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Abstract 

In this paper, we propose a new packet routing strategy that incorporates memory information for 
reducing congestion in communication networks. First, we study the conventional routing strategy 
which selects the paths for transmitting packets to destinations using the distance information 
and the dynamical information such as the number of accumulating packets at adjacent nodes. 
Then, we evaluate the effectiveness of this routing strategy for the scale-free networks. From re-
sults of numerical simulations, we conclude that this routing strategy is not effective when the 
density of the packets increases due to the impermeability of the communication network. To 
avoid this undesirable problem, we incorporate memory information to the routing strategy. By 
using memory information effectively, packets are spread into the communication networks, 
achieving a higher performance than conventional routing strategies for various network topolo-
gies, such as scale-free networks, small-world networks, and scale-free networks with community 
structures. 
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1. Introduction 
The transmission rate of data packets in communication networks is drastically increasing due to the widespread 
use of mobile devices. If the number of packets increases sufficiently, then packet congestion occurs in 
communication networks. Transmissions of packets to their destinations are then blocked, and in the worst case, 
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the packets may be removed from the network by a buffer constraint or a time-to-live constraint. Therefore, the 
study and analysis of packet congestion has been given significant attention in recent years [1]-[17]. 

The shortest path algorithms adopted in real-world systems, such as the Dijkstra [18], Bellman-Ford [19], and 
Warshall-Floyd [20] algorithms, face serious challenges if the number of data packets continues to increase [15]. 
Specifically, these shortest path algorithms transmit packets using only information regarding distances in the 
communication network, and so routers that lie on a large number of shortest paths easily become congested. Thus, 
it is imperative that the transmission algorithm is enhanced to ensure reliable communication through the network. 

Understanding the dynamics of packet transmission on networks is also an important task in analyzing the 
onset of traffic congestion. From this viewpoint, Ohira et al. [17] illustrated the onset of phase transition 
behavior from a free-flow state to a congested state using square lattice-type network models. Arenas et al. [16] 
analyzed this phase transition behavior using hierarchical branching networks. Zhao et al. [13] showed that the 
heterogeneous property of a network inhibits traffic congestion in the case that the transmitting performance of 
each node is proportional to its degree. 

On the other hand, the development of efficient routing methods that drastically reduce the congestion of a 
network presents another important task for carrying a large volume of data traffic. Recent studies concerning 
the design of routing strategies have evolved according to two basic ideas. The first is to select paths for 
transmitting packets based on only local information of the network, such as degree information or the number 
of packets waiting at adjacent nodes [4] [6] [8] [10] [11]. Such routing strategies can be applied to networks of 
any size because it is not necessary to collect distance information for the whole network. The second idea is to 
utilize global information, such as shortest distance information for the network. For example, Echenique et al. 
[14] [15] proposed a deterministic routing strategy, which calculates efficient paths for the sending of packets by 
using distance information and dynamic information. Yan et al. [9] proposed a routing strategy that uses both 
distance and degree information for the network. Zhang et al. [7] proposed an adaptive routing strategy based on 
measuring the accumulated number of packets on shortest paths. A routing strategy incorporating traffic 
awareness was proposed by Wang et al. [5]. Further, as an example of using global information, a routing 
method has been proposed based on mutually connected neural networks (MCNN routing) [21]. This can be 
further enhanced by using reinforcement learning [22] or stochastic effects [23]. The MCNN routing method 
searches all nodes adjacent to the sending node in order to route packets using the energy minimization principle, 
based on mutually connected neural networks. It is well known that mutually connected neural networks give an 
effective method for solving hard classes of problems, namely NP-hard problems. Furthermore, MCNN routing 
achieves good arrival rate for packets in regular topological communication networks. However, it performs 
poorly for irregular topological communication networks, because of the nonuniform distribution of packets [23]. 
In order to improve its performance in this case, we have previously proposed a neural-based routing strategy 
that uses transmitting information [24]. Concerning this strategy, it still remains to perform a performance 
evaluation regarding the alleviation of packet congestion in order to clarify how many packets the routing 
strategy can transmit in the case that the number of flowing packets increases. Such an evaluation is necessary if 
the routing strategy is to be employed in real communication networks. In addition, the congestion rate [16] can 
be used to determine the capability of avoiding packet congestion in a communication network model in which 
the number of packets to be transmitted continues to increase. This has been adopted in recent studies regarding 
the development of routing strategies [4] [6] [8] [10] [11]. 

From the above viewpoints, our neural-based routing method [24] is comprehensively evaluated in this paper 
using various performance measures such as the packet congestion rate, congestion levels, average arrival rate of 
packets, and average number of lost packets. The results show that the proposed neural-base routing method has 
a strong ability to carry large volumes of data compared with the conventional neural-based routing methods, 
and utilizes the transmitting information effectively. 

This paper is organized as follows. In Section 2, we first describe how the routing method is constructed 
based on mutually connected neural networks, and then evaluate the MCNN routing method using the packet 
congestion rate. The modified version that utilizes transmitting information is then described in Section 3. 
Furthermore, our proposed neural-based routing method is evaluated in comparison to other conventional 
neural-based routing methods in Section 4. Finally, we conclude this paper in Section 5. 

2. Routing Method Based on Mutually Connected Neural Networks 
First, we explain how to construct the original MCNN routing method [21] because our proposed method is 
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based on this. To proceed, we first describe the communication network model. Here, the communication 
network model is composed of a set of nodes and a set of links. Each node represents a host or a router, and each 
link represents a physical connection between two nodes. The node has a buffer to store packets, and can receive 
multiple packets simultaneously from its adjacent or connected nodes. The packets, whose sources and 
destinations are randomly determined, are then generated in the communication network. A packet is transmitted 
to a node according to the FIFO (first-in first-out) principle and is removed from the communication network if 
it arrives at its destination. 

The communication network model has N nodes, where the ith node is connected to iN  adjacent nodes. Next, 
we assign a mutually connected neural network to each node. In this MCNN routing method, each neuron in the 
neural network corresponds to a connection between the nodes. For example, the ijth neuron, which is the jth 
neuron in the ith neural network, represents the connection between the ith node and the jth node. Hence, a 
mutually connected neural network with iN  neurons is assigned to each node. Figure 1 illustrates an example 
of the neural coding for the communication network model. 

In the MCNN routing method, each node determines one of the adjacent nodes as the transmitting node at 
each iteration by minimizing the following energy function: 

( )

,
1 1 1 1 1

2

1 1 1 1

1 1 11
2 2

1 1 1 ,

i i i l

i i

N N N NN N

ik il ik il l jl il
i k l i l j il

N NN N
l

il il
i l i lc

E J v v q v v
b

d v v
d

η

η ξ

= = = = = ≠

= = = =

   = − − +  
   

   
− − − + −   

  

∑∑∑ ∑∑ ∑

∑∑ ∑ ∑
                (1) 

where ,ik ilJ  is the connection weight between the ikth neuron and the ilth neuron, lb  is the buffer size of the 
lth adjacent node, lq  is the number of packets stored in the lth adjacent node, ld  is the shortest distance from 
the lth adjacent node to the destination of a packet at the ith node, cd  is the longest distance among all shortest 
paths, η  is the control parameter that decides the priorities of the first and second terms, and ξ  is the control 
parameter that guarantees the uniqueness of the firing neurons. 

In Equation (1), the second term expresses the load distribution of adjacent nodes, and the third term is the 
distance for a packet at the ith node to the destination. The last term guarantees that only a single neuron fires in 
each neural network. 

The internal state of the mutually connected neural network is updated using the method proposed by 
Hopfield and Tank [25]. The output of the ilth neuron ilv  is described as follows: 
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Figure 1. Schematic representation of the neural network coding in this paper. In this example, 
the ith node has three adjacent nodes. The neural network of the ith node is therefore constructed 
from three neurons that correspond to adjacent nodes 1, 2, and l.                                
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Moreover, when the ith and lth nodes are adjacent, the internal state of the ilth neuron ilh  changes according 
to the following differential equation: 
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Note that Equation (3) is obtained by partially differentiating Equation (1) with respect to ilv . In other words, 
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Equation (5) indicates that the energy function E always decreases when ilh  changes according to Equation 
(3). In other words, the energy function of Equation (1) decreases according to the steepest descent method. 

In this method, the firing of the neuron is determined using the threshold θ . That is, the ilth neuron fires if 
ilv θ≥  and does not if ilv θ< . When the ilth neuron fires, a packet at the buffer head of the ith node is 

transmitted to the lth adjacent node. 
The lth adjacent node of the ith node is selected as the transmitting node if it has the shortest distance to the 

destination of the packet and a smaller number of packets in its buffer among all of adjacent nodes. 
As mentioned above, η  in Equation (1) determines the priority of the load distribution of the adjacent nodes 

and the distance of packet to the destination. If 1η = , then the transmitting packets are distributed widely 
throughout the network, in order to reduce heavily congestion at a node. However, the transmissions of almost 
all packets to their destinations will be delayed because in this case, the distance information for packets is 
ignored. On the other hand, if 0η = , the packets are transmitted to their destinations along the paths with the 
shortest distance, with the result that many packets become trapped at nodes with large degree. 

Next, we evaluate the effectiveness of the MCNN routing method. Because real communication networks 
have the scale-free property [26], we adopt the scale-free topology here as the computer network topology. We 
construct scale-free networks by the following procedure [26]. We begin with a complete graph with 0m  nodes. 
Then, we insert a new node with 0m  links at every time step. Next, the links of the newly added node are  
connected to the existing nodes in the network with probability ( ) 1

N
i i jjk k k

=
Π = ∑ , where ik  is the degree of  

the ith node ( )1, ,i N=  , and N is the number of the nodes at the current iteration. For this study, we fixed 
0 2m = . 
We conducted numerical experiments according to the following procedure. We generated p packets whose 

sources and the destinations are randomly determined at each iteration. Then, link selection is simultaneously 
conducted at every node, and the packets that are ready to exit each node are transmitted to adjacent nodes. A 
packet is removed from the network when it reaches its destination. In addition, the transmission of a packet is 
canceled if the buffer of the node to which the packet should be transmitted is full. 

We set the number of iterations, T, to 3000, and the buffer size of each node, B, to 100. We set 3.0β = , 
0.1,0.3,0.5,0.7η = , and 0.9, and 0.3ξ =  in Equation (3), and set the threshold for the state of a neuron as 
0.9θ = . We conducted 10 simulations for five different values of η , and averaged the results. 

We adopted the packet congestion rate [16] to evaluate the MCNN routing method. The packet congestion 
rate defined as follows: 
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1
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In Equation (6), C is the packet congestion rate, T is the number of iterations, and ( )c t  is defined by 
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In Equation (7), ( )n t  is the number of packets at the tth iteration, N is the number of nodes, p is the number 
of packets generated at each iteration, and B is the buffer size of every node. 

Figure 2 illustrates the packet congestion rate for the MCNN routing method. It can be seen that the packet 
congestion rate increases more quickly in the cases that 0.1η =  and 0.9 than for any others, because of the 
unbalanced setting between the distance to the destination and the distribution of the packets defined by 
Equation (1). On the other hand, with 0.5η =  this method avoids packet congestion, even if the number of 
generated packets increases. Hereafter, we set 0.5η =  for the MCNN routing method. 

To analyze why the MCNN routing method displays a poor congestion rate if the number of flowing packets 
increases, we next measure the congestion level of nodes in the computer network. To evaluate the congestion 
levels of the nodes, we employ a computer network model in which a fixed number of packets are flowing [23] 
[24] [28]. As in the references [23] [24] [28], we introduce a buffer constraint and a packet moving constraint. 
Packets are then removed from the communication network if they are transmitted to nodes that have full buffers. 
In addition, packets are also removed when they exceed a fixed threshold for packet movements. If a packet 
arrives at its destination or is removed from the network, then we add an additional packet, to preserve the 
number of the packets flowing in the network. 

In these simulations, we set the buffer size of every node to 100 and limited the number of packet movements 
between nodes to 20. The congestion level of the ith node at the tth iteration, ( )0 1iL t≤ ≤ , is defined as 
follows: 

( ) ( ) .i iL t q t B=                                (8) 

In Equation (8), ( )iq t  is the number of queued packets of the ith node at the tth iteration, and B is the buffer 
size of every node. If ( )iL t  is close to 1, this indicates that the ith node has many packets waiting for further 
transmission. That is, the ith node is heavily congested. On the other hand, the ith node can afford to transmit 
packets to the next node quickly if ( )iL t  is close to 0. 

Figure 3 illustrates the congestion levels of the nodes for the MCNN routing method. In Figure 3, the 
congestion levels of the hub nodes with large degree clearly increase as the number of iterations increases. This 
indicates that the packets gradually accumulate at the hub nodes in the MCNN routing method. 

 

 
Figure 2. Packet congestion rate for MCNN routing method.                                
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Figure 3. Congestion levels of nodes for the MCNN routing method. In this figure, we fixed the 
number of flowing packets to 10. The node index is sorted in descending order of the degrees of 
the nodes.                                                                        

3. Neural-Based Routing Method Using Transmitting Information 
We have clarified that the conventional neural-based routing method [21] leads to congestion, because 
congestion at the hub nodes cannot be prevented. The reason why packet congestion increases for the convec- 
tional neural-based routing method may relate to the convergence to local minima of Equation (1) because only 
the shortest distance between a packet and its destination and the number of packets queued at adjacent nodes 
are considered while choosing an adjacent node for the routing of the packet. 

One promising approach to overcome these problems is to consider all of the queuing information for every 
node. However, this requires heavy processing costs because such information constantly changes depending on 
the transmitting states of the packets. Another effective way might be to utilize limited queuing information for 
the nodes that lie on the shortest distance path between the packet and its destination. Hereafter, we refer to this 
limited queuing information as transmitting information. From this viewpoint, we propose a neural-based 
routing method that uses transmitting information by modifying the original energy function defined by 
Equation (1) as follows: 
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Here, we define the subset of nodes ( )lR t V⊂ , whose elements are the nodes that lie on the shortest distance 
path to the destination passing through the lth adjacent node from the ith node at the tth iteration. That is,  

( ) ( ) ( ) ( ) ( ){ }1 2 3, , , ,l l l l lR t t t t tζχ χ χ χ=   

where ( )lj tχ  is the index of the jth node on the shortest distance path from the lth node at the tth iteration and 
ζ  is the acquisition range of the transmitting information. Because the shortest distance path varies according 
to the destination node for each packet, the elements of ( )lR t  also change at each iteration. 

In Equation (9), 
lm

bχ  is the buffer size of the node lmχ , 
lm

qχ  is the number of packets queued at the node 
lmχ , ld  is the shortest distance from the lth adjacent node to the destination node of a packet at the ith node, 
cd  is the longest path length in the network, η  is the control parameter that determines the priorities of the 

first and second terms, ξ  is the control parameter that guarantees the uniqueness of firing neurons, ζ  is the 
acquisition range of the transmitting information for transmission, and ( )0 1ω ω< <  is a decaying parameter 
for the transmitting information. 

In Equation (9), the first term expresses the transmitting information of nodes on the shortest distance path 
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through the lth adjacent node, and the second term is the distance of a packet from the lth adjacent node to the 
destination. The third term guarantees that only one neuron fires in the neural network. If the distance to the 
destination of a packet from the lth adjacent node is the shortest among all of the adjacent nodes, and the 
transmitting information of the shortest distance path to the destination starting through the lth adjacent node is 
the lowest among all of the paths, then the lth adjacent node is selected as the transmitting node. 

The cost of calculation for the conventional neural-based routing method [21] becomes ( )3O N  because it 

calculates the packet transmitting information between the jth and lth adjacent nodes as expressed by jlv  in the 

second term in Equation (1). On the other hand, the cost for our routing method becomes ( ) ( )2 2O N O Nα =   

because it only calculates packet transmitting information along the shortest distance paths, without using 
jlv . Thus, the proposed routing method then evaluates the optimum adjacent nodes much faster than the 

conventional neural-based routing method. 

4. Performance Evaluation of the Proposed Method 
We begin this section by evaluating our proposed routing method compared with the original MCNN routing 
method. Hereafter, we call the conventional MCNN routing method as the NN-O method in order to di- 
stinguish it from other neural-based routing methods. For these simulations, we adopted the same experimental 
assumptions and the same parameter settings as those in Section 2. We set 2.0ζ =  and 0.6ω =  in Equation 
(9). 

Figure 4 illustrates the packet congestion rate for both the NN-O and the proposed method. In Figure 4, the 
proposed method is seen to maintain a lower congestion rate than the NN-O method. Figure 5 illustrates the 
congestion levels of nodes for both the NN-O and the proposed method. In Figure 5, the proposed method can 
be observed to relieve packet congestion effectively at the hub nodes in comparison to the NN-O method. 

Next, the performance of the proposed routing method is evaluated against three other conventional neural 
network based routing methods. The first is the original neural-based routing method (NN-O) [21], the second is 
a neural-based routing method incorporating the reinforcement learning (NN-R) [22], and the third is a neural- 
based routing method that includes stochastic effects (NN-S) [23]. 

In the neural-based routing method with reinforcement learning [22], Equation (1) is replaced by the fol- 
lowing energy function: 
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Figure 4. Packet congestion rate for NN-O and our proposed method.                          
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(a) 

 
(b) 

Figure 5. Congestion levels of nodes for (a) NN-O and (b) the proposed method. In this figure, 
we fixed the number of flowing packets to 10. The node index is sorted in descending order of 
the degrees of the nodes.                                                            

 
In Equation (10), ( )i tη  is updated according to the following algorithm: 
1) ( )1i Cη =  for any i, where C is a constant that lies between 0 and 1.  
2) The ith node transmits a packet at the tth iteration using ( )i tη .  
3) ( )i tη  is updated by  

( ) ( ) ( ) ( ) ( )( ){ }1 .i i ii tt t t r tη α η α γη= − + +


                         (11) 

4) Go to 2.  
In Equation (10), α  is the learning rate, γ  is the discount rate, and ( )i t  is the index of the node to which 

a packet is transmitted from the ith node at the t iteration. The function ( )ir t  in Equation (11) is defined by 
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1 if .
i t i

i
i t i t i

q b t
r t

t q b tγη

<= 
− =

 

  

                            (12) 

In this paper, we set the values of ( ) ( )1 1, ,i i Nη =   in Equation (10) to 0.5, and we set 0.1α =  and 
0.9γ =  in Equation (12). These values are identical to those in reference [22]. 
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In the neural-based routing method including stochastic effects [23], ( )i tη  in Equation (10) is replaced by 

( ) [ ]rand 0.0,1.0 .i tη =                                   (13) 

In these simulations, β  and ξ  are set to 3.0 and 1.0 respectively for all the methods, and we set 2.0ζ =  
and 0.6ω =  in Equation (9). 

Figure 6 illustrates the packet congestion rate for each of the routing methods. In Figure 6, the packet 
congestion rate for the NN-O, NN-R, and NN-S methods increases more quickly than for the proposed method. 
The congestion rate for the proposed method increases once the number of packets generated at each iteration 
increases to 10. Thus, the proposed method is able to inhibit the occurrence of the packet congestion as the 
number of packets flowing in the network increases. 

Next, we evaluate the average numbers of arriving and lost packets, using a computer network model in 
which a fixed number of the packets flow [23] [24] [28]. The average number of arriving packets, A , and the 
average number of lost packets, L , are defined by 

, ,a l

g g

N NA L
N N

= =                                    (14) 

where aN  is the number of arriving packets, gN  is the number of generated packets, and lN  is the number 
of lost packets. 

Figure 7 illustrates the average numbers of arriving and lost packets for NN-O, NN-R, NN-S, and the 
proposed method. In Figure 7(a), the proposed method is seen to achieve a higher arrival rate for packets if the 
average number of packets at each node is between 10 and 40. In addition, the proposed method achieves the 
lowest lost packet rate of all the neural-based routing methods if the average number of packets at each node is 
less than 40. Thus, we have clarified that the proposed routing method achieves a better performance than the 
other neural-based routing methods if the number of packets flowing in the computer networks is small. The 
above results suggest that the transmitting information provides an effective method of avoiding packet 
congestion in order to reliably route packets. If the average number of packets at each node is larger than 50, 
then almost all of the nodes in the network will be holding more than 50% of the number of packets needed to 
fill their buffer. Thus, in this case packet congestion appears throughout the computer network, and any routing 
method will perform less effectively in removing congestion. 

5. Conclusions 
In this paper, we use the packet congestion rate to evaluate a proposed packet routing method that employs 
mutually connected neural network and transmitting information. The packet congestion rate is mainly employ- 

 

 
Figure 6. Packet congestion rates of the routing methods for the scale-free networks.             
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(a) 

 
(b) 

Figure 7. Relationship between the average number of packets at each node and (a) the average 
number of arriving packets and (b) the average number of lost packets.                            

 
ed to clarify performance in terms of congestion avoidance as the number of flowing packets gradually increases 
in a communication network. First, we showe that the original neural-based routing method is unable to alleviate 
packet congestion, because packets accumulate at hub nodes of large degree in the network, and packet con- 
gestion is then distributed into the network. To overcome this problem, we propose a neural-based routing 
method that exploits transmitting information, and evaluate our proposed method against conventional neural- 
based routing methods, which incorporate either reinforcement learning or stochastic effects. From the results of 
the numerical simulations, we can conclude that our proposed method is able to reduce the packet congestion 
rate more effectively than the other neural-based routing methods. We also evaluate our proposed method in 
terms of the average numbers of arriving and lost packets by using a computer network model in which a fixed 
number of packets flow. We are able to confirm that our proposed method can maintain a higher arrival rate, or 
lower lost rate, than the other neural-based routing methods. From these results, we conclude that our proposed 
neural-based routing method achieves reliable communication by avoiding the congestion of packets through the 
effective use of transmitting information. 

 
352 



T. Kimura et al. 
 

For this study, we assumed that information regarding the number of packets accumulated on a path could 
instantaneously be obtained by all nodes. In future works, we will consider how to deal with delays in this 
information in order to implement the proposed neural-based routing method into real-world systems. 

The research of T.K. was partially supported by a Grant-in-Aid for Young Scientists (B) from JSPS (No. 
16K21327). 
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