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ABSTRACT 
 
In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block 
space-time code is optimally constructed in slow fading. The block code in quasi-static fading channels pro-
vides affordable complexity in design and construction. Our results show that the performance of the block 
space-time code may not be as good as conventionally convolutional coding with serial transmission for 
some channel features. As channel approaches fast fading, a coded single antenna scheme can collect as 
much diversity as desired by correctly choosing the free distance of code. The results also point to the need 
for robust space-time code in dynamic wireless fading channels. We expect that self-encoded spread spec-
trum with block space-time code will provide a robust performance in dynamic wireless fading channels. 
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1.  Introduction 
 
Space-time codes introduce temporal and spatial correla-
tion into signals transmitted from different antennas in 
order to provide diversity at the receiver as well as cod-
ing gain without sacrificing bandwidth [1,2]. Most opti-
mal space-time codes have been developed in block code 
in slow fading channels [1,3–7]. The block code in 
quasi-static fading channels provides affordable com-
plexity in design and construction. It has been shown that 
in a system with t transmit and r receive antennas, and a 
slow fading channel, the average channel capacity with 
perfect channel state information (CSI) at the receiver is 
about min{t,r} times larger than that of a single antenna 
system [8]. Tight exponential upper bound is obtained on 
the decoding error probability of block codes transmitted 
over fully interleaved fading channels with perfect CSI at 
the receiver [10]. These bounds do not require integra-
tion in their final version, and they are reasonably tight in 
a certain portion of the data region that exceeds the cut-
off rate of the channel. If channel-state information is 
also available to the transmitter, very high capacity is 
achievable without the need for time diversity [9]. How-
ever, mobile communication channels are dynamic and 
undergo slow fading to fast fading rather quickly as mo-

bile speeds and surrounding structures change. Some 
space-time codes have been developed for fast fading 
channels under the assumption of low data rates and low 
signal-to-noise ratios [1]. Nevertheless, as wireless Inter- 
net services are incorporated into mobile communica-
tions, space-time codes that are optimal for fast fading 
channels, high data rate and low bit error rate (BER) are 
required. 

In this work, we consider the performance of current 
space-time code that is optimally constructed for slow 
fading channels (hereafter we called it the block 
space-time code). We raise the question whether the 
performance of the block space-time code would be at 
least as good as conventional serial code when channel 
characteristics change dynamically. In this paper, we 
analyze and compare two different transmitter structures: 
the parallel transmitter that employs the block space- 
time code and the serial signal transmitter. Conventional 
channel code, such as convolutional code with a single 
transmit antenna, is used in the serial signal transmitter. 
We compare the BER of the two systems under the same 
bandwidth, average transmit power, data rate and a simi-
lar encoder processing complexity. The results suggest 
that the performance of the block space-time code can be 
degraded below the conventional code for some channel 
features. 
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Figure 1. Trellis diagram of block space-time code and convolutional code. 
 

 
 

Figure 2. Transmitter structures. 
 

Self-encoded spread spectrum (SESS) introduced in 
[11] eliminates the need for traditional pseudo noise (PN) 
code generators. As the term implies, the spreading code 
is obtained from the random digital information source 
itself. Multiuser convolutional code directly applicable to 
SEMA in cellular system is developed in [12]. A chip 
interleaving and iterative detection scheme for SEMA 
improve system performance significantly in fading 

channels [13]. The cooperative SESS performance is 
shown to be superior to other conventional cooperative 
systems [14]. We currently conduct the research on 
SESS with multiple-input multiple-output (MIMO). Our 
future work is to develop SESS block space-time code. 
Due to the inherent time diversity in SESS, we expect 
SESS block space-time code to maintain a robust per-
formance in dynamic wireless fading channels. 
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2.  System Model 
 
2.1.  Block Space-Time Code 
 
We consider a base station to a mobile communication 
where the base-station equipped with n antennas and the 
mobile is equipped with r antennas. Data are encoded by 
the channel encoder, and the encoded data go through a 
serial-to-parallel converter and are split into n streams of 
data. Each stream of data is the input to a pulse shaper. 
Then, the output of each shaper is modulated. We con-
sider the 8-state trellis code [1] shown in Figure 1. We 
use the 8-state 4-PSK trellis space-time code to obtain 
numerical results for comparison, although our analysis 
can be generalized to other space time-codes. The 
space-time code and 4-PSK modulation using two trans-
mitter antennas is shown in Figure 2. The two streams of 
incoming data, data-1, d1, and data-2, d2, are encoded, 
pulse-shaped, modulated and transmitted in parallel over 
the two transmit antennas. Alternatively, the two data 
streams can be considered divided from a common data 
source. The signal constellation employed here is 4-PSK 
and the signal points are labeled by the elements of Z4, 
the ring of integers modulo 4. The edge level c1c2 in Fig-
ure 1 shows that signal c1 is transmitted over the first 
antenna and that signal c2 is transmitted over the second 
antenna. This code can be described in terms of a se-
quence (d1,d2) of binary inputs. The output signal pair 

 at time t is given by [1] 1 2
t tc c

1 2 1 2
2 1

1 2 1
1

( ) (2,2) (2,0)

(1,0) (0,2) (0,1)

t t t t
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c c d d
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At each time slot t, the output of modulator-i is a sig-
nal 1

t  that is transmitted using transmit antenna i for 1≤i

≤n. The n signals are transmitted simultaneously, each 
from a different transmit antenna, and all signals have 
the same transmission period.  

c

The signal at each receive antenna is the sum of the n 
transmitted signals contaminated by a noise and cor-
rupted by Rayleigh fadings. We assume that the elements 
of the signal constellation are normalized by a factor of 

bE , where Eb is the bit energy, so that the average en-

ergy of the constellation is the unity. A decision is based 
on the received signals at each receive antenna 1≤j≤r. 
The signal j

ty  received by antenna j at time t is given 

by 

,
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where the noise  at time t is a complex Gaussian 

random variable with a zero-mean and variance N0/2 per 
dimension, independent for all j and t. The coefficient 

j
tn

,
t
i j  is the path gain from transmit antenna i to receive 

antenna j at time t. We are interested in the behavior of 
the block space-time codes that are optimally constructed 
for slow fading as channel dynamics change to inde-
pendent path gains for every i, j and t.  

A maximum-likelihood sequence detector is applied 
for decoding. We assume ideal channel state information; 
thus, the path gains 

,
t
i j , i=1,2,…n j=1,2,…r are pre-

cisely known to the receiver. Since j
ty  is the received 

signal at receive antenna j at time t, the branch metric for 
a transition labeled 1 2

t t
n
t     is given by 

2

,
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n n
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Viterbi decoding is then applied to obtain the path 
with the lowest accumulated metric. 

 
2.2.  Conventional Serial Code 
 
Convolutional coding is applied to each data stream as 
shown in Figure 2. The encoded symbols are serial- 
to-parallel converted and fed to the modulator. The re-
quired bandwidth is equivalent to the block space-time 
code, although the bandwidth expansion produced by the 
encoder can be reduced considerably less than the recip-
rocal of the code rate [15]. We use the convolutional 
code with the code rate (1/R), the constraint length (K), 
and the generators equal to 1/2, 3 and [5 7] in octal, re-
spectively [16]. This code has a free distance (dfree) equal 
to 5. The two 4-state diagram of this code is shown in 
Figure 1. The code can be described in terms of a se-
quence of binary inputs. The output,  from the 

first encoder at time t is given by 

1,1 1,2
t tc c

1,1 1,2 1 1 1
2 1) (1,1) (0,1) (1,1)t t t t tc c d d d   (

2,1(c c

          (4) 

Modulo 2 addition is performed to obtain the encoder 
output pairs. Likewise, the output of the second encoder 

 can be generated. The encoders’ outputs are 

serial-to-parallel converted and fed to the modulator. The 
signal constellation employed here is 16-QAM for a sin-
gle transmit antenna and the signal points are labeled by 
the elements of Z16. Considering that 16-QAM and 
4-PSK display approximately 5 dB difference for  

2,2
t t )

Eb/N0≥0 dB, these modulation schemes are more favor-
able for the block space-time code system. Nevertheless, 
our results show that the conventional serial code system 
can outperform the block space-time code in some chan-
nel characteristics.  

The output of a 16-QAM modulator can be repre-
sented as a complex number, 

1,1 1,2 2,1 2,2(2 ) (2 )t t t t tc c c c c                   (5) 
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where ζ= 1 . The signal j
ty  received by antenna j at 

time t is given by 

( ) ( )v
vf v e U v                            (12) 

to maintain the same average received power without 
fading. U(v) is the unit step function. With r receiving 
antennas and  1, 2j t

t j t by c E j
tn                         (6) 

where 1,
t

j  is the path gain from the single transmit 

antenna to receive antenna j at time t. Notice that we 
scaled the transmit bit energy to maintain the same aver-
age bit energy in both systems for fair comparison. For 
Viterbi decoding, we replace Equation (3) with  

1

r
VX  

the pdf of X can be represented as a Gamma distribution 
with the parameter, 2r, as [19]  
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3.  Performance Analysis         (14) 
 
3.1.  Block Space-Time Code 

In Equation (14), we applied the approximation of the 
symbol error probability of QPSK [20],  

 
From Figure 1, the codeword (0, 2, 2, 0) has the free dis-
tance from the all-zero codeword, (0, 0, 0, 0). The free 
distance is defined as the minimum Hamming weight of 
all possible codewords. For moderate and high sig-
nal-to-noise ratios, it is well known that the free-distance 
term in the union bound on the BER performance domi-
nates the bound [17,18]. Assuming ideal channel state 
information, the probability of transmitting c=(0, 0, 0, 0) 
and deciding in favor of e=(0, 2, 2, 0) at the decoder is 
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with M=4. Therefore, the probability of the bit error can 
be found as [17] 
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Bd and k are the number of nonzero information bits and 
the total number of information bits, respectively, on the 
dfree path. The error coefficient, Ndfree, is the total number, 
or multiplicity, of the free distance code word. For the 
chosen codewords, c=(0, 0, 0, 0) and e=(0, 2, 2, 0), Ndfree, 
Bd and k are 1, 1 and 4, respectively. 

where l is the block length, N0/2 is the noise variance per 
dimension,  

2 /21
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and 3.2.  Conventional Serial Code 
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c e From Figure 1, the codeword, (3, 1, 3) has the free dis-
tance from the all-zero codeword, (0, 0, 0). Therefore, 
the probability of transmitting c=(0, 0, 0) and deciding in 
favor of e=(3, 1, 3) can be obtained as in Equation (8) 
with d2(c,e) as follows for r=1: 
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i j  is Rayleigh fading, the probability density 

function (pdf) of 
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2tV  ,i j  can be shown as [19] 
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Figure 3. Block space-time code, two transmit antennas, 8 states, 4-PSK, 1, 2 and 4 receive antennas, Rayleigh. 

 

 
Figure 4. Convolutional code, single transmit antenna, two 4 states, 16-QAM, 1, 2 and 4 receive antennas, Rayleigh.
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Figure 5. Analytical BER of block space-time code and convolutional code, 1, 2 and 4 receive antennas, Rayleigh. 

 

 
Figure 6. Simulation BER of block space-time code and convolutional code, a half average transmit power for convolutional 
code, 1, 2 and 4 receive antennas, Rayleigh. 
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With r receiving antennas, the pdf of the above equa-
tion can be represented as the combination of two ran-
dom variables, 

2 21 3
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r
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In Equation (20), we employ the approximation of the 

symbol error probability, 3 ( 4 / 5 )e b 0P Q E N , for 16- 

QAM modulation [20]. The probability of the bit error is 
obtained from Equation (16), where Ndfree , Bd and k are 1, 
1 and 3 respectively.  

 

4.  Simulation Results 
 
We assume that the perfect channel state information is 
available at receive antennas in the following simulations. 
We consider the dynamic channel characteristics of in-
dependent fading for every bit interval. In Figure 3, the 
simulation BER and the analytical BER of the block 
space-time code with 8-state, 4-PSK and two transmit 
antennas are compared in Rayleigh fading channels for 
one, two and four receive antennas. The simulation BER 
approaches the analytical BER at high signal-to-noise 
ratios (SNR). With a larger number of receive antennas, 
the rate of the approach becomes faster. With two or 
more receive antennas, the difference between the simu-
lation and the analysis is less than 1 dB for SNR≥6 dB. 
The receive antenna diversity significantly improves the 
system performance as expected. The BER performance 
of two four-state convolutional codes and a 16-QAM 
system with a single transmit antenna is displayed in 
Figure 4. The simulation BER rapidly approaches the 
analytical BER. The BER difference is less than 1 dB for 
all SNR. We observe similar effects of receive antenna 
diversity as in the block space-time codes. The analytical 
results of the two systems are shown in Figure 5. We can 
see that the BER of the conventional serial code is better 
than the block space-time code for all SNR under the 
same bandwidth, average transmits power, data rate and 

a similar processing complexity as channel dynamics 
reach to independent fading in each bit interval. The dif-
ference becomes larger at high SNR. We show the simu-
lation BER of the block space-time code and the conven-
tional serial code in Figure 6. Half of the average trans-
mit power of the block space-time code is assigned to the 
conventional serial code transmission. Now we observe 
that the BER of both systems is equivalent. Our results 
show that for the same Eb/N0 , the performance of the 
block space-time code may not be as good as the con-
ventional convolutional code for some channel features. 
As channel dynamics reach fast fading, a coded single 
antenna scheme can collect as much diversity as desired 
by suitably choosing the free distance of code. Block 
space-time codes are most useful in slow fading when 
temporal diversity is not available. The advantage of the 
block space-time code can be diminished significantly as 
wireless channel approach fast fading. 
 
5.  Conclusions 
 
In this paper, we show that the block space-time coding 
gain can be degraded below the conventional channel 
coding with a single transmit antenna for some channel 
characteristics. Our results suggest that there is a need 
for a robust space-time code in rapidly changing wireless 
channels. Our future work is to develop SESS block 
space-time code. Due to the inherent time diversity in 
SESS, we expect SESS block space-time code to provide 
a robust performance in dynamic wireless channels.  
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