ) ( ){ }

( ) ( )

( ) ( ) ( )

5

2 2 2 2 2 2
1 2 3

2
22 2 2 2 2 2 2 2

1 2

1 1 1 1
2 2 4 2
1 2 constant .
2 2 2

csb i g M g i

F F

g ga a
M M

µ µ
µ ω

µ µ µν
µ µ µν µ

µ µ

ψ γ ω φ γ ψ

φ φ µ φ µ π µ ω

µ µ φ ω φ φ ω

 = ∂ − − − + ⋅ 

+ ∂ ∂ − + ∂ ⋅∂ − − +

    − − + − − + − +    
     

 τ π

π π

π π

  (2.18) 

The parameters are identified to be: 1 2 3, ,m m mσ π ωµ µ µ= = = , and 2 2 ~ 31.65a m mω π=  in the nuclear 
ground state after the spontaneous chiral symmetry breaking. 

The SU(2) (global) isospin-symmetry invariance of (2.18) generates the conserved current:  

,
2

jµ µ µψγ ψ= + ×∂
τ

π π                               (2.19) 

that can be proved to be  

0 ,jµµ∂ =                                    (2.20) 

from the Lagrangian (2.18) and equations of motion for baryons and mesons. The SU(2) (global) chiral 
symmetry breaking of (2.18) results in the partially conserved axial-vector current (PCAC):  

5 ,
2

Aµ µ µ µψγ γ ψ φ φ= + ∂ − ∂
τ

π π                           (2.21) 

which is shown to satisfy the PCAC  

,Aµ
µ ε∂ = π                                   (2.22) 

with the use of equations of motion. The symmetry breaking parameter, ε , is expressed in the interaction 
potential (2.6). 

The chiral ( ), ,σ ωπ  mean-field approximation is defined by replacing meson quantum fields with classical 
fields: 0φ̂ φ→ , ( ) ( )0 0ˆ ˆ ˆ, ,µω ω ω= →ω ω . They are constants independent of xµ . The spatial part of the vector 
field ω  should vanish by the requirement of rotational invariance of static and homogeneous nuclear matter 
[1]. In addition, π-meson contributions vanish in the (mean-field) Hartree approximation. Thus, the chiral 
mean-field Lagrangian is given by  

( )

( ) ( ) ( )

2 2 2 2
0 0 0 0 0

2
22 2 2 2 2 2

0 0 0 0 0

1 1
2 2

1 2 .
2 2 2

csb i g M g m m

g gm m a a
M M

µ
µ ω σ ω

σ π

ψ γ γ ω φ ψ φ ω

φ ω φ φ ω

 = ∂ − − − − + 

    − − − − −    
     



           (2.23) 
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The equations of motion for the scalar and vector mesons are given by  

( )2 2 2 2 2
0 0 0 0 03 2 2 ,

2 2
g gm m m a g
M Mσ σ π σφ φ ω φ φ ρ∗ − − + − = 

 
                 (2.24) 

( ) ( )2 2 2 2 2
0 0 0 0 02 2 2 ,

2 2 B
g gm m m a a g
M Mω σ π ωω φ ω φ ω ρ − − + − = 

 
              (2.25) 

where Bρ  is the baryon density: 3 23π
BB FB kρ =∑ , where 

BFk  is a baryon Fermi-momentum, and σρ
∗  is 

the scalar source given by  

( ) ( )2 2 2 2
02

1 1d .
2π

FBk

B

Mq q m m a
ME qσ σ πρ ω

∗
∗

∗= − −∑ ∫                     (2.26) 

The energy density and pressure can be derived from the energy momentum tensor [2] [5] [6]:  

( )
( ) ( )

( )

3 2 2 2 2 3 4
0 0 03

,

2 2 2 2 2 4 2 2
0 0 0 0 0 0

2 1 1d
2 2 2 22π

1 1 ,
2 2 2 2 2

FBk
B

B n p

g gkE k m m m
M M

g g gm m m a a
M M M

σ σ π

ω σ π

φ φ φ

ω φ ω ω φ ω

=

 = + − − − 
 

 − + − + − 
 

∑ ∫

           (2.27) 

( ) ( ) ( )

( )

2
3 2 2 2 2 3 4

0 0 03
,

2 2 2 2 2 4 2 2
0 0 0 0 0 0

1 2 1 1d
3 2 2 2 22π

1 1 ,
2 2 2 2 2

FBk

B n p B

k g gp k m m m
M ME k

g g gm m m a a
M M M

σ σ π

ω σ π

φ φ φ

ω φ ω ω φ ω

∗
=

 = − + − − 
 

 + − − + − 
 

∑ ∫
         (2.28) 

where ( ) ( ) 0 2 2
0B B BE k E k k M gω ωω

∗ ∗= + Σ = + − . The scalar source σρ
∗  is derived from the functional 

derivative of   with respect to 0φ  [5] [6]. 
The self-consistent effective masses of hadrons are determined by satisfying conditions of thermodynamic 

consistency [5] [6]: 

( ) ( )

( ) ( )

0

2 2 2 2 2 2
0 0 0

2 2 2 2 2 2 2
0 0 0

,

3 2 ,
2 2

2 2 2 ,
2 2

NM M g
g gm m m m a
M M
g gm m m m a a a
M M

σ σ σ π

ω ω σ π

φ

φ φ ω

φ φ ω

∗

∗

∗

= −

 = − − − − 
 
 = − − − − 
 

                  (2.29) 

and self-consistent scalar and vector self-energies are given by [5] [6]:  
22

,02 2, .B
s gg

m m
µ ω

σ ω µ
σ ω

ρ ρ δ∗
∗ ∗Σ = − Σ = −                            (2.30) 

The self-consistent self-energies (2.30) and single particle energy ( ) ( ) 0
BE k E k ω
∗= + Σ  are essential to 

understand the effect of coupling constant on the equation of state. Though the single particle energy is a 
complicated function of coupling constants, it becomes formally simple when nonlinear interactions are 
renormalized by the condition of thermodynamic consistency in the current chiral mean-field approximation. 
From the Equation (2.30), the single particle energy behaves, 2 2~ BNg mω ωρ ∗ , at high densities. Therefore, the 
coupling ratio 2 3HN H Nr g gω

ω ω=   required by SU(6) effective quark model  [30] [31] produces smaller 
single particle energy, ( ) 2 24 9 BNg mω ωρ ∗ , in a hyperonic high density matter. In other words, the single 
particle energy ( )E k  or chemical potential ( )FE kµ =  becomes small when the coupling ratios 2 3HNr   
are employed, resulting in a softer equation of state which becomes difficult to generate observed masses of 
neutron stars [7] [8]. 

The 3-dimensional image of the interaction potential after spontaneous symmetry breaking defined by 

( )
( )3

3,

2 d
2π

Bk
BB n pV kE k

=
≡ −∑ ∫ , is shown in Figure 1. In the current chiral mean-field approximation, the  
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Figure 1. This is the 3-dimensional image of interaction potential V defined by classical meson fields as 

( )
( )3

3,

2 d
2π

Bk

BB n p
V kE k

=
≡ −∑ ∫ . The field φ  produces attractive interaction at low densities. The ω-axis is written by the 

variable 1 y− , where ( )2
0By m gω ωρ ω= , and ω-field produces repulsive interaction at high densities. The origin is set in 

the center of φ-ω plain. It shows that the interaction potential is bound when m mσ π< .                                 
 

interaction potential is self-consistently constructed by σ  and ω  mesons. Sigma mesons produce attractive 
interactions at low densities, whereas omega mesons mainly generate repulsive contributions at high densities. 
In the chiral (σ, π) Hartree approximation, the pion field will vanish completely, and the meson interaction 
potential in the new ground state becomes only the function of ( )V σ , which has the Mexican-hat type 
symmetry. In the current paper, the pion field vanishes but the omega field obtains mass. Hence, the current 
interaction potential after SSB is expressed by ( ),V σ ω . It seems different from the well-known Mexican-hat 
type potential; however, the potential is bound and produces the Mexican-hat symmetry when the limits, 

, 0g aω → , are taken. 
The energy density and pressure satisfy Bp µρ+ =  and ( )FE kµ =  at all densities. The binding energies 

of symmetric nuclear matter are shown in Figure 2. The linear (σ, ω, ρ) Hartree approximation denoted as 
MFT-II [1] is listed for comparison in order to see the effect of chiral nonlinear corrections. 

3. Fermi-Liquid Properties at Nuclear Matter Saturation 
The chiral (σ, π, ω) mean-field model exhibits remarkable properties when it is compared to the nonchiral, 
nonlinear (σ, ω, ρ) mean-field model. The nonchiral mean-field model is applied to (n, p) symmetric, ( ), ,n p e  
asymmetric, ( ), , ,n p H e  hyperonic matter, and neutron stars [7] [8]. Although the nonchiral model reasonably 
simulates properties of nuclear and neutron matter, it has many free nonlinear parameters which cannot be 
determined uniquely. The upper and lower bound values of coupling constants are constrained by empirical data 
and self-consistent conditions of approximations. The nonlinear nonchiral mean-field approximations can not 
clearly explain why values of nonlinear coupling constants are bound in a characteristic way [7] [8]. The chiral 
symmetry approach sharply restricts nonlinear parameters by the chiral invariance and symmetry breaking 
mechanism, and it clarifies relations among nonlinear coupling constants, hadron masses and observables. 

All the hadron masses and nonlinear coefficients are related to the properties of symmetric nuclear matter, 
such as binding energy of saturation because the chiral breaking mechanism determines nonlinear interactions in 
terms of hadron masses and coupling constants, g and gω , respectively. Consequently, the mass of σ-meson, 
mσ , is related to the binding energy of symmetric nuclear matter ( 15.75 MeVB Mρ − = − , at 11.30 fmFk −= ) 
and must be adjusted self-consistently. Incompressibility is calculated by  

2

29 9 ,B B
BB

K µρ ρ
ρρ

 ∂ ∂
= =  ∂∂  

                              (3.1) 

where µ  is the chemical potential and is equal to the Fermi energy, ( )FE kµ = , because the current chiral 
mean-field approximation is thermodynamically consistent and Landau’s hypothesis for quasiparticles is 
maintained. The symmetry energy is calculated by  
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Figure 2. The binding energies of isospin symmetric (n, p) nuclear matter. The solid line is calculated by the current model; 
the dash-dotted line produced by MFT-II [1] and the dotted-line by Finite Hartree [1] are shown. Note that ( )B FE kρ =  

is exactly satisfied at the saturation density, 30.148 fmBρ
−=  ( )11.30 fmFk −= . In MFT-II calculation, the binding energy 

which has saturation density, 30.193 fmBρ
−=  ( )11.42 fmFk −= , is shown for comparison [1].                           

 

3

2

4 2
3

0

1 ,
2

B

Ba
ρ ρ

ρ
ρ

=

  ∂ =  ∂   


                              (3.2) 

where 3ρ  is the difference between the proton and neutron density: ( )3 3 2
3 3π

p np n F Fk kρ ρ ρ= − = −  at a fixed 
baryon density, 3 22 3πB p n Fkρ ρ ρ= + = . 

The coupling constants and effective masses of hadrons and the Fermi-liquid properties of symmetric nuclear 
matter are listed in Table 1. The effective masses of mesons are shown in Figure 3: ~ 0.60N NM M∗ , 

~ 1.09m mσ σ
∗ , ~ 1.04m mω ω

∗ , at saturation density. The effective mass of a nucleon, ~ 0.60N NM M∗ , would  
be considered to produce a hard EOS and large masses of neutron stars in nonchiral mean-field approximations, 
but the chiral mean-field approximation produces a softer EOS. 

The incompressibility and symmetry energy are shown in Figure 4 and Figure 5, respectively. They are 
371 MeVK =  and 4 17.4 MeVa = , at saturation density. These observables are expected to be ~ 300 MeVK  

and 4 ~ 30 MeVa  in the nonchiral, nonlinear (σ, ω, ρ) mean-field approximation [7] [8]. Although the 
self-consistent chiral (σ, π, ω) mean-field approximation produces ~ 371 MeVK , it improves the value of 
linear (σ, ω) mean-field approximation, ~ 500K . As we proved that a mean-field approximation with 
nonlinear interactions is equivalent to Hartree approximation when nonlinear interactions are properly 
renormalized [5] [6], a nonlinear chiral (σ, π, ω) mean-field approximation will be constructed to be a chiral 
Hartree (σ, π, ω) approximation. Hence, a chiral (σ, π, ω) mean-field approximation should be extended to HF, 
BHF, ... approximations in order to improve the results. One can notice that ρ-meson contribution would be 
important when 4a  in the nonchiral (σ, ω, ρ) is compared to that of chiral (σ, ω) in Figure 5. Hence, in order to 
examine calculations quantitatively, the chiral (σ, π, ω) model must be extended to the chiral (σ, π, ω, ρ) model 
[32], which is expected to clarify the chiral hadronic models. 

The mass of σ-meson is important because all observables, EOS, and masses of neutron stars, depend only on 
the three adjustable parameters: mσ  and coupling constants, g and gω . The binding energy of symmetric 
nuclear matter ( 15.75 MeVB Mρ − = − , at 11.30 fmFk −= ) and the maximum mass of neutron stars 
( )max 2.50 MM



  suggest that the mass of σ-mesons be 120.0 MeVmσ ≈  and 2.4095g = . The mass of 
σ-meson seems to be very small compared to the masses employed in other mean-field models. However, the 
dimensionless parameter, ( )2 2 2

NC g M mσ≡ , is similar to the values derived from nonchiral linear and nonlinear 
mean-field approximations [1] [5] [6]. Binding energies are compared in the Figure 2, and incompressibility, 
symmetry energy (Figure 4 and Figure 5) and the maximum mass of neutron stars (Figure 9 and Table 1 and 
Table 2) show reasonable results in the level of relativistic Hartree (σ, ω) mean-field approximation. 
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Figure 3. Effective masses of nucleons, N NM M∗ , and mesons, m mσ σ

∗  and 

m mω ω
∗ . The qualitative behavior of the effective masses is consistent with 

those derived from nonlinear, nonchiral (σ, ω, ρ) mean-field approximations.     
 

 
Figure 4. Incompressibilities in the nonchiral and chiral (σ, ω) mean-field 
approximations. The effect of chiral symmetry on incompressibilities is not 
significant around saturation but is important at high densities.                 

 

 
Figure 5. Symmetry energies in nonchiral (σ, ω, ρ) isospin asymmetric matter, 
and nonchiral, chiral (σ, ω) isospin symmetric matter. The ρ-meson contribution 
is more important for 4a .                                               
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Table 1. Coupling constants and Fermi-liquid properties of nuclear matter.                                            

In the current chiral mean-field approximation, the masses of π and ω mesons are identified as 2 139.0 MeVmπµ = =  and 3 783.0 MeVmωµ = =  

in the nuclear domain. Hence, the adjustable parameters are only g, gω , and mσ . The effective masses, K and 4a , are values at saturation 

of nuclear matter: 30.148 fm
B

ρ −= . 

g gω  mσ    

2.4095 13.4232 120.0   

N NM M∗  m mσ σ
∗  m mω ω

∗  K (MeV) 4a  (MeV) 

0.60 1.09 1.04 371 17.4 

maxM  c  I R (km)  

2.60 1.58 418 12.8  

 
Table 2. Coupling constants and Fermi-liquid properties of nuclear matter with VFC.                                    

This result indicates that ρ-meson is necessary to obtain reasonable results for properties of Fermi-liquid and neutron stars. Analysis with the 
chiral ( ), , ,σ π ω ρ  model [32] is needed to extract quantitative results. maxM  is the maximum mass in the solar mass unit ( )M



, and 

( )15 310 g cmc  is the central energy density. I is the inertial mass ( )2M km⋅


 and ( )kmR  is the radius of a ( ), ,n p e  asymmetric 

neutron star. 

g gω  mσ    

1.972 10.2235 120.0   

N NM M∗  m mσ σ
∗  m mω ω

∗  K (MeV) 4a  (MeV) 

0.74 1.06 1.03 383 14.8 

maxM  c  I R (km)  

2.19 1.88 249 11.6  

 
In (Hartree) mean-field approximations, contributions of π-mesons vanish in infinite matter due to spin- 

saturation, and hence, σ-mesons compensate for π-meson contributions in order to produce the saturation 
mechanism of symmetric nuclear matter. The σ-meson produces attractive interactions at low densities with the 
mass: 120.0 MeVmσ ≈ , which is close to the pion mass. Moreover, m mσ π  is required to obtain solutions 
that are consistent with those of conserving nonchiral mean-field approximations. If one assumes m mσ π> , 
solutions are restricted to low densities. However, the chiral mean-field approximation is not appropriate in this 
case because the interaction potential V shown in Figure 1 becomes unbound and decreases at high densities. 

4. Vacuum Fluctuation Corrections and Neutron Star Properties 
The full relativistic chiral Hartree approximation, including vacuum fluctuation corrections (VFC), is derived in 
this section and applied to the properties of neutron stars. The divergent integrals coming from the occupied 
negative energies (Dirac vacuum) will be rendered finite by including appropriate counterterms in the current 
chiral Lagrangian. By applying the method discussed in the linear σ-ω mean-field approximation [1] to the 
nonlinear σ-ω-ρ mean-field approximation [5] [6], the baryon and meson propagators, self-energies are defined, 
and appropriate counterterms that make divergent integrals finite are introduced. 

The baryon propagator in the mean-field (Hartree) approximation is assumed to be [1]:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )0
2

1 π ,
B

H F D
B B B F B B

B B

iG k k M k E k k G k G k
k M i E k

α
αγ δ θ∗

∗ ∗

  = + + − − = + 
− +  

k


     (4.1) 

where ( )F
BG k , ( ), , ,B n p= Λ , is the propagator for negative energy Dirac-sea and ( )D

BG k  is for density- 
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dependent Fermi-sea particles. It can be readily shown that the energy density, pressure and self-energies in 
Section 2 are computed by assuming ( ) ( )H D

BG k G k= . Hence, we recalculate (2.30) by including ( )FG k , 
which requires renormalization of infinities into physical parameters of the model. By employing the full 
propagator (4.1) in the chiral nonlinear σ-ω Hartree approximation, the vector meson self-energy in Equation 
(2.30) becomes  

( )
( )

( )

24 4

,02 4 2 4 2 2 2

d dTr 4 .
2π 2π

H
B

B B

g g gk k ki ig G k i g
m m k M i m

µ
µ µω ω ω
ω ω ω ω µ

ω ω ω

γ ρ δ∗ ∗ ∗ ∗
 Σ = − = −  − +

∑ ∑∫ ∫ 
      (4.2) 

The first term of vector self-energy (4.2) is a divergent integral evaluated using the technique of dimensional 
regularization as follows:  

( )

2

,02 4 2 2 2

d4 ,
2π

n

B B

g gk ki g
m k M i m

µ
µ ω ω
ω ω ω µ

ω ω

ρ δ∗ ∗ ∗Σ = −
− +∑ ∫ 

                   (4.3) 

where the first term of integration is performed in n dimensions, and the final result of any calculation will be 
obtained by taking the physical limit 4n → . The integral (4.3) vanishes by symmetric integration, which 
indicates that counterterm corrections (CTC) for the chiral mean-field (Hartree) approximation are produced 
only by way of φ fields. 

The counterterms that make the scalar self-energy finite are evaluated by expanding the full propagator of 
HG  in a power series in the renormalized scalar self-energy σΣ . Using the Dyson equation, HG  is formally 

expanded as:  

( ) ( ) ( ) ( ) ( )
10 0 0

0
.

m mH s H s

m
G k G k G k G k G k

∞ +

=

   = + Σ = Σ   ∑                   (4.4) 

Insertion of this expression into the scalar self-energy produces  

( )
( )0 2

CTC2 4 2
0

d 1Tr .
!2π

mn ms s s
H m

B m

G qg q gi
mm M m

σ
σ

σ σ

ρ
∞

∗
∗ ∗

=

 ∂
 Σ = Σ − + Σ   ∂  

∑ ∑∫               (4.5) 

It is clearly shown that the terms of 0,1, 2,3m =  in (4.5) have divergence when the power counting of q is 
performed in the physical dimension 4n = . These divergences can be removed by including the counterterm 
contribution in the Lagrangian density [33]:  

2 3 4
CTC 1 2 3 4

1 1 1 .
2! 3! 4!

α φ α φ α φ α φ= + + +                             (4.6) 

The coefficients of 1 2 3 4, , ,α α α α  are evaluated explicitly by dimensional regularization [1]. They are given 
by  

( ) ( ){ }

( ) ( )

( ) ( ){ }

( ) ( ){ }

3
1 2

2
2

2 2

3

3 2

4

4 2

1 2 2ln 4 ,
4π

23 1 2 2ln 4 ,
34π

6 1 2 12ln 10 4 ,
4π

6 1 2 12ln 22 4 .
4π

B B

B B

B B

B

g M n M O n

g M n M O n

g M n M O n

g n M O n

α

α

α

α

= Γ − + + −

 = − Γ − + + + − 
 

= Γ − + + + −

= − Γ − + + + −

                    (4.7) 

The Lagrangian density, CTC , is related to the self-energy CTC
sΣ  by the functional derivative as:  

CTC
CTC 2

0

,s g
mσ

δ
δφ∗Σ = −


                                    (4.8) 

and the full self-energy is finally calculated as:  

http://dx.doi.org/10.4236/oalib.1102011


S. T. Uechi, H. Uechi 
 

OALibJ | DOI:10.4236/oalib.1102011  13 December 2015 | Volume 2 | e2011  
 

( )

( ) ( )

3 2
2 2

22 3

2

ln
2π

5 11 .
2 6

B
H B B B B

B B

B B B B B

Mg gi M M M M
Mm

gM M M M M
m

σ

σ

σ
σ

ρ

∗
∗ ∗

∗

∗ ∗ ∗
∗


Σ = − −



− − − − −

∑
                      (4.9) 

The full energy density is calculated using the energy-momentum tensor and (4.6), (4.7) as:  

( )
( )

( )
2

Dirac 4

2π 2 .
2π

n
n

B BM n M∗ ∗= Γ −                             (4.10) 

The vacuum expectation value of the energy density defined in the limit 0Fk →  is given by  

( )
( )

( )
2

Dirac 4

2π 2 .
2π

n
n

B BM n M= Γ −                              (4.11) 

The finite vacuum fluctuation correction to energy density is determined from (4.6) as ( )CTCψ ψ−  , and 
is calculated as follows:  

( )

( ) ( )

( ) ( )

2 3 4
VFC Dirac Dirac 1 2 3 4

24 3 2
2

3 4

1 1 1( )
2! 3! 4!

1 7ln
28π

13 25 .
3 12

B B

B
B B B B B B B

B B

B B B B B

M M

MM M M M M M M
M

M M M M M

α φ α φ α φ α φ∗

∗
∗ ∗ ∗

∗ ∗

∆ = − − − − −

  
= − + − − −  

  
+ − − − 

∑

  

             (4.12) 

Pressure is given by VFC VFCp∆ = −∆ , which is obtained by an energy-momentum tensor as: 1
3

iip T= , (i 

is summed, , ,i x y z= ). The VFC gives repulsive contributions for all densities. The model parameters, mσ , g 
and gω , must be adjusted and fixed to reproduce saturation of nuclear matter, where pressure 0p =  and 

( )B FE kρ =  must be satisfied. 
The effective masses of baryons and mesons, including VFC, are shown in Figure 6. At saturation density, 

they are ~ 0.74N NM M∗ , ~ 1.06m mσ σ
∗ , ~ 1.03m mω ω

∗ . Meson effective masses are almost unity around 
saturation. The baryon effective mass increases slightly at saturation, which produces a softer EOS at high 

 

 
Figure 6. The masses of neutron stars in the chiral mean-field appro- 
ximation, with or without VFC.                                 
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densities and decreases the masses of neutron stars. The scalar source is decreased a little by VFC, and 
accordingly, other fields are similarly decreased by self-consistent relations required by thermodynamic consis- 
tency. The coupling constants and effective masses of hadrons and the Fermi-liquid properties of symmetric 
nuclear matter including VFC are listed in Table 2. 

The incompressibility and symmetry energy with VFC are shown in Figure 7 and Figure 8, respectively. 
These Fermi-liquid properties are almost similar at saturation density, but incompressibility, K, is softened at 
high densities. This character shows that the effect of VFC is noticeable at high densities but is not so important 
at low densities. The symmetry energy, including VFC, gives similar results as discussed in Section 3. One can 
see from Figure 8 that the dominant contribution to 4a  should be expected from ρ-mesons, and in addition, 
Fock-exchange corrections produce important contributions to 4a  and K [34] [35]. Hence, it would be generally 
desired to analyze properties of nuclear matter by employing Hartree-Fock and Brueckner HF approximations. 

The phase transition from β-equilibrium ( ), ,n p e  to ( ), , ,n p eΛ  or ( ), , ,n p e−Σ  matter is discussed in the 
article [7] [8]. The hyperon-onset densities depend explicitly on nucleon-hyperon coupling ratios, HN H Nr g gω

ω ω=  
and HN H Nr g gσ

σ σ=  (H = Λ  or −Σ ). They are given by  

( ) ( )
2 2

,H
HN N N H H H H

N N N N N

m g mr M M M M
g g g g g

ω ω σ ω

ω ω ω σ ω ω ω

α α
ρ ρ

∗ ∗
∗ ∗

∗ ∗ ∗

 
= − + = − + 

 
           (4.13) 

where p nωρ ρ ρ= + , and Ngω
∗  is a density-dependent coupling constant; Hα  is the lowest binding energy of 

a hyperon. The coupling ratios are required to be 1.0NrωΛ   and 1.0
N

rω−Σ   in the nonchiral, nonlinear (σ, ω,  
 

 
Figure 7. The vacuum fluctuation corrections to effective masses in 
the chiral model.                                            

 

 
Figure 8. The vacuum fluctuation corrections to incompressibility in 
the chiral model.                                            
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ρ) mean-field approximation in order to obtain optimum empirical values of symmetric nuclear matter and 
neutron stars. 

When chiral symmetry breaking is applied to phase transitions from ( ), ,n p e  to ( ), , ,n p eΛ  or ( ), , ,n p e−Σ  
matter, it supports the results that coupling ratios should be 1.0HNrω  , which is explained as follows. In (σ, π, ρ) 
chiral symmetry breaking models, σ-mesons generate the mass of nucleons in the new ground state: 

0σ σ φ→ +  and 0 N NM gσσ = − . Let us include baryons ( ), , , ,n p −Λ Σ 
 in the Lagrangian (2.1). The 

σ-hyperon coupling constants are , , , ,n pg g g gσ σ σ σ −Λ Σ
 , respectively. Suppose that the ground state expectation 

value 0σ  is equipartitioned to baryons in the new ground state after chiral symmetry breaking. Then, one 
obtains n n p pM g M g M g M gσ σ σ σ− −Λ Λ Σ Σ

− = − = − = − , and it results in  

, , .p p
pn n n

n n n n n n

g Mg M g Mr r r
g M g M g M
σσ σ σσ σ

σ σ σ

− −

−
Λ ΣΛ Σ

Λ Σ
= = = = = =                  (4.14) 

The hyperon coupling ratios in the ground state of nuclear matter are 1Hnrσ  . 
These values agree with those concluded independently in the calculation of the nonchiral, nonlinear (σ, ω, ρ) 

conserving mean-field approximation. The hyperon coupling ratios, 1Hr
σ  , are derived from the saturation 

condition of binding energy of pure-hyperon matter. Let us suppose that binding energy of pure-hyperon, for 
example, pure-lambda matter is self-bound as is symmetric nuclear matter. Then, one can produce saturation by 
computing energy density of pure-lambda matter by employing (σ, ω) mean-field approximation. However, as it 
is proved in the paper [7] [8], the coupling ratios are constrained by the Equation (4.13). With the constraints, the 
coupling ratios that produce saturation of hyperon matter are shown to be 1Hnrσ  . If the coupling ratios are 

2 3Hnrσ   or 1 3  as suggested by the SU(6) effective quark model [30] [31], it is not possible to produce 
saturation of binding energy of pure-hyperon matter, which is a fundamental error as a self-consistent theory of 
nuclear matter [36]. This is one of conclusions from the hadronic (σ, ω, ρ) mean-field approximation [7] [8]; the 
current chiral model and results (4.14) agree and support the conclusion of coupling ratios. 

The masses of neutron stars are calculated using the Tollman-Oppenfeimer-Volkoff (TOV) equation [37], 
energy density and pressure obtained in Section 3 and Section 4. They are shown in Figure 9 as a function of a 
central energy density, c . Vacuum fluctuation correction softens EOS and reduces the maximum mass of 
neutron stars by about 20%. It should be noticed that the conserving nonlinear, nonchiral (σ,ω) mean-field 
approximation [5] [6] produces similar results for K, 4a , starM , when 120.0 MeVmσ =  and 1.9 ~ 2.0gσ =  
are assumed. Hence, the chiral symmetry breaking mechanism provides a consistent method for understanding 
solutions to nonchiral, nonlinear mean-field models. 

5. Concluding Remarks 
In the current extended chiral mean-field model, all the masses of baryons and mesons are produced through  

 

 
Figure 9. The vacuum fluctuation corrections to symmetry energy. 
The nonchiral (σ, ω, ρ) calculation is listed for comparison.              
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spontaneous chiral symmetry breaking of nonlinear interaction potentials. Adjustable free parameters are limited 
to mσ , g and gω  after the hadron masses are identified and fixed in the nuclear domain, e.g. 939.0NM = , 

139.0mπ =  and 783.0 MeVmω = . Constraints on the chiral mean-field approximation are properties at 

saturation ( 15.75 MeVB Mρ − = − , at 11.30 fmFk −= ) and the maximum mass of isospin-asymmetric neutron 
stars ( )( )max , , 2.50 MM n p e



 . The mass of σ-mesons is determined to maintain the constraints and is given 

by 120 MeVmσ   ( )1.9 ~ 2.0gσ = , which is also necessary so that the interaction potential V is positive and 

bounded at high densities. One should note that the dimensionless parameter, ( )2 2 2 2
NC g M mσ≡  which is 

known to characterize finite and infinite nuclear systems [1] [5] [6], is similar to those of linear and nonlinear 
mean-field approximations. Hence, the current chiral ( ), ,σ ωπ  mean-field approximation is compatible with 
results obtained by other QHD (σ, ω) Hartree approximations and improves some of properties for infinite 
nuclear matter. The coupling constant and effective mass, gσ  and mσ

∗ , must be considered together, because 

gσ  and mσ
∗  constitute density-dependence and chiral-symmetry of the model. The chiral mean-field 

approximation indicates that a scalar particle less than the mass of π-mesons should be needed to produce 
saturation of nuclear matter. 

The effective masses of nucleons and mesons, , ,NM m mσ ω
∗ ∗ ∗ , are similar to those derived from conserving 

nonchiral, nonlinear (σ, ω) mean-field approximations. The effective mass of a nucleon N NM M∗  
monotonically decreases, but the effective masses of mesons are 1.0 ,m m m mσ σ ω ω

∗ ∗ , at or around saturation 
density. The vacuum fluctuation corrections exhibit repulsive effects for all densities, but after adjusting 
coupling constants to reproduce properties of saturation and neutron stars, the effect of VFC is noticeable at high 
densities but less significant at saturation. The effect of nonlinear interactions is more important than that of 
VFC in the Hartree approximation. A similar conclusion is also obtained in the nonchiral, nonlinear (σ, ω, ρ) 
mean-field approximation. As shown in Figure 5, ρ-mesons give noticeable contributions, so the chiral 
nonlinear ( ), ,σ ωπ  mean-field approximation should be extended by including ρ-mesons. 

The nonchiral, nonlinear (σ, ω, ρ) mean-field approximations have many adjustable nonlinear coupling 
constants. The nonlinear coupling constants have upper bounds restricted by self-consistent conditions to 
approximations and properties of saturation and neutron stars [5] [6], which are expected as a manifestation of 
naturalness of nonlinear coefficients [18]-[21]. The current chiral mean-field approximation determines all the 
nonlinear constants in terms of three adjustable parameters: mσ , g and gω . The masses of mesons, mπ  and 
mω , are identified and fixed by experimental values, after chiral symmetry breaking. The nonlinear constants 
expressed by mσ , g and gω  support the properties of naturalness and the bounded values of nonlinear 
constants given by nonchiral, nonlinear (σ, ω, ρ) mean-field approximations. Self-consistent and optimum 
solutions to the nonchiral, nonlinear (σ, ω) mean-field approximation with 120.0 MeVmσ =  and 1.90 ~ 2.40g =  
become similar to those of the chiral (σ, ω) mean-field approximation, suggesting that chiral symmetry serves to 
restrict solutions to nonlinear mean-field approximations. 

Because chiral symmetry breaking relates nonlinear coefficients to hadron masses, the chiral mean-field 
approximation suggests that nucleon-proton and nucleon-hyperon coupling ratios are given by ratios of hadron 
masses, such that N N Nr M M rσ ω

Λ Λ Λ= ≈  and N N Nr M M rσ ω
Σ Σ Σ= ≈ . It is remarkable that the values of the 

coupling ratios are consistent with those obtained by the conditions at hyperon-onset density, which are 
determined by the requirement of thermodynamic consistency at the saturation of hyperon matter [7] [8]. The 
coupling ratios produce reasonable density-dependent properties of nuclear matter and neutron stars in the 
calculation of conserving nonchiral, nonlinear (σ,ω,ρ) mean-field approximations. On the contrary, the coupling 
ratios given by the SU(6) quark model for vector coupling constants [31] [30] are expected to be 2 3NrωΛ =  and 

2 3NrωΣ = , but the ratios do not generate consistent results for properties of nuclear and neutron matter. These 
values produce significantly softer EOS when the values are used in the chiral hadronic model. 

The vacuum fluctuation correction softens EOS at high densities, which will be softened further when 
hyperons are generated. This fact is also consistent with the results derived from the nonchiral, nonlinear (σ, ω, 
ρ) mean-field approximation [9]. Because chiral symmetry breaking clarifies relations among nonlinear 
interactions, it is important to understand how hyperon-onset densities, binding energy and saturation properties 
of hyperon matter, and masses of hadron and hadron-quark stars will be modified by chiral models of hadrons. 
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The chiral symmetry breaking mechanism helps us understand the physical meanings of chiral symmetry in 
masses and coupling constants of hadrons. 

The pion contributions begin to appear from the level of HF approximation, and the (σ, π, ω) chiral mean- 
field model must be extended to (σ, π, ω, ρ) [32] and more sophisticated approximations, such as conserving 
chiral HF and BHF approximations. The extensions and applications to finite and infinite nuclear systems 
should be investigated quantitatively, which is important to understand hadron-quark nature of strong interac- 
tions. The problems of high-energy hadron scatterings and properties of infinite matter, such as hadronquark 
stars, suggest that hadronization from QCD and phase transitions from bound state hadrons to quark matter 
could be an important topics in the near future. Quantitative analysis in terms of both quantum hadrodynamics 
(QHD) and QCD is necessary. 
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