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Abstract 
An important problem that arises in different areas of science and engineering is that of computing 
the limits of sequences of vectors { }mx , where N

mx ∈ , N being very large. Such sequences arise, 
for example, in the solution of systems of linear or nonlinear equations by fixed-point iterative me-
thods, and m mx→∞lim  are simply the required solutions. In most cases of interest, however, these 
sequences converge to their limits extremely slowly. One practical way to make the sequences { }mx  
converge more quickly is to apply to them vector extrapolation methods. Two types of methods exist 
in the literature: polynomial type methods and epsilon algorithms. In most applications, the poly-
nomial type methods have proved to be superior convergence accelerators. Three polynomial type 
methods are known, and these are the minimal polynomial extrapolation (MPE), the reduced rank 
extrapolation (RRE), and the modified minimal polynomial extrapolation (MMPE). In this work, we 
develop yet another polynomial type method, which is based on the singular value decomposition, as 
well as the ideas that lead to MPE. We denote this new method by SVD-MPE. We also design a nu-
merically stable algorithm for its implementation, whose computational cost and storage require-
ments are minimal. Finally, we illustrate the use of SVD-MPE with numerical examples. 
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1. Introduction and Background 
An important problem that arises in different areas of science and engineering is that of computing limits of 
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sequences of vectors { }mx 1, where N
m ∈x  , the dimension N being very large in many applications. Such 

vector sequences arise, for example, in the numerical solution of very large systems of linear or nonlinear 
equations by fixed-point iterative methods, and limm m→∞ x  are simply the required solutions to these systems. 
One common source of such systems is the finite-difference or finite-element discretization of continuum 
problems. 

In most cases of interest, however, the sequences { }mx  converge to their limits extremely slowly. That is, to 
approximate limm m→∞=s x , with a reasonable prescribed level of accuracy, by mx , we need to consider very 
large values of m. Since the vectors mx  are normally computed in the order 0,1, 2, ,m = �  it is clear that we 
have to compute many such vectors until we reach one that has acceptable accuracy. Thus, this way of app- 
roximating s  via the mx  becomes very expensive computationally. 

Nevertheless, we may ask whether we can do something with those mx  that are already available, to 
somehow obtain new approximations to s  that are better than each individual available mx . The answer to 
this question is in the affirmative for at least a large class of sequences that arise from fixed-point iteration of 
linear and nonlinear systems of equations. One practical way of achieving this is by applying to the sequence 
{ }mx  a suitable convergence acceleration method (or extrapolation method). 

Of course, in case limm m→∞ x  does not exist, it seems that no use could be made of the mx . Now, if the 
sequence { }mx  is generated by an iterative solution of a linear or nonlinear system of equations, it can be 
thought of as “diverging from” the solution s  of this system. We call s  the antilimit of { }mx  in such a case. 
It turns out that vector extrapolation methods can be applied to such divergent sequences { }mx  to obtain good 
approximations to the relevant antilimits, at least in some cases. 

Two different types of vector extrapolation methods exist in the literature:  
1) Polynomial type methods: The minimal polynomial extrapolation (MPE) of Cabay and Jackson [1], the 

reduced rank extrapolation (RRE) of Kaniel and Stein [2], Eddy [3], and Mešina [4], and the modified minimal 
polynomial extrapolation (MMPE) of Brezinski [5], Pugachev [6] and Sidi, Ford, and Smith [7].  

2) Epsilon algorithms: The scalar epsilon algorithm (SEA) of Wynn [8] (which is actually a recursive 
procedure for implementing the transformation of Shanks [9]), the vector epsilon algorithm (VEA) of Wynn 
[10], and the topological epsilon algorithm (TEA) of Brezinski [5].  

The paper by Smith, Ford, and Sidi [11] gives a review of all these methods (except MMPE) that covers the 
developments in vector extrapolation methods until the end of the 1970s. For up-to-date reviews of MPE and 
RRE, see Sidi [12] and [13]. Numerically stable algorithms for implementing MPE and RRE are given in Sidi 
[14], these algorithms being also economical both computationally and storagewise. Jbilou and Sadok [15] have 
developed an analogous algorithm for MMPE along the lines suggested in Sidi, Ford, and Smith [7] and Sidi 
[14]. For the convergence properties and error analyses of MPE, RRE, MMPE, and TEA, as these are applied to 
vector sequences generated by fixed-point iterative methods from linear systems, see the works by Sidi 
[16]-[18], Sidi, Ford, and Smith [7], Sidi and Bridger [19], and Sidi and Shapira [20] [21]. VEA has been 
studied by Brezinski [22] [23], Gekeler [24], Wynn [25] [26], and Graves-Morris [27] [28]. 

Vector extrapolation methods are used effectively in various branches of science and engineering in acceler- 
ating the convergence of iterative methods that result from large sparse systems of equations. 

All of these methods have the useful feature that their only input is the vector sequence { }mx  whose 
convergence is to be accelerated, nothing else being needed. In most applications, however, the polynomial type 
methods, especially MPE and RRE, have proved to be superior convergence accelerators; they require much less 
computation than, and half as much storage as, the epsilon algorithms for the same accuracy. 

In this work, we develop yet another polynomial type method, which is based on the singular value decompo-
sition (SVD), as well as some ideas that lead to MPE. We denote this new method by SVD-MPE. We also de-
sign a numerically stable algorithm for its implementation, whose computational cost and storage requirements 
are minimal. The new method is described in the next section. In Section 3, we show how the error in the ap-
proximation produced by SVD-MPE can be estimated at zero cost in terms of the quantities already used in the 
construction of the approximation. In Section 4, we give a very efficient algorithm for implementing SVD-MPE. 
In Section 5, we derive determinant representations for the approximations produced by SVD-MPE, while in 
Section 6, we show that this method is a Krylov subspace method when applied to vector sequences that result 
from the solution of linear systems via fixed-point iterative schemes. Finally, in Section 7, we illustrate its use 

 

 

1Unless otherwise stated, { }mc  will mean { } 0m m
c ∞

=
 throughout this work. 
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with two numerical examples. 
Before closing, we state the (reduced version of) the well known singular value decomposition (SVD) 

theorem. For different proofs, we refer the reader to Golub and Van Loan [29], Horn and Johnson [30], Stoer 
and Bulirsch [31], and Trefethen and Bau [32], for example. 

Theorem 1.1 Let r s×∈A  , r s≥ . Then there exist unitary matrices r s×∈U  , s s×∈V  , and a diagonal 
matrix ( )1diag , , s s

sσ σ ×= ∈� Σ , with 1 2 0sσ σ σ≥ ≥ ≥ ≥� , such that  
*.=A U VΣ  

Furthermore, if [ ]1 | | s=U u u�  and [ ]1 | | s=V v v� , then  
*, , 1, , .i i i i i i i sσ σ= = =Av u A u v �  

In case ( )rank t=A , there holds 0iσ > , 1, , ,i t= �  and the rest of the iσ  are zero.  
Remark: The iσ  are called the singular values of A  and the iv  and iu  are called the corresponding 

right and left singular vectors of A , respectively. We also have  
* 2 * 2, , 1, , .i i i i i i i sσ σ= = =A Av v AA u u �  

2. Development of SVD-MPE 
In what follows, we use boldface lower case letters for vectors and boldface upper case letters for matrices. In 
addition, we will be working with general inner products ( ),⋅ ⋅  and the 2l  norms ⋅  induced by them: These 
are defined as follows:  
• In 

N , with 
N N×∈M   hermitian positive definite,  

( ) ( )*, , , .= =M MMa b a Mb a a a                             (2.1) 

• In 1k+ , 1, 2, ,k = �  with ( ) ( )1 1k k
k

+ × +∈L   hermitian positive definite,  

( ) ( )*, , , .
k kkk= =L LLa b a L b a a a                             (2.2) 

Of course, the standard Euclidean inner product *a b  and the 2l  norm *a a  induced by it are obtained by 
letting =M I  in (2.1) and k =L I  in (2.2); we will denote these norms by 

2⋅  (we will denote by I  the 
identity matrix in every dimension). 

2.1. Summary of MPE 
We begin with a brief summary of minimal polynomial extrapolation (MPE). We use the ideas that follow to 
develop our new method. 

Given the vector sequence { }mx  in N , we define  

1 , 0,1, ,m m m m+= − =u x x �                                (2.3) 

and, for some fixed n, define the matrices kU  via  

[ ] ( )1
1| | | .N k

k n n n k
× +

+ += ∈U u u u�                                (2.4) 

Clearly, there is an integer 0k N≤ , such that the matrices kU , 00,1, , 1k k= −� , are of full rank, but 
0kU  

is not; that is,  

( ) ( )00 0rank 1, 0,1, , 1; rank .k kk k k k= + = − =U U�                       (2.5) 

(Of course, this is the same as saying that { }01 1, , ,n n n k+ + −u u u�  is a linearly independent set, but 
{ }01, , ,n n n k+ +u u u�  is not.) Following this, we pick a positive integer 0k k<  and let the vector 

[ ]T0 1 1, , , k
kc c c −′ = ∈c �   be the solution to  
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0 1 1

1

, , , 0
min .

k

k

i n i n kc c c i
c

−

−

+ +
=

+∑
M

u u
�

                                (2.6) 

This minimization problem can also be expressed as in  

1min ,k n k− +′
′ +

Mc
U c u                                     (2.7) 

and, as is easily seen, ′c  is the standard least-squares solution to the linear system 1k n k− +′ = −U c u , which, 
when k N< , is overdetermined, and generally inconsistent. With 0 1 1, , , kc c c −�  determined, set 1kc = , and 
compute the scalars 0 1, , , kγ γ γ�  via  

0

, 0,1, , ,i
i k

j
j

c i k
c

γ

=

= =
∑

�                                   (2.8) 

provided 
0 0k

jj c
=

≠∑ . Note that  

0
1.

k

i
i
γ

=

=∑                                         (2.9) 

Finally, set  

,
0

k

n k i n i
i
γ +

=

= ∑s x                                     (2.10) 

as the approximation to s , whether s  is the limit or antilimit of { }mx . 
What we have so far is only the definition (or the theoretical development) of MPE as a method. It should not 

be taken as an efficient computational procedure (algorithm), however. For this topic, see [14], where numeri-
cally stable and computationally and storagewise economical algorithms for MPE and RRE are designed for the 
case in which =M I . A well documented FORTRAN 77 code for implementing MPE and RRE in a unified 
manner is also provided in [14], Appendix B. 

2.2. Development of SVD-MPE 
We start by observing that the unconstrained minimization problem for MPE given in (2.7) can also be 
expressed as a superficially “constrained” minimization problem as in  

[ ]T0 1min , subject to 1; , , , .k k kc c c c= =Mc
U c c �                    (2.11) 

For the SVD-MPE method, we replace this “constrained” minimization problem by the following actual con-
strained minimization problem: 

[ ]T0 1min , subject to 1; , , , .
kk kc c c= =LMc

U c c c �                   (2.12) 

With 0 1, , , kc c c�  determined, we again compute 0 1, , , kγ γ γ�  via  

0

, 0,1, , ,i
i k

j
j

c i k
c

γ

=

= =
∑

�                                (2.13) 

provided 
0 0k

jj c
=

≠∑ , noting again that  

0
1.

k

i
i
γ

=

=∑                                      (2.14) 

Finally, we set  

,
0

k

n k i n i
i
γ +

=

= ∑s x                                    (2.15) 
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as the SVD-MPE approximation to s , whether s  is the limit or antilimit of { }mx . 
Of course, the minimization problem in (2.12) has a solution for [ ]T0 1, , , kc c c=c � . Let min kσ = MU c  

for this (optimal) c . Lemma 2.1 that follows next gives a complete characterization of minσ  and the 
(optimal) c . 

Lemma 2.1 Let 0 1, , ,k k kkσ σ σ�  be the singular values of the ( )1N k× +  matrix  
1 2 1 2 ,k k k

−=U M U L�                                     (2.16) 

ordered as in  

0 1 ,k k kkσ σ σ≥ ≥ ≥�                                    (2.17) 

and let kih  be the corresponding right singular vectors of kU� , that is,  
* 2

2
, 1, 0,1, , .k k ki ki ki ki i kσ= = =U U h h h� � �                           (2.18) 

Assuming that kkσ , the smallest singular value of kU� , is simple, the (optimal) solution c  to the minimi- 
zation problem in (2.12) is unique (up to a multiplicative constant τ , 1τ = ), and is given as in  

1 2
min; .k kk k kkσ σ−= = =Mc L h U c                              (2.19) 

Proof. The proof is achieved by observing that, with 1 2
k=c L c� ,  

22
and ,

kk k= =LMU c U c c c� � �                             (2.20) 

so that the problem in (2.12) becomes  

22
min , subject to 1.k =

c
U c c

�
� � �                              (2.21) 

The (optimal) solution to this problem is kk=c h�  and 
2

min k kkσ=c U c�
� � . We leave the details to the 

reader.                                                                                  □ 
In view of the nature of the solution for the (optimal) c  involving singular values and vectors, as described 

in Lemma 2.1, we call this new method SVD-MPE. 
Remarks:  
1) Recall that there exists a positive integer 0k N≤ , such that ( )rank 1k k= +U , for 0k k< , but  

( )0 0rank k k=U . Therefore, we have 0kkσ >  for all 0≤k k .  
2) Of course, ,n ks  exists if and only if the (optimal) [ ]T0 1, , , kc c c=c �  satisfies 

0 0k
jj c

=
≠∑ . In addition, 

by (2.13), the iγ  are unique when kkσ  is simple. 
Before we go on to the development of our algorithm in the next section, we state the following result 

concerning the finite termination property of SVD-MPE, whose proof is very similar to that pertaining to MPE 
and RRE given in [13]: 

Theorem 2.2 Let s  be the solution to the nonsingular linear system = +x Tx d , and let { }mx  be the se- 
quence obtained via the fixed-point iterative scheme 1m m+ = +x Tx d , 0,1, ,m = �  with 0x  chosen arbitrarily. 
If k is the degree of the minimal polynomial of T  with respect to n n= −x s  (equivalently, with respect to 

nu )2, then ,n ks  produced by SVD-MPE satisfies ,n k =s s .  

3. Error Estimation 
We now turn to the problem of estimating at zero cost the error ,n k −s s , whether s  is the limit or antilimit of 
{ }mx . Here we assume that s  is the solution to the system of equations  

 

 

2Given a matrix r r×∈B   and a nonzero vector ,r∈a   the monic polynomial ( )P λ  is said to be a minimal polynomial of B  with 

respect to a  if ( )  0P =B a  and if ( )P λ  has smallest degree. It is easy to show that the minimal polynomial ( )P λ  of B  with re-

spect to a  exists, is unique, and divides the minimal polynomial of B , which in turn divides the characteristic polynomial of B . [Thus, 
the degree of ( )P λ  is at most r, and its zeros are some or all of the eigenvalues of B .] Moreover, if ( ) 0Q =B a  for some polynomial 

( )Q λ  with deg degQ P> , then ( )P λ  divides ( )Q λ . Concerning this subject, see Householder [33], for example. 
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( ) ; : , ,N N N= → ∈x f x f x    

and that the vector sequence { }mx  is obtained via the fixed-point iterative scheme  

( )1 , 0,1, ,m m m+ = =x f x �  

0x  being the initial approximation to the solution s . 
Now, if x  is some approximation to s , then a good measure of the error −x s  in x  is the residual 

vector ( )r x  of x , namely,  

( ) ( ) .= −r x f x x  

This is justified since ( ) ( )lim 0→ = =x s r x r s . We consider two cases:  
1) ( )f x  is linear; that is, ( ) = +f x Tx d , where N N×∈T   and −I T  is nonsingular. 
In this case, we have  

( ) ( ) ( ) ,= + − = − −r x Tx d x T I x s  

and, therefore, by 
0 1k

ii γ
=

=∑ , , 0
k

n k i n ii γ +=
= ∑s x  satisfies  

( ) ( ) ( ), 1
0 0 0

,
k k k

n k i n i n i i n i n i i n i
i i i
γ γ γ+ + + + + +

= = =

 = + − = − = ∑ ∑ ∑r s Tx d x x x u  

and thus  

( ) [ ]T, 0 1, , , , .n k k kγ γ γ= =r s U �γ γ                             (3.1) 

2) ( )f x  is nonlinear. 
In this case, assuming that limm m→∞ =x s  and expanding ( )mf x  about s , we have  

( ) ( ) ( ) ( )2
1 as ,m m mO m+ = + − + − →∞x f s F s x s x s  

where ( )F x  is the Jacobian matrix of the vector-valued function ( )f x  evaluated at x . Recalling that 
( )=s f s , we rewrite this in the form  

( ) ( ) ( )2
1 as ,m m mO m+ = + − + − →∞x s F s x s x s  

from which, we conclude that the vectors mx  and 1m+x  satisfy the approximate equality  

( ) ( )1 for all large .m m m+ ≈ + −x s F s x s  

That is, for all large m, the sequence { }mx  behaves as if it were being generated by an N-dimensional 
approximate linear system of the form ( )− ≈I T x d  through  

1 , 0,1, ,m m m+ ≈ + =x Tx d �  

where ( )=T F s  and ( ) .= −  d I F s s  In view of what we already know about ( ),n kr s  for linear systems 
[from (3.1)], for nonlinear systems, close to convergence, we have  

( ) [ ]T, 0 1, , , , .n k k kγ γ γ≈ =r s U �γ γ                              (3.2) 

Remark: That the vector kU γ  is the exact residual vector for ,n ks  from linear systems and a true app- 
roximate residual vector for ,n ks  from nonlinear systems was proved originally in Sidi [14]. kU γ  was adopted 
in a subsequent paper by Jbilou and Sadok [15] and named the “generalized residual.” Despite sounding 
interesting, this name has no meaning and is also misleading. By expanding ( ),n kf s  about the solution s  and 
retaining first order terms only, it can be shown that kU γ  is actually a genuine approximation to the true 
residual vector ( ),n kr s  when ( )f x  is nonlinear. There is nothing “generalized” about it. 
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Now, we can compute k MU γ  at no cost in terms of the quantities that result from our algorithm, without 
having to actually compute kU γ  itself. Indeed, we have the following result on k MU γ , which can be incor- 
porated in the algorithm for SVD-MPE that we discuss in the next section:  

Theorem 3.1 Let kkσ  be the smallest singular value of kU�  and let kkh  be the corresponding right 
singular vector. Then the vector kU γ  resulting from ,n ks  satisfies  

0

.kk
k k

jj
c

σ

=

=
∑MU γ                                    (3.3) 

Proof. First, the solution to (2.12) is 1 2
kk

−=c L h  by (2.19). Next, letting 
0

k
jj cα

=
= ∑ , we have α= cγ  by 

(2.13). Consequently,  

.k
k α

=
U cU γ  

Thus, by Lemma 2.1, we have  

,k kk
k

σ
α α

= =M
M

U c
U γ  

which is the required result.                                                                  □ 

4. Algorithm for SVD-MPE 
We now turn to the design of a good algorithm for constructing numerically the approximation ,n ks  that results 
from SVD-MPE. We note that matrix computations in floating-point arithmetic must be done with care, and this 
is what we would like to achieve here. 

In this section, we let =M I  and k =L I  for simplicity. Thus, k k=U U� . Since there is no room for confu- 
sion, we will also use iσ , ih , and ig  to denote kiσ , kih , and kig , respectively. 

As we have seen in Section 2, to determine ,n ks , we need kh , the right singular vector of kU  corresponding 
to its smallest singular value kσ . Now, kσ  and kh  can be obtained from the singular value decomposition 
(SVD) of ( )1N k

k
× +∈U  . Of course, the SVD of kU  can be computed by applying directly to kU  the algori- 

thm of Golub and Kahan [34], for example. Here we choose to apply SVD to kU  in an indirect way, which 
will result in a very efficient algorithm for SVD-MPE that is economical both computationally and storagewise 
in an optimal way. Here are the details of the computation of the SVD of kU , assuming that ( )rank 1k k= +U :  

1) We first compute the QR factorization of kU  in the form  

( ) ( ) ( )1 1 1; , ,N k k k
k k k k k

× + + × += ∈ ∈U Q R Q R                          (4.1) 

where kQ  is unitary (that is, *
k k =Q Q I ) and kR  is upper triangular with positive diagonal elements, that is,  

[ ]
00 01 0

11 1
0 1| | | , ,

k

k
k k k

kk

r r r
r r

r

 
 
 = =
 
 
 

Q q q q R

�
�

�
� �

                      (4.2) 

* *, ; ; 0 .i j ij ij i j iii j r i j r iδ= ∀ = ∀ ≤ > ∀q q q u                      (4.3) 

Of course, we can carry out the QR factorizations in different ways. Here we do this by the modified Gram- 
Schmidt process (MGS) in a numerically stable way as follows:  

1. Compute 00 2nr = u  and 0 00n r=q u . 
2. For 1, ,j k= �  do  

Set ( )0
j n j+=u u  
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For 0,1, , 1i j= −�  do  
( )* i

ij i jr = q u  and ( ) ( )1i i
j j ij ir+ = −u u q  

end do (i)  
Compute ( )

2

j
jj jr = u  and ( )j

j j jjr=q u . 

end do (j)  

Note that the matrices kQ  and kR  are obtained from 1k−Q  and 1k−R , respectively, as follows:  

[ ]

0

1
1

1,
| , .

0 0

k

k
k k k k

k k

kk

r

r
r

−
−

−

 
 
 = =  
 
  

R
Q Q q R

�

�

                         (4.4) 

For MGS, see [29], for example. 
2) We next compute the SVD of kR : By Theorem 1.1, there exist unitary matrices ( ) ( )1 1, k k+ × +∈Y H  ,  

[ ] [ ] * *
0 1 0 1| | | ,   | | | ; , .= = = =� �k kY y y y H h h h Y Y I H H I                  (4.5) 

and a square diagonal matrix ( ) ( )1 1k k+ × +Σ∈ ,  

( )0 1 0 1diag , , , ; 0,k kσ σ σ σ σ σ= ≥ ≥ ≥ ≥� �Σ                         (4.6) 

such that  
*.k =R Y HΣ                                     (4.7) 

In addition, since kR  is nonsingular by our assumption that ( )rank 1k k= +U , we have that 0iσ >  for all 
i. Consequently, 0kσ > .  

3) Substituting (4.7) in (4.1), we obtain the following true singular value decomposition of kU :  
( )

[ ]

1* *

*
0 1

; unitary, ;
| | | , .

N k
k k

k i j ijδ

× += = ∈ =
= =

U G H G Q Y G G I
G g g g g g�

Σ
                   (4.8) 

Thus, iσ , the singular values of kR , are also the singular values of kU , and ih , the corresponding right 
singular vectors of kR , are also the corresponding right singular vectors of kU . (Of course, the ig  are corres- 
ponding left singular vectors of kU . Note that, unlike Y , H , and Σ , which we must compute for our alg- 
orithm, we do not need to actually compute G  because we do not need G  in our computations. The mere 
knowledge that the SVD of kU  is as given in (4.8) suffices to conclude that k=c h  is the required optimal 
solution to (2.12); we continue with the development of our algorithm from this point.)  

Remark: Computing the SVD of a matrix A  by first forming its QR factorization =A QR , next com- 
puting the SVD of R  as *=R Y HΣ , and finally setting *=A G HΣ , with =G QY  was first suggested by 
Chan [35]. 

With k=c h  already determined, we next compute the iγ  as in (2.13); that is,  

0

,k
jj c

=

=
∑

cγ                                       (4.9) 

provided 
0 0k

jj c
=

≠∑ . 
Next, by the fact that  

1

0

i

n i n n j
j

−

+ +
=

= +∑x x u  

and by (2.14), we can re-express ,n ks  in (2.15) in the form  
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[ ]
1 T

, 1 0 1 1
0

; , , , ,
k

n k n j n j n k k
j
ξ ξ ξ ξ

−

+ − −
=

= + = + =∑s x u x U �ξ ξ                    (4.10) 

where the iξ  are computed from the jγ  as in  

1 1
1

1; , 0,1, , 1.
k

j i j j
i j

j kξ ξ γ ξ γ− −
= +

= = = − = −∑ �                         (4.11) 

Making use of the fact that 1 1 1k k k− − −=U Q R , with  

[ ]

00 01 0, 1

11 1, 1
1 0 1 1 1

1, 1

| | | , ,

k

k
k k k

k k

r r r
r r

r

−

−
− − −

− −

 
 
 = =
 
 
  

Q q q q R

�
�

�
� �

                      (4.12) 

where the iq  and the ijr  are exactly those that feature in (4.2) and (4.3), we next rewrite (4.10) as in  

( ), 1 1 .n k n k k− −= +s x Q R ξ                                  (4.13) 

Thus, the computation of ,n ks  can be carried out economically as in  

[ ]T, 1 1 0 1 1; , , , , .n k n k k kη η η− − −= + = =s x Q R �η η ξ η                     (4.14) 

Of course, 1k−Q η  is best computed as a linear combination of the columns of 1k−Q , hence (4.14) is 
computed as in  

1

,
0

.
k

n k n i i
i
η

−

=

= +∑s x q                                   (4.15) 

It is clear that, for the computation in (4.14) and (4.15), we need to save both kQ  and kR . 
This completes the design of our algorithm for implementing SVD-MPE. For convenience, we provide a 

systematic description of this algorithm in Table 1, where we also include the computation of the 2l  norm of  

the exact or approximate residual vector ( ),n kr s , namely, 02
k

k k jj cσ
=

= ∑U γ , which is given in Theorem 3.1. 

Note that the input vectors n i+x , 1, , 1,i k= +�  need not be saved; actually, they are overwritten by n i+u , 
0,1, , ,i k= �  as the latter are being computed. As is clear from the description of MGS given above, we can 

overwrite the matrix kU  simultaneously with the computation of kQ  and kR , the vector n j+q  overwriting 
n j+u  as soon as it is computed, 0,1, , ;j k= �  that is, at any stage of the QR factorization, we store 2k +  

N-dimensional vectors in the memory. Since N k�  in our applications, the storage requirement of the 
( ) ( )1 1k k+ × +  matrix kR  is negligible. So is the cost of computing the SVD of kR , and so is the cost of 
computing the ( )1k + -dimensional vector η . Thus, for all practical purposes, the computational and storage 
requirements of SVD-MPE are the same as those of MPE.  

Remark: If we were to compute the SVD of kU , namely, *
k =U G HΣ , directly- and not by 1) first carrying 

out the QR factorization of kU  as k k k=U Q R , and 2) next computing the SVD of kR  as *
k =R Y HΣ , and 

3) noting that k=G Q Y  without actually computing G —then we would need to waste extra resources in 
carrying out the computation of , 10 .k

n k i n i n ki γ + −=
= = +∑s x x U ξ  This direct strategy will have either of the 

following consequences:  
1) If we have storage limitations, then we would have to overwrite kU  with G . (Recall that both of these 

matrices are ( )1N k× +  and hence they are large.) As a result, we would have to compute the ix ,  
1, , ,i n n k= + +�  a second time in order to compute ,n ks .  

2) If we do not want to compute the vectors ix , 1, , ,i n n k= + +�  a second time, then we would have to 
save kU , while computing the matrix G  in its singular value decomposition. Thus, we would need to save two 

( )1N k× +  matrices, namely, kU  and G  in the core memory simultaneously. Clearly, this limits the size of 
k, the order of extrapolation hence the rate of acceleration, severely.  

Clearly, the indirect approach we have taken here for carrying out the singular value decomposition of kU   



A. Sidi 
 

 
1269 

Table 1. Algorithm for SVD-MPE.                                                   

 
 
enables us to save extra computing and storage very conveniently when N is very large. 

5. Determinant Representations for SVD-MPE 
In [7] and [16], determinant representations were derived for the vectors ,n ks  that are produced by the vector 
extrapolation methods MPE, RRE, MMPE, and TEA. These representations have turned out to be very useful in 
the analysis of the algebraic and analytic properties of these methods. In particular, they were used for obtaining 
interesting recursion relations among the ,n ks  and in proving sharp convergence and stability theorems for 
them. We now derive two analogous determinant representations for ,n ks  produced by SVD-MPE. 

The following lemma, whose proof can be found in [7], Section 3, will be used in this derivation in Theorem 
5.2. 

Lemma 5.1 Let ,i ju  and jγ  be scalars and let the jγ  satisfy the linear system  

,
0

0

0, 0,1, , 1,

1.

k

i j j
j

k

j
j

u i kγ

γ

=

=

= = −

=

∑

∑

�

                               (5.1) 

Then, whether jv  are scalars or vectors, there holds  

( )
( )
0 1

0

, , ,
,

1,1, ,1

k
k

j j
j

D v v v
v

D
γ

=

=∑
�
�

                                (5.2) 

where  

( )

0 1

0,0 0,1 0,

1,0 1,1 1,0 1

1,0 1,1 1,

, , , ,

k

k

kk

k k k k

v v v
u u u
u u uD v v v

u u u− − −

=

�
�
��

� � �
�

                         (5.3) 
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provided ( )1,1, ,1 0D ≠� . In case the iv  are vectors, the determinant ( )0 1, , , kD v v v�  is defined via its ex- 
pansion with respect to its first row.  

For convenience of notation, we will write  

( )

00 01 0

10 11 1

0 1

, , , 0,1, .

k

k
k k ijij

k k kk

l l l
l l l

l i j

l l l

 
 
 = = =
 
 
 

L L

�
�

�
� � �

�

 

Then 1k−L  is the principal submatrix of kL  obtained by deleting the last row and the last column of kL . In 
addition, 1k−L  is hermitian positive definite just like kL . 

Theorem 5.2 that follows gives our first determinant representation for ,n ks  resulting from SVD-MPE and is 
based only on the smallest singular value kkσ  of kU�  and the corresponding right singular vector kkh . 

Theorem 5.2 Define  

( ) ( )2
, , , , 0,1, , ,i j n i n j kk k ij

u i j kσ+ += − =
M

u u L �                         (5.4) 

and assume that  

1, 1.kk k kσ σ − −< 3                                   (5.5) 

Then, provided ( )1,1, ,1 0D ≠� , ,n ks  exists and has the determinant representation  

( )
( )

1
,

, , ,
,

1,1, ,1
n n n k

n k
D

D
+ +=

x x x
s

�
�

                             (5.6) 

where ( )0 1, , , kD v v v�  is the ( ) ( )1 1k k+ × +  determinant defined as in (5.3) in Lemma 5.1 with the ,i ju  as 
in (5.4).  

Proof. With kU�  as in (2.16), we start by rewriting (2.18) in the form  

( )* 2 0.k k kk kkσ− =U U I h� �                                  (5.7) 

Invoking here 1 2
kk k=h L c , which follows from (2.19), and multiplying the resulting equality on the left by 

1 2
kL , we obtain  

( )* 2 0.k k kk kσ− =U MU L c                                 (5.8) 

Dividing both sides of this equality by 
0

k
jj c

=∑ , and invoking (2.13), we have  

( )* 2 0,k k kk kσ− =U MU L γ                                 (5.9) 

which, by the fact that  

( ) ( )* * , ,k k n i n j n i n jij + + + += =
M

U MU u Mu u u  

is the same as  

( ) ( )2
,

0 0
, 0 0, 0,1, , ,

k k

n i n j kk k j i j jij
j j

u i kσ γ γ+ +
= =

 − = ⇒ = = ∑ ∑M
u u L �                 (5.10) 

where we have invoked (5.4). We will be able to apply Lemma 5.1 to prove the validity of (5.6) if we show that, 
in (5.10), the equations with 0,1, , 1,i k= −�  are linearly independent, or, equivalently, the first k rows of the 
matrix  

* 2
k k k kk kσ= −B U MU L  

 

 

3From the Cauchy interlace theorem, we already know that 1, 1kk k kσ σ − −≤ . See [29], for example. 
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are linearly independent. By the fact that  

[ ] T1
*1 0 1 1,| and , , , , ,k k

k k n k k k k k k k
k kk

l l ll
−

− + −

 
 = = =     

L l
U U u L ll �  

we have  

1
* ,k

k β
−′ 

=  
  

B p
B p  

where  
* 2

1 1 1 1,k k k kk kσ− − − −′ = −B U MU L  

and  
* 2 * 2

1 , .k n k kk k n k n k kk kklσ β σ− + + += − = −p U Mu l u Mu  

Invoking 1 2 1 2
1 1 1k k k

−
− − −=U M U L� , we obtain  

( )1 2 * 2 1 2
1 1 1 1 1.k k k k kk kσ− − − − −′ = −B L U U I L� �  

Since 2
1, 1k kσ − −  is the smallest eigenvalue of *

1 1k k− −U U� �  and since 1, 1k k kkσ σ− − > , it turns out that 1k−′B  is 
positive definite, which guarantees that the first k rows of kB  are linearly independent. This completes the 
proof.                                                                                   □ 

Remark: We note that the condition that ( )1,1, ,1 0D ≠�  in Theorem 5.2 is equivalent to the condition that  

0 0k
jj c

=
≠∑ , which we have already met in Section 2.  

The determinant representation given in Theorem 5.3 that follows is based on the complete singular value 
decomposition of kU� , hence is different from that given in Theorem 5.2. Since there is no room for confusion, 
we will denote the singular values kiσ  and right and left singular vectors kih  and kig  of kU�  by iσ , ih  
and ,ig  respectively. 

Theorem 5.3 Let kU�  be as in (2.16), and let  
( ) ( ) ( ) ( ) ( )1 1 1 1 1*, , ,N k k k k k

k
× + + × + + × += ∈ ∈ ∈U G H G H�   Σ Σ  

be the singular value decomposition of kU� ; that is,  

[ ] [ ]* *
0 1 0 1| | | , ; | | | , ,k i j ij k i j ijδ δ= = = =G g g g g g H h h h h h� �  

and  

( )0 1 0 1diag , , , , .k kσ σ σ σ σ σ= ≥ ≥ ≥� �Σ  

Define  

( )*1 2 * 1 2
, , 0,1, , 1, 0,1, , ,i j i n j i n ju i k j k+ += = = − =M g u g M u � �                (5.11) 

Then, ,n ks  has the determinant representation  

( )
( )

1
,

, , ,
,

1,1, ,1
n n n k

n k
D

D
+ +=

x x x
s

�
�

                              (5.12) 

where ( )0 1, , , kD v v v�  is the ( ) ( )1 1k k+ × +  determinant defined as in (5.3) in Lemma 5.1 with the ,i ju  as 
in (5.11).  

Proof. By Theorem 1.1,  
*and 0, 0,1, , 1.k k k k i k i kσ= = = −U h g g g� �                     (5.13) 

Therefore,  
* 0, 0,1, , 1.i k k i k= = −g U h� �                            (5.14) 
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By (2.16) and by the fact that 1 2
k k
−=c L h , which follows from (2.19), and by the fact that α= cγ , 

0
k

jj cα
=

= ∑ , which follows from (2.13), and by (5.14), we then have  

( ) ( )* 1 2 1 * 1 2 1 * 0, 0,1, , 1.i k i k i k k i kα α− −= = = = −g M U g M U c g U h� �γ              (5.15) 

But, by (5.11), (5.15) is the same as  

,
0

0, 0,1, , 1.
k

i j j
j

u i kγ
=

= = −∑ �  

Therefore, Lemma 5.1 applies with ,i ju  as in (5.11), and the result follows.                         □ 

6. SVD-MPE as a Krylov Subspace Method 
In Sidi [17], we discussed the connection of the extrapolation methods MPE, RRE, and TEA with Krylov 
subspace methods for linear systems. We now want to extend the treatment of [17] to SVD-MPE. Here we recall 
that a Krylov subspace method is also a projection method and that a projection method is defined uniquely by 
its right and left subspaces4. In the next theorem, we show that SVD-MPE is a bona fide Krylov subspace 
method and we identify its right and left subspaces. 

Since there is no room for confusion, we will use the notation of Theorem 5.3. 
Theorem 6.1 Let s  be the unique solution to the linear system ,=Cx d  which we express in the form  

( ) ; ,− = ⇒ = + = −I T x d x Tx d T I C  

and let the vector sequence { }mx  be produced by the fixed-point iterative scheme  

1 , 0,1, .m m m+ = + =x Tx d �  

Define the residual vector of x  via ( ) .= −r x d Cx  Let also 0,k k≡s s  be the approximation to s  prod- 
uced by SVD-MPE. Then the following are true:  

1) ks  is of the form  

( ) ( )
1

0 0 0 0 0
0

for some ; .
k

i
k i i

i
δ δ

−

=

= + = = −∑s x C r r r x d Cx                     (6.1) 

2) The residual vector of ks , namely, ( )kr s , is orthogonal to the subspace  

{ }1 2 1 2 1 2
0 1 1span , , , .k kL −= M g M g M g�  

Thus,  

( ) ( )
*1 2 0, 0,1, , 1.i k i k= = −M g r s �                            (6.2) 

Consequently, SVD-MPE is a Krylov subspace method for the linear system =Cx d , with the Krylov 
subspace ( ) { }1

0 0 0 0; span , , , k
kK −=C r r Cr C r�  as its right subspace and  

{ }1 2 1 2 1 2
0 1 1span , , ,k kL −= M g M g M g�  as its left subspace. 

Proof. With the mx  generated as above, we have  

1 0 , 0,1, .m
m m m m+ = ⇒ = =u Tu u T u �  

Therefore,  

( )0 1 0 0 0 0 0= − = + − = − =u x x Tx d x d Cx r x  

 

 

4A projection method for the solution of the linear system =Cx d , where N N×∈C  , is defined as follows: Let Y and Z be k-dimensional 
subspaces of N  and let 0x  be a given vector in N . Then the projection method produces an approximation ks  to the solution of 

=Cx d  as follows: 1) 0k = +s x y , Y∈y , 2) ( )* 0k =h r s  for every Z∈h . Y and Z are called, respectively, the right and left subspaces 

of the method. If Y is the Krylov subspace ( ) { }1
0 0 0 0; span , , , k

kK −=C r r Cr C r� , where 0 0= −r d Cx , then the projection method is called a  
Krylov subspace method. 
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and  
1 1 1

0 0 0 0 0
0 0 0

.
k k k

i i
k i i i i

i i i
ξ ξ ξ

− − −

= = =

= + = + = +∑ ∑ ∑s x u x T u x T r  

Upon substituting = −T I C  in this equality, we obtain (6.1). 
To prove (6.2), we first recall that ( )k k=U r sγ  by (3.1). By this and by (5.15), the result in (6.2) follows.  □ 
Remark: We recall that (see [17]), when applied to linearly generated sequences { }mx  as in Theorem 6.1, 

MPE, RRE, and TEA are mathematically equivalent to, respectively, the full orthogonalization method (FOM) 
of Arnoldi [36], the generalized minimum residual method (GMR), the best implementation of it being GMRES 
by Saad and Schultz [37], and the method of Lanczos [38]. In all these methods the right subspace is the 
k-dimensional Krylov subspace ( )0;kK C r . The left subspaces are also Krylov subspaces, with 1) ( )0;kK C r  
for FOM, 2) ( )0;kK C Cr  for GMR, and 3) ( )*

0;kK C r  for the method of Lanczos. One important point about 
the left subspaces of these three methods is that they expand as k increases, that is, the left subspace of 
dimension 1k +  contains the left subspace of dimension k. As for SVD-MPE, its right subspace is also the 
k-dimensional Krylov subspace ( )0;kK C r , which makes SVD-MPE a bona fide Krylov subspace method, and 
the left subspace is { }1 2 1 2 1 2

0 1 , 1span , , ,k k k k kL −= M g M g M g� . Thus, the k-dimensional left subspace is not a 
Krylov subspace, since it is not contained in the left subspace of dimension 1k + , as the left singular vectors 

kig  of kU�  are different from the left singular vectors 1,k i+g  of 1k+U� . 

7. Numerical Examples 
We now provide two examples that show the performance of SVD-MPE and compare SVD-MPE with MPE. In 
both examples, SVD-MPE and MPE are implemented with the standard Euclidean inner product and the norm 
induced by it. Thus, =M I  and k =L I  throughout. 

As we have already mentioned, a major application area of vector extrapolation methods is that of numerical 
solution of large systems of linear or nonlinear equations ( ) 0=ψ x  by fixed-point iterations ( )1m m+ =x f x . 
[Here ( )=x f x  is a possibly preconditioned form of ( ) 0=ψ x .] For SVD-MPE, as well as all other poly- 
nomial methods discussed in the literature, the computation of the approximation ,n ks  to s , the solution of 
( ) 0=ψ x , requires 1k +  of the vectors mx  to be stored in the computer memory. For systems of very large 

dimension N, this means that we should keep k at a moderate size. In view of this limitation, a practical strategy 
for systems of equations is cycling, for which n and k are fixed. Here are the steps of cycling:  

C0) Choose integers 0n ≥ , and 1,k ≥  and an initial vector 0x .  
C1) Compute the vectors 1 2 1, , , n k+ +x x x�  [via ( )1m m+ =x f x ].  
C2) Apply SVD-MPE (or MPE) to the vectors 1 1, , ,n n n k+ + +x x x� , with end result ,n ks .  
C3) If ,n ks  satisfies accuracy test, stop. 
Otherwise, set 0 ,n k=x s , and go to Step C1.  
We will call each application of steps C1 - C3 a cycle, and denote by ( )

,
r

n ks  the ,n ks  that is computed in the 
rth cycle. We will also denote the initial vector 0x  in step C0 by ( )0

,n ks . Numerical examples suggest that the se-  

quence ( ){ }, 0

r
n k r

∞

=
s  has very good convergence properties. (A detailed study of errors and convergence properties 

for MPE and RRE in the cycling mode is given in [20] and [21].) 
Note that the remark at the end of Section 4 is relevant to the implementation of SVD-MPE in the cycling 

mode when N, the dimension of the mx , is very large and storage is limited and, therefore, the size of k is 
limited as well. 

Example 7.1 Consider the vector sequence { }mx  obtained from 1m m+ = +x Tx d , 0,1, ,m = �  where  

5 2 1 1
2 6 3 1 1
1 3 6 3 1 1

0.06 ,
1 1 3 6 3 1 1

1 1 3 6 3 1 1

 
 
 
 

= ×  
 
 
 
  

T

� � � � � � �
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and is symmetric with respect to both main diagonals, and N N×∈T   and is hermitian. Therefore, T  is diago- 
nalizable with real eigenvalues. The vector d  is such that the exact solution to = +x Tx d  is [ ]T1,1, ,1=s � . 
We have ( ) 1ρ <T , so that { }mx  converges to s . 

Figure 1 shows the 2l  norms of the errors in ,n ks , 0,1, ,n = �  with 5k =  fixed. Here 100N = . Note 
that all of the approximations ,5ns  make use of the same (infinite) vector sequence { }mx , and, practically 
speaking, we are looking at how the methods behave as n →∞ . It is interesting to see that SVD-MPE and 
MPE behave almost the same. Although we have a rigorous asymptotic theory confirming the behavior of MPE 
in this mode as observed in Figure 1 (see [16] [18] and [19]), we do not have any such theory for SVD-MPE at 
the present5. 

Figure 2 shows the 2l  norm of the error in ,n ks  in the cycling mode with 0n =  and 20k = . Now 
1000N = , a relatively large dimension.  

Example 7.2 We now apply SVD-MPE and MPE to the nonlinear system that arises from finite-difference 
approximation of the two-dimensional convection-diffusion equation considered in Kelley ([39], pp. 108-109), 
namely, 

( ) ( ) ( ) ( )2 , , 0,1 0,1 ,x yu Cu u u f x y−∇ + + = ∈Ω = ×  

where ( ),u x y  satisfies homogeneous boundary conditions. ( ),f x y  is constructed by setting 20C =  in the 
differential equation and by taking 

( ) ( ) ( ) ( )4.5, 10 1 1 expu x y xy x y x= − −  

as the exact solution. 
The equation is discretized on a square grid by approximating xxu , yyu , xu , and yu  by centered differe- 

nces with truncation errors ( )2O h . Thus, letting 1h ν= , and  

( ) ( ), , , , 0,1, , ,i jx y ih jh i j ν= = �  

 

 
Figure 1. 2l  norm of error in ,n ks , 0,1, ,n = �  with 5k = , from MPE and SVD-MPE, for 

Example 7.1 with 100N = .                                                               

 

 

5As proved in [7] and [16], if we order the distinct eigenvalues iλ  of T  as 1 2 ,λ λ≥ ≥�  then with fixed k, we have ( ), 1
n

n k kO λ +− =s s  

as n →∞  for MPE, RRE, MMPE, and TEA, if T  is diagonalizable and 1k kλ λ +> . (This result explains the straight line behavior of 

MPE in Figure 1.) Generalizations and extensions of this result are given in the papers [18]-[21], for the cases in which T  is not necessar-
ily diagonalizable and/or 1k kλ λ += . 
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Figure 2. 2l  norm of error in 0,20s  in the cycling mode, from SVD-MPE, for Example 7.1 

with 1000N = .                                                                          
 
and  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,
, , , ,

2 2
i j i j i j i j

x i j y i j

u x y u x y u x y u x y
u x y u x y

h h
+ − + −− −

≈ ≈  

and  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 12
2

4 , , , , ,
, ,i j i j i j i j i j

i j

u x y u x y u x y u x y u x y
u x y

h
+ − + −− − − −

−∇ ≈  

we replace the differential equation by the finite difference equations  

( )

1, 1, , 1 , 1
2

1, 1, , 1 , 1

4

, , 1 , 1,
2

ij i j i j i j i j

i j i j i j i j
ij i j

u u u u u
h

u u u u
Cu f x y i j

h
ν

+ − + −

+ − + −

− − − −

− + −
+ = ≤ ≤ −

 

with  

0, ,0 , , 0 , .j i j iu u u u i jν ν= = = = ∀  

Here iju  is the approximation to ( ),i ju x y , as usual. 
We first write the finite difference equations in a way that is analogous to the PDE written in the form  

( )2 ,x yu f Cu u u−∇ = − +  

and split the matrix representing 2−∇  to enable the use of the Jacobi and Gauss-Seidel methods as the iterative 
procedures to generate the sequences { }mx .  

Figure 3 and Figure 4 show the 2l  norms of the errors in ,n ks  from SVD-MPE and MPE in the cycling 
mode with 0n =  and 20k = , the iterative procedures being, respectively, that of Jacobi and that of Gauss- 
Seidel for the linear part 2u−∇  of the PDE. Here 100ν = , so that the number of unknowns (the dimension) is 

299 9801N = = . Note that the convergence of cycling is much faster with Gauss-Seidel iteration than with  
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Figure 3. 2l  norm of error in 0,20s  in the cycling mode, from MPE and SVD-MPE, for 

Example 7.2 with 100ν =  hence 299N = . The underlying iteration method is that of Jacobi.        
 

 
Figure 4. 2l  norm of error in 0,20s  in the cycling mode, from MPE and SVD-MPE, for 

Example 7.2 with 100ν =  hence 299N = . The underlying iteration method is that of Gauss- 
Seidel.                                                                              
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Jacobi iteration6. For both cycling computations, SVD-MPE and MPE seem to perform very similarly in this 
example. 

Note that the Jacobi and Gauss-Seidel iterations converge extremely slowly. In view of this slow conve- 
rgence, the acceleration produced by SVD-MPE and MPE in the cycling mode is remarkable.  
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